Implications for the Import of Outer Dynein Arms Into Sperm Flagella by the Intraflagellar Transport Machinery

Total Page:16

File Type:pdf, Size:1020Kb

Implications for the Import of Outer Dynein Arms Into Sperm Flagella by the Intraflagellar Transport Machinery Central JSM Sexual Medicine Bringing Excellence in Open Access Short Communication *Corresponding author Esben Lorentzen, Department of Molecular Biology and Genetics, Aarhus University, Gustav WiedsVej 10c, DK- Purification and Structure of 8000 Aarhus C, Denmark; Tel: 45-871-55478; Email: Submitted: 11 May 2017 Human ODA16: Implications Accepted: 18 July 2017 Published: 21 July 2017 for the Import of Outer Dynein Copyright © 2017 Lorentzen et al. Arms into Sperm Flagella by OPEN ACCESS Keywords the Intraflagellar Transport • Sperm • Cilium • Intraflagellar Transport Machinery • Outer Dynein Arms • ODA16, IFT46 Michael Taschner1, Jerome Basquin2, Sagar Bhogaraju2, Melanie Vetter2, Marie Bech Andersen1, Jiaolong Wang1, Anna Lorentzen1, and Esben Lorentzen1* 1Department of Molecular Biology and Genetics, Aarhus University, Denmark 2Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Germany Abstract A single motile cilium powers the swimming of sperm cells, which is required for fertilization of the egg. At the molecular level, several dyneinmolecular motor complexes including outer dyne in arms (ODAs) are attached periodically to the ciliaryaxoneme where theyhydrolyse ATP to create the force required for bending of the cilium and motility of the sperm cell. ODAs are preassembled in the cytoplasm and subsequently trafficked into the cilium by the intraflagellar transport (IFT) system. In the case of the green alga Chlamydomonasreinhardtii, the adaptor protein ODA16 binds to ODAs and directly to the IFT complex component IFT46 to facilitate the ciliary import of ODAs. Here, we purified recombinant human IFT46 and ODA16 and determined the high-resolution crystal structure of the ODA16 protein to show that the interaction network resulting in ciliary trafficking of ODAs is different than for the Chlamydomonassystem. Despite similar C-terminal b-propeller domains, the small N-terminal domain that binds IFT46 in Chlamydomonas, is not positioned on top of the b-propeller domain in case of the human ODA16. Consistent with this, we do not observe a direct interaction between human ODA16 and IFT46 suggesting that additional factors may be required for the ciliary import of ODAs in human sperm. ABBREVIATIONS Cr: Chlamydomonasreinhardtii; Hs: Homo Sapiens; SEC: of the male reproductive system, one long motile cilium powers Size Exclusion Chromatography; ODA: Outer Dynein Arm; IFT: the sperm cell and allows it to swim towards the oocyte for fertilization. Autosomal recessive mutations that hamper with the functionality of the motile cilium thus often result in immotile INTRODUCTIONIntraflagellar Transport; PCD: Primary Cilia Dyskinesia sperm and male infertility [3,5]. signaling, sensory reception, and motility [1]. They probably andThe outer motility dynein of ciliaarms relies are onperiodically conserved molecularattached [7].structures Outer evolvedCilia toare provide conserved unicellular eukaryotic organisms organelles with that the function ability toin including a microtubule(MT)-based axoneme onto which inner move in aqueous environments. In humans, motile cilia are lightdynein chains arms that (ODAs) assemble are macro-molecularinto ODA complexes motor that complexes associate consisting of several heavy, intermediate, light-intermediate and found in the embryonic node where they establish the left-right asymmetry required for the correct positioning of inner organs, with the MT-doublets of the axoneme. The dynein heavy chains and in the brain where they propel the cerebrospinal fluid flow are 4000-5000 residues long ATPases that power the sliding [2,3]. They also propel the extra-cellular mucociliary flow that ciliaryaxonememovement of MT were doublets reported resultingin to have abeating total or of partial the cilium absence [8- clears the airways of inhaled pathogens, and create the fluid-flow 10]. Around 