The Urban Herring Gull, Foraging Niche and Interactions with Humans

Total Page:16

File Type:pdf, Size:1020Kb

The Urban Herring Gull, Foraging Niche and Interactions with Humans The urban Herring gull, foraging niche and interactions with humans Submitted by Luke Edwyn Marsh to the University of Exeter as a thesis for the degree of Masters by Research in Biological Sciences, 14th April, 2020 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that any material that has previously been submitted and approved for the award of a degree by this or any other University has been acknowledged. (Signature) ……………………………………………………………………………… 1 ABSTRACT Gulls (Laridae) are of significant interest because of their use and breeding in urban environments, which has increased human-wildlife conflicts. However, there is a lack of information that summarises population trends in gulls, that is driving them towards conflicts with humans; the attitude towards gulls that the public has, especially in urban environments and the factors that determine those attitudes; and how gulls utilise the urban environment for reproductive success. In this thesis, I explore the literature around gull trends throughout the Western Hemisphere. Using a questionnaire, I attempt to collate information about the public’s attitude towards gulls, paired with spatial correlation to demonstrate geographic differences. I also use gull pellets and foraging effort to explore the niche of gulls, and test for differences between urban and rural birds. The findings show gull population changes are constant, and that public attitude is negative towards gulls, with age and knowledge about gulls effecting negative perceptions. I also demonstrate that rural and urban gulls have differing habitat use periodically through the breeding season but have commonality in foraging effort. 2 CONTENT ABSTRACT .................................................................................................... 2 CONTENT ....................................................................................................... 3 LIST OF FIGURES, TABLES & EQUATIONS ............................................... 5 Tables .......................................................................................................... 5 Figures ......................................................................................................... 6 MAIN SUMMARY ........................................................................................... 9 CHAPTER 1: POPULATION CHANGES OF NORTH-WESTERN HEMISPHERE GULLS INTO THE 21th CENTURY ...................................... 12 1.1. INTRODUCTION .................................................................................... 12 1.2. NORTH AMERICA ................................................................................. 14 1.2.1. American herring gull ....................................................................... 14 1.2.2 Laughing gull .................................................................................... 15 1.2.3. Black-legged kittiwake ..................................................................... 16 1.2.4. Ivory gull .......................................................................................... 17 1.2.5. Glaucous-winged gull ....................................................................... 18 1.2.6. Great black-backed gull ................................................................... 19 1.2.7. Glaucous gull ................................................................................... 20 1.3. MAINLAND EUROPE AND THE NORTHERN ATLANTIC ................... 22 1.3.1. Audouin's gull ................................................................................... 22 1.3.2. European herring gull ....................................................................... 23 1.3.3. Lesser black-backed gull ................................................................. 24 1.3.4. Yellow-legged gull ............................................................................ 25 1.3.5. Slender-billed gull ............................................................................ 27 1.3.6. Mediterranean gull ........................................................................... 28 1.4. THE BRITISH ISLES & IRELAND ......................................................... 30 1.4.1. Great black-backed gull (UK & Ire.) ................................................. 30 1.4.2. European herring gull (UK & Ire.) ..................................................... 32 1.4.3. Black-legged kittiwake (UK & Ire.).................................................... 34 1.5. REVIEW OF TABLE DATA ................................................................... 36 1.6. DRIVERS OF POPULATION TRENDS ................................................. 37 1.6.1. Scavenging behaviour and adaptation to human landscapes .......... 37 1.6.2. Climate and environmental quality ................................................... 39 1.6.3. Influence on other species ............................................................... 40 1.6.4. Inter-colony movements ................................................................... 41 1.7. EFFECTS OF POPULATION CHANGE & CONFLICTS ....................... 42 1.7.1. Predation on other seabirds ............................................................. 42 1.7.2. Cannibalism ..................................................................................... 43 1.7.3. Human-gull conflicts ......................................................................... 43 3 1.8. MITIGATION & CONSERVATION PRIORTIES .................................... 45 1.8.1. Identification of trends ...................................................................... 45 1.8.2. Goals for future conservation ........................................................... 47 1.9. CONCLUSIONS ..................................................................................... 51 CHAPTER 2: WILDLIFE CONFLICTS: URBAN GULLS, WHAT THE PUBLIC THINKS ............................................................................................................ 52 2.1. ABSTRACT ........................................................................................... 52 2.2. INTRODUCTION .................................................................................... 53 2.2.1. Human–Wildlife Conflict ................................................................... 53 2.2.2. Urban gulls, the problem .................................................................. 54 2.2.3. Study Aims ....................................................................................... 58 2.3. METHOD................................................................................................ 59 2.3.1. Measuring public perception of gulls ................................................ 59 2.3.2. Survey design and administration .................................................... 