80% of PCD patients with structural defects in the that moves the oocyte through the fallopian tubes to reach the uterus. Mutations in ciliary factors can thuse airways,result in primaryand ectopic cilia of dynein arms [3]. Specifically, patient mutations in dynein arm dyskinesia (PCD) with disease phenotypes such as bronchitis heavy chains DNAH11 and DNAH5, intermediate chains DNAI1 and pneumonia due to infections in th and DNAI2 and light-intermediate chain TXNDC3 were reported pregnancy resulting in reduced fertility in females [4-6]. In case to result in PCD [3,5]. Cite this article: Taschner M, Basquin J, Bhogaraju S, Vetter M, Andersen MB, et al. (2017) Purification and Structure of Human ODA16: Implications for the Import of Outer Dynein Arms into Sperm Flagella by the Intraflagellar Transport Machinery. JSM Sexual Med 2(2): 1008. Lorentzen et al. (2017) Email: Central Bringing Excellence in Open Access The cell relies on an intracellular transport process known GFP-nanobodycoupled to sepharose beads (‘GFP-binder°C and injectedbeads’). as intraflagellar transport (IFT) to build a cilium and ferry ODAs For the SEC experiment shown in Figure 2A, IFT46 was incubated from their site of assembly in the cytoplasm to their location of with 20% molar excess of HsODA16 for 1h at 4 action in the axoneme [11]. IFT depends on the 22-subunit IFT experimentonto a HiLoadSuperdex shown in Figure 200 2Bcolumn was carriedin 10mM out Hepes as previously pH 7.5, complexTg737Rpw that mutant serves asmice an adaptorcarrying for a ciliaryhypermorphic cargo [12-14]. mutation IFT 250mM NaCl, 5% glycerol and 1mM DTT. The affinity pull-down was shown to be essential for spermiogenesis in mice and male Ift88Tg737Rpw described with 150mM NaCl in the binding and washing buffer in the IFT subunit IFT88 are sterile [15].The sperm count in [25,26]. Bound proteins were eluted from the GFP-binder beads Ift88 mice was 350 times lower than in wild-type mice and using 0.1M citric acid. the sperm flagellawere completely immotile [15]. Consistent with this notion, disruption of a different IFT gene, Ift20, also results in Full-length HsODA16 was crystallized using the hanging drop vapor diffusion method at 18°C by mixing 200nL of purified Additionally,infertile mice [16].a recently IFT20 ispublished highly abundant study indemonstrated the testes of micethat and IFT20 expression is upregulated during spermiogenesis[16]. HsODA16 at 26mg/ml with 200nL of the precipitant solution containing50mM Tris pH 8 and 50mM NaOxalate. Crystals were the IFT protein IFT25, which is not required for ciliogenesis in cryo protected by the addition of 30% glycerol and cooled in somatic cells[17], is essential for sperm flagella formation and liquid nitrogen. X-ray diffraction data were collected at 2.8Å fertility in mice, suggesting sperm-specific function of certain resolution at the Swiss Light Source (SLS; Villigen, Switzerland) IFT factors [18]. These studies clearly show that IFT is a required at the PXII beam line on a Pilatus 6M detector and indexed with spermiogenesisprocess for proper but cilium are absent formation in mature in sperm sperm, cells suggestingand for fertility that the XDS package [27] before scaling with Aimless as part of the of mice. Interestingly, IFT proteins are only present during CCP4 package [28]. The structure of HsODA16 was determined by molecular replacement using the CrODA16 structure (pdb IFT is not required for the maintenance of sperm flagella [15]. code 5MZH) as a model and refined in the program Phenix [29]. Chlamydomonasreinhardtii Important work in the green alga model organism The asymmetric unit contained a total of two chains; chain A was (Cr) revealed that the IFT of ODAs not well ordered and had high B-factors whereas chain B was well requires the IFT complex subunit IFT46 as well the cargo adaptor ordered with low B-factors and was consequently used for the structure representation shown in Figure 1 (non crystallographic thisprotein organism, ODA16 [19-21].demonstrating The zebra evolutionary fish ODA16 conservation ortholog WDR69 [22]. symmetry restraints used in refinement). See Table 1 for data is also required for axonemalCr dynein assembly and motility in collection and refinement statistics. We recently investigated the ODA-ODA16-IFT46 interaction Table 1: HsODA16 (5NNZ) network using purified proteins to show that the CrODA16 X-ray data collection and refinement statistics. C-terminal domain is required for the interaction with ODAs and Wavelength (Å) Resolution range (Å) that the cleft between the N- and C-terminal domainsCr of and CrODA16 Homo 1.000 Space group likely forms the CrIFT46 binding site (Figure 1) [23]. Given that 520 - 2.8 (2.97 - 2.8) Unit cell (a,b,c, α,β,γ) both IFT46 and ODA16 are conserved between P 21 sapiens (Hs) (60% sequence identity over the entire protein Total reflections 52.2 69.5 102.2 90 90.0 90 length), it is a reasonable assumption that the mechanism of Unique reflections 115301 (16503) ciliary ODA trafficking is also conserved. However, as we show Multiplicity 18102 (2798) here, the HsODA16 structure does not have the pronounced Completeness (%) 6.4 (5.9) cleft betweenODA16 domains and does not interact directly Mean I/sigma(I) Cr and 99.5 (96.7) with IFT46 in a high affinity complex. In contrast, the surface of R-merge Hs 5.7 (1.0) the C-terminal domain is completely conserved between CC1/2 0.217 (1.35) ODA16 proteins, suggesting that they interact with ODAs in R-work 0.973 (0.404) ciliarya similar delivery. manner. Our data suggest that additional factors are R-free 0.226 (0.348) required to tether ODA-bound ODA16 to the IFT machinery for Number of non-hydrogen
Recommended publications
  • Educational Paper Ciliopathies
    Eur J Pediatr (2012) 171:1285–1300 DOI 10.1007/s00431-011-1553-z REVIEW Educational paper Ciliopathies Carsten Bergmann Received: 11 June 2011 /Accepted: 3 August 2011 /Published online: 7 September 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Cilia are antenna-like organelles found on the (NPHP) . Ivemark syndrome . Meckel syndrome (MKS) . surface of most cells. They transduce molecular signals Joubert syndrome (JBTS) . Bardet–Biedl syndrome (BBS) . and facilitate interactions between cells and their Alstrom syndrome . Short-rib polydactyly syndromes . environment. Ciliary dysfunction has been shown to Jeune syndrome (ATD) . Ellis-van Crefeld syndrome (EVC) . underlie a broad range of overlapping, clinically and Sensenbrenner syndrome . Primary ciliary dyskinesia genetically heterogeneous phenotypes, collectively (Kartagener syndrome) . von Hippel-Lindau (VHL) . termed ciliopathies. Literally, all organs can be affected. Tuberous sclerosis (TSC) . Oligogenic inheritance . Modifier. Frequent cilia-related manifestations are (poly)cystic Mutational load kidney disease, retinal degeneration, situs inversus, cardiac defects, polydactyly, other skeletal abnormalities, and defects of the central and peripheral nervous Introduction system, occurring either isolated or as part of syn- dromes. Characterization of ciliopathies and the decisive Defective cellular organelles such as mitochondria, perox- role of primary cilia in signal transduction and cell isomes, and lysosomes are well-known
    [Show full text]
  • Ciliopathiesneuromuscularciliopathies Disorders Disorders Ciliopathiesciliopathies
    NeuromuscularCiliopathiesNeuromuscularCiliopathies Disorders Disorders CiliopathiesCiliopathies AboutAbout EGL EGL Genet Geneticsics EGLEGL Genetics Genetics specializes specializes in ingenetic genetic diagnostic diagnostic testing, testing, with with ne nearlyarly 50 50 years years of of clinical clinical experience experience and and board-certified board-certified labor laboratoryatory directorsdirectors and and genetic genetic counselors counselors reporting reporting out out cases. cases. EGL EGL Genet Geneticsics offers offers a combineda combined 1000 1000 molecular molecular genetics, genetics, biochemical biochemical genetics,genetics, and and cytogenetics cytogenetics tests tests under under one one roof roof and and custom custom test testinging for for all all medically medically relevant relevant genes, genes, for for domestic domestic andand international