61 2.2.3. Data Analysis ................................................................................... 63 2.4. RESULTS .............................................................................................. 66 2.4.1. Likert results measuring attitude ...................................................... 66 2.4.2. Demographic effects to attitude ....................................................... 69 2.4.3. Spatial Willingness to Pay affects to attitude.................................... 71 2.4.4. Economic effects to attitude ............................................................. 73 2.5. DISCUSSION ......................................................................................... 75 CHAPTER 3: NICHE OVERLAP AND FORAGING BUDGETS ...................... 79 3.1. ABSTRACT ........................................................................................... 79 3.2. INTRODUCTION .................................................................................... 80 3.2.1. The foraging niche of gulls ............................................................... 81 3.2.2. Study aims ....................................................................................... 85 3.3. METHOD................................................................................................ 86 3.3.1. Study Sites and Experimental Design .............................................. 86 3.3.2. Statistical Analysis ........................................................................... 88 3.4. RESULTS .............................................................................................. 91 3.4.1. Dietary profile of gulls ...................................................................... 91 3.4.2. Niche measurement ......................................................................... 97 3.4.3. Foraging effort................................................................................ 102 3.5. DISCUSSION ....................................................................................... 104 CHAPTER 4: CONCLUSIONS & FUTURE RESEARCH .............................. 109 4.1. Main Findings.................................................................................... 109 4.2. Further Study and Focus .................................................................. 110 APPENDIX .................................................................................................. 176 4 LIST OF FIGURES, TABLES & EQUATIONS Tables Table 1. Literature indicating
Recommended publications
  • Star Asterias Rubens
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425292; this version posted January 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. How to build a sea star V9 The development and neuronal complexity of bipinnaria larvae of the sea star Asterias rubens Hugh F. Carter*, †, Jeffrey R. Thompson*, ‡, Maurice R. Elphick§, Paola Oliveri*, ‡, 1 The first two authors contributed equally to this work *Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom †Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, United Kingdom ‡UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom §School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom 1Corresponding Author: [email protected], Office: (+44) 020-767 93719, Fax: (+44) 020 7679 7193 Keywords: indirect development, neuropeptides, muscle, echinoderms, neurogenesis 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425292; this version posted January 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. How to build a sea star V9 Abstract Free-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes.
    [Show full text]
  • First Bolivian Record of Laughing Gull Leucophaeus Atricilla, and Two Noteworthy Records of Fulica Coots from Laguna Guapilo, Dpto
    Cotinga 41 First Bolivian record of Laughing Gull Leucophaeus atricilla, and two noteworthy records of Fulica coots from Laguna Guapilo, dpto. Santa Cruz Matthew L. Brady, Anna E. Hiller, Damián I. Rumiz, Nanuq L. Herzog-Hamel and Sebastian K. Herzog Received 30 November 2018; fnal revision accepted 29 April 2019 Cotinga 41 (2019): 98–100 published online 21 June 2019 El 28 de enero de 2018, durante una visita a laguna Guapilo, al este de Santa Cruz de la Sierra, depto. Santa Cruz, Bolivia, observamos una Gaviota Reidora Leucophaeus atricilla, el primer registro en Bolivia. Adicionalmente, observamos comportamiento indicativo de anidación de la Gallareta Chica Fulica leucoptera, una especie que se consideraba como visitante no reproductiva en Bolivia, así como una Gallareta Andina Fulica ardesiaca, el primer registro para el depto. Santa Cruz. La reproducción de F. leucoptera en la laguna Guapilo fue confrmada el 5 de mayo de 2018 mediante la fotografía de un polluelo. On 28 January 2018, MLB, AEH, NLH-H and We aged the bird during the observation SKH observed several notable birds at Laguna based on the following combination of characters: Guapilo (17°46’50”S 63°05’48”W), a semi-urban uniformly dark primaries, without the white apical park 8.9 km east of Santa Cruz city centre, dpto. spots typical of older birds; a dark tail-band; Santa Cruz, Bolivia. The habitat is dominated by a extensive ash-grey neck and breast; and worn, c.35-ha lagoon, with dense mats of reeds and water brownish wing-coverts. These features are typical hyacinth Eichhornia crassipes at the edges, and of an advanced frst-year L.
    [Show full text]
  • Contamination of Four Ivory Gull (Pagophila
    Contamination of four ivory gull (Pagophila eburnea) colonies in Svalbard in link with their trophic behaviour Magali Lucia, Hallvard Strøm, Paco Bustamante, Dorte Herzke, Geir Gabrielsen To cite this version: Magali Lucia, Hallvard Strøm, Paco Bustamante, Dorte Herzke, Geir Gabrielsen. Contamination of four ivory gull (Pagophila eburnea) colonies in Svalbard in link with their trophic behaviour. Polar Biology, Springer Verlag, 2017, 40, pp.917-929. 10.1007/s00300-016-2018-7. hal-01683806 HAL Id: hal-01683806 https://hal.archives-ouvertes.fr/hal-01683806 Submitted on 14 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Contamination of four ivory gull (Pagophila eburnea) colonies in Svalbard in link with their trophic behaviour Magali Lucia1*, Hallvard Strøm1, Paco Bustamante2, Dorte Herzke3, Geir W. Gabrielsen1 1 Norwegian Polar Institute, FRAM High North Research Centre for Climate and the Environment, 9296 Tromsø, Norway 2 Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France. 3 Norwegian Institute for Air Research, FRAM High North Research Centre for Climate and the Environment, 9296 Tromsø, Norway *Corresponding author: Magali LUCIA Email: [email protected] Address: Norwegian Polar Institute, Fram Centre Hjalmar Johansens gt.
    [Show full text]
  • Middlesex University Research Repository an Open Access Repository Of
    Middlesex University Research Repository An open access repository of Middlesex University research http://eprints.mdx.ac.uk Beasley, Emily Ruth (2017) Foraging