international clients. clients. EquallyEqually important important to to improving improving patient patient care care through through quality quality genetic genetic testing testing is is the the contribution contribution EGL EGL Genetics Genetics makes makes back back to to thethe scientific scientific and and medical medical communities. communities. EGL EGL Genetics Genetics is is one one of of only only a afew few clinical clinical diagnostic diagnostic laboratories laboratories to to openly openly share share data data withwith the the NCBI NCBI freely freely available available public public database database ClinVar ClinVar (>35,000 (>35,000 variants variants on on >1700 >1700 genes) genes) and and is isalso also the the only only laboratory laboratory with with a a frefree oen olinnlein dea dtabtaabsaes (eE m(EVmCVlaCslas)s,s f)e, afetuatruinrgin ag vaa vraiarniatn ctl acslasisfiscifiactiaotino sne saercahrc ahn adn rde rpeoprot rrte rqeuqeuset sint tinetrefarcfaec, ew, hwichhic fha cfailcitialiteatse rsa praidp id interactiveinteractive curation curation and and reporting reporting of of variants.
    [Show full text]
  • Synergistic Genetic Interactions Between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models
    BASIC RESEARCH www.jasn.org Synergistic Genetic Interactions between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models Rory J. Olson,1 Katharina Hopp ,2 Harrison Wells,3 Jessica M. Smith,3 Jessica Furtado,1,4 Megan M. Constans,3 Diana L. Escobar,3 Aron M. Geurts,5 Vicente E. Torres,3 and Peter C. Harris 1,3 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocys- tin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD’s mild phenotype in murine models versus in humans has hampered investi- gating its pathogenesis. Methods To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. Results The genetic interaction was synergistic in both species, with digenic animals exhibiting pheno- types of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction be- tween Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached.
    [Show full text]
  • Ciliopathies Gene Panel
    Ciliopathies Gene Panel Contact details Introduction Regional Genetics Service The ciliopathies are a heterogeneous group of conditions with considerable phenotypic overlap. Levels 4-6, Barclay House These inherited diseases are caused by defects in cilia; hair-like projections present on most 37 Queen Square cells, with roles in key human developmental processes via their motility and signalling functions. Ciliopathies are often lethal and multiple organ systems are affected. Ciliopathies are London, WC1N 3BH united in being genetically heterogeneous conditions and the different subtypes can share T +44 (0) 20 7762 6888 many clinical features, predominantly cystic kidney disease, but also retinal, respiratory, F +44 (0) 20 7813 8578 skeletal, hepatic and neurological defects in addition to metabolic defects, laterality defects and polydactyly. Their clinical variability can make ciliopathies hard to recognise, reflecting the ubiquity of cilia. Gene panels currently offer the best solution to tackling analysis of genetically Samples required heterogeneous conditions such as the ciliopathies. Ciliopathies affect approximately 1:2,000 5ml venous blood in plastic EDTA births. bottles (>1ml from neonates) Ciliopathies are generally inherited in an autosomal recessive manner, with some autosomal Prenatal testing must be arranged dominant and X-linked exceptions. in advance, through a Clinical Genetics department if possible. Referrals Amniotic fluid or CV samples Patients presenting with a ciliopathy; due to the phenotypic variability this could be a diverse set should be sent to Cytogenetics for of features. For guidance contact the laboratory or Dr Hannah Mitchison dissecting and culturing, with ([email protected]) / Prof Phil Beales ([email protected]) instructions to forward the sample to the Regional Molecular Genetics Referrals will be accepted from clinical geneticists and consultants in nephrology, metabolic, laboratory for analysis respiratory and retinal diseases.
    [Show full text]
  • Establishment of the Early Cilia Preassembly Protein Complex
    Establishment of the early cilia preassembly protein PNAS PLUS complex during motile ciliogenesis Amjad Horania,1, Alessandro Ustioneb, Tao Huangc, Amy L. Firthd, Jiehong Panc, Sean P. Gunstenc, Jeffrey A. Haspelc, David W. Pistonb, and Steven L. Brodyc aDepartment of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110; bDepartment of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110; cDepartment of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and dDepartment of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033 Edited by Kathryn V. Anderson, Sloan Kettering Institute, New York, NY, and approved December 27, 2017 (received for review September 9, 2017) Motile cilia are characterized by dynein motor units, which preas- function of these proteins is unknown; however, missing dynein semble in the cytoplasm before trafficking into the cilia. Proteins motor complexes in the cilia of mutants and cytoplasmic locali- required for dynein preassembly were discovered by finding human zation (or absence in the cilia proteome) suggest a role in the mutations that result in absent ciliary motors, but little is known preassembly of dynein motor complexes. Studies in C. reinhardtii about their expression, function, or interactions. By monitoring show motor components in the cell body before transport to ciliogenesis in primary airway epithelial cells and MCIDAS-regulated flagella (22–25). However, the expression, interactions, and induced pluripotent stem cells, we uncovered two phases of expres- functions of preassembly proteins, as well as the steps required sion of preassembly proteins. An early phase, composed of HEATR2, for preassembly, are undefined.
    [Show full text]
  • De Novo, Systemic, Deleterious Amino Acid Substitutions Are Common in Large Cytoskeleton‑Related Protein Coding Regions
    BIOMEDICAL REPORTS 6: 211-216, 2017 De novo, systemic, deleterious amino acid substitutions are common in large cytoskeleton‑related protein coding regions REBECCA J. STOLL1, GRACE R. THOMPSON1, MOHAMMAD D. SAMY1 and GEORGE BLANCK1,2 1Department of Molecular Medicine, Morsani College of Medicine, University of South Florida; 2Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA Received June 13, 2016; Accepted October 31, 2016 DOI: 10.3892/br.2016.826 Abstract. Human mutagenesis is largely random, thus large Introduction coding regions, simply on the basis of probability, represent relatively large mutagenesis targets. Thus, we considered Genetic damage is largely random and therefore tends to the possibility that large cytoskeletal-protein related coding affect the larger, functional regions of the human genome regions (CPCRs), including extra-cellular matrix (ECM) more frequently than the smaller regions (1). For example, coding regions, would have systemic nucleotide variants that a systematic study has revealed that cancer fusion genes, on are not present in common SNP databases. Presumably, such average, are statistically, significantly larger than other human variants arose recently in development or in recent, preceding genes (2,3). The large introns of potential cancer fusion genes generations. Using matched breast cancer and blood-derived presumably allow for many different productive recombina- normal datasets from the cancer genome atlas, CPCR single tion opportunities, i.e., many recombinations that would allow nucleotide variants (SNVs) not present in the All SNPs(142) for exon juxtaposition and the generation of hybrid proteins. or 1000 Genomes databases were identified. Using the Protein Smaller cancer fusion genes tend to be associated with the rare Variation Effect Analyzer internet-based tool, it was discov- types of cancer, for example EWS RNA binding protein 1 in ered that apparent, systemic mutations (not shared among Ewing's sarcoma.
    [Show full text]
  • Next Generation Massively Parallel Sequencing of Targeted
    ARTICLE Next generation massively parallel sequencing of targeted exomes to identify genetic mutations in primary ciliary dyskinesia: Implications for application to clinical testing Jonathan S. Berg, MD, PhD1,2, James P. Evans, MD, PhD1,2, Margaret W. Leigh, MD3, Heymut Omran, MD4, Chris Bizon, PhD5, Ketan Mane, PhD5, Michael R. Knowles, MD2, Karen E. Weck, MD1,6, and Maimoona A. Zariwala, PhD6 Purpose: Advances in genetic sequencing technology have the potential rimary ciliary dyskinesia (PCD) is an autosomal recessive to enhance testing for genes associated with genetically heterogeneous Pdisorder involving abnormalities of motile cilia, resulting in clinical syndromes, such as primary ciliary dyskinesia. The objective of a range of manifestations including situs inversus, neonatal this study was to investigate the performance characteristics of exon- respiratory distress at full-term birth, recurrent otitis media, capture technology coupled with massively parallel sequencing for chronic sinusitis, chronic bronchitis that may result in bronchi- 1–3 clinical diagnostic evaluation. Methods: We performed a pilot study of ectasis, and male infertility. The disorder is genetically het- four individuals with a variety of previously identified primary ciliary erogeneous, rendering molecular diagnosis challenging given dyskinesia mutations. We designed a custom array (NimbleGen) to that mutations in nine different genes (DNAH5, DNAH11, capture 2089 exons from 79 genes associated with primary ciliary DNAI1, DNAI2, KTU, LRRC50, RSPH9, RSPH4A, and TX- dyskinesia or ciliary function and sequenced the enriched material using NDC3) account for only approximately 1/3 of PCD cases.4 the GS FLX Titanium (Roche 454) platform. Bioinformatics analysis DNAH5 and DNAI1 account for the majority of known muta- was performed in a blinded fashion in an attempt to detect the previ- tions, and the other genes each account for a small number of ously identified mutations and validate the process.
    [Show full text]
  • Olfactory Dysfunction Is Worse in Primary Ciliary Dyskinesia Compared
    Thorax Online First, published on February 28, 2018 as 10.1136/thoraxjnl-2017-210661 Brief communication Thorax: first published as 10.1136/thoraxjnl-2017-210661 on 28 February 2018. Downloaded from Olfactory dysfunction is worse in primary ciliary dyskinesia compared with other causes of chronic sinusitis in children Massimo Pifferi,1 Andrew Bush,2 Michele Rizzo,1 Alessandro Tonacci,3 Maria Di Cicco,1 Martina Piras,1 Fabrizio Maggi,4 Giulia Paiola,5 Angela Michelucci,6 Angela Cangiotti,7 Diego Peroni,1 Davide Caramella,8 Attilio L Boner5 ► Additional material is ABSTRact respiratory infection for ≥4 weeks. nNO was meas- published online only. To view Cilia have multiple functions including olfaction. We ured using standard methodology.9 please visit the journal online Olfactory function was assessed using the Sniffin’ (http:// dx. doi. org/ 10. 1136/ hypothesised that olfactory function could be impaired thoraxjnl- 2017- 210661). in primary ciliary dyskinesia (PCD). Olfaction, nasal nitric Sticks Extended Test (Burghart Medizintechnik, GmbH, Wedel, Germany), which consists of three 1 oxide (nNO) and sinus CT were assessed in patients with Department of Paediatrics, PCD and non-PCD sinus disease, and healthy controls different subtests, assessing the olfactory sensitivity University Hospital of Pisa, (threshold), discrimination and identification.10 Pisa, Italy (no CT scan). PCD and non-PCD patients had similar 2Imperial College and Royal severity of sinus disease. Despite this, defective olfaction All patients underwent unenhanced CT scans. Brompton Hospital, London, UK was more common in patients with PCD (P<0.0001) The degree of paranasal sinuses inflammation was 3Institute of Clinical Physiology, assessed using a modified Lund-Mackay system.11 and more severe in patients with PCD with major National Research Council of Full details of all methods are online (see online Italy (IFC-CNR), Pisa, Italy Transmission Electron Microscopy (TEM) abnormalities.
    [Show full text]
  • Cldn19 Clic2 Clmp Cln3
    NewbornDx™ Advanced Sequencing Evaluation When time to diagnosis matters, the NewbornDx™ Advanced Sequencing Evaluation from Athena Diagnostics delivers rapid, 5- to 7-day results on a targeted 1,722-genes. A2ML1 ALAD ATM CAV1 CLDN19 CTNS DOCK7 ETFB FOXC2 GLUL HOXC13 JAK3 AAAS ALAS2 ATP1A2 CBL CLIC2 CTRC DOCK8 ETFDH FOXE1 GLYCTK HOXD13 JUP AARS2 ALDH18A1 ATP1A3 CBS CLMP CTSA DOK7 ETHE1 FOXE3 GM2A HPD KANK1 AASS ALDH1A2 ATP2B3 CC2D2A CLN3 CTSD DOLK EVC FOXF1 GMPPA HPGD K ANSL1 ABAT ALDH3A2 ATP5A1 CCDC103 CLN5 CTSK DPAGT1 EVC2 FOXG1 GMPPB HPRT1 KAT6B ABCA12 ALDH4A1 ATP5E CCDC114 CLN6 CUBN DPM1 EXOC4 FOXH1 GNA11 HPSE2 KCNA2 ABCA3 ALDH5A1 ATP6AP2 CCDC151 CLN8 CUL4B DPM2 EXOSC3 FOXI1 GNAI3 HRAS KCNB1 ABCA4 ALDH7A1 ATP6V0A2 CCDC22 CLP1 CUL7 DPM3 EXPH5 FOXL2 GNAO1 HSD17B10 KCND2 ABCB11 ALDOA ATP6V1B1 CCDC39 CLPB CXCR4 DPP6 EYA1 FOXP1 GNAS HSD17B4 KCNE1 ABCB4 ALDOB ATP7A CCDC40 CLPP CYB5R3 DPYD EZH2 FOXP2 GNE HSD3B2 KCNE2 ABCB6 ALG1 ATP8A2 CCDC65 CNNM2 CYC1 DPYS F10 FOXP3 GNMT HSD3B7 KCNH2 ABCB7 ALG11 ATP8B1 CCDC78 CNTN1 CYP11B1 DRC1 F11 FOXRED1 GNPAT HSPD1 KCNH5 ABCC2 ALG12 ATPAF2 CCDC8 CNTNAP1 CYP11B2 DSC2 F13A1 FRAS1 GNPTAB HSPG2 KCNJ10 ABCC8 ALG13 ATR CCDC88C CNTNAP2 CYP17A1 DSG1 F13B FREM1 GNPTG HUWE1 KCNJ11 ABCC9 ALG14 ATRX CCND2 COA5 CYP1B1 DSP F2 FREM2 GNS HYDIN KCNJ13 ABCD3 ALG2 AUH CCNO COG1 CYP24A1 DST F5 FRMD7 GORAB HYLS1 KCNJ2 ABCD4 ALG3 B3GALNT2 CCS COG4 CYP26C1 DSTYK F7 FTCD GP1BA IBA57 KCNJ5 ABHD5 ALG6 B3GAT3 CCT5 COG5 CYP27A1 DTNA F8 FTO GP1BB ICK KCNJ8 ACAD8 ALG8 B3GLCT CD151 COG6 CYP27B1 DUOX2 F9 FUCA1 GP6 ICOS KCNK3 ACAD9 ALG9
    [Show full text]
  • Ciliary Dyneins and Dynein Related Ciliopathies
    cells Review Ciliary Dyneins and Dynein Related Ciliopathies Dinu Antony 1,2,3, Han G. Brunner 2,3 and Miriam Schmidts 1,2,3,* 1 Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany; [email protected] 2 Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands; [email protected] 3 Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands * Correspondence: [email protected]; Tel.: +49-761-44391; Fax: +49-761-44710 Abstract: Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel Citation: Antony, D.; Brunner, H.G.; developments in the field.
    [Show full text]
  • IFM) Analysis of Primary Ciliary Dyskinesia (PCD) Patients with Suspected Inner Dynein Arm Defects (IDA
    Hjeij et al. Cilia 2012, 1(Suppl 1):P23 http://www.ciliajournal.com/content/1/S1/P23 POSTERPRESENTATION Open Access Immunofluorescence microscopy (IFM) analysis of primary ciliary dyskinesia (PCD) patients with suspected inner dynein arm defects (IDA) R Hjeij1*, NT Loges1, A Becker-Heck2, H Omran1 From First International Cilia in Development and Disease Scientific Conference (2012) London, UK. 16-18 May 2012 Primary ciliary dyskinesia (PCD), characterized by abnor- Author details 1Universitätsklinikum Münster, Germany. 2Department of Pediatrics, University mal motility of cilia or flagella, is caused by defects of Hospital Freiburg, Germany. structural components such as inner dynein arms (IDAs). Recently high-speed videomicroscopy has substituted Published: 16 November 2012 transmission electron microscopy (TEM) analysis as the “gold standard” for diagnosis. However, TEM is still the most widely used diagnostic tool in many countries. A doi:10.1186/2046-2530-1-S1-P23 Cite this article as: Hjeij et al.: Immunofluorescence microscopy (IFM) recent study reported that isolated IDA defects is the most analysis of primary ciliary dyskinesia (PCD) patients with suspected frequent (> 50%) ciliary defect in PCD, as detected by inner dynein arm defects (IDA). Cilia 2012 1(Suppl 1):P23. TEM (Theegarten, 2011). IFM analysis has shown in several studies that it can ascertain diagnosis such as in PCD variants caused by DNAH5, DNAI1, DNAI2, KTU, LRRC50, CCDC39 and CCDC40 mutations. IFM can pro- vide a complete view of the ciliary axoneme and identify “partial” axonemal defects which may be misinterpreted by TEM (e.g. present in KTU mutant cilia). Here we per- formed IFM analysis of known PCD patients to identify the composition of dynein arm defects, including IDAs.
    [Show full text]
  • Identification and Classification of Novel Genetic Variants
    International Journal of Molecular Sciences Article Identification and Classification of Novel Genetic Variants: En Route to the Diagnosis of Primary Ciliary Dyskinesia Nina Stevanovic 1, Anita Skakic 1, Predrag Minic 2,3, Aleksandar Sovtic 2 , Maja Stojiljkovic 1, Sonja Pavlovic 1 and Marina Andjelkovic 1,* 1 Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11010 Belgrade, Serbia; [email protected] (N.S.); [email protected] (A.S.); [email protected] (M.S.); [email protected] (S.P.) 2 Mother and Child Health Care Institute of Serbia Dr. VukanCupic, 11070 Belgrade, Serbia; [email protected] (P.M.); [email protected] (A.S.) 3 School of Medicine, University of Belgrade, 11000 Belgrade, Serbia * Correspondence: [email protected]; Tel.: +381-64-2202-373; Fax: +381-11-3975-808 Abstract: Primary ciliary dyskinesia (PCD) is a disease caused by impaired function of motile cilia. PCD mainly affects the lungs and reproductive organs. Inheritance is autosomal recessive and X-linked. PCD patients have diverse clinical manifestations, thus making the establishment of proper diagnosis challenging. The utility of next-generation sequencing (NGS) technology for diagnostic purposes allows for better understanding of the PCD genetic background. However, identification of specific disease-causing variants is difficult. The main aim of this study was to create a unique Citation: Stevanovic, N.; Skakic, A.; guideline that will enable the standardization of the assessment of novel genetic variants within PCD- Minic, P.; Sovtic, A.; Stojiljkovic, M.; associated genes. The designed pipeline consists of three main steps: (1) sequencing, detection, and Pavlovic, S.; Andjelkovic, M.
    [Show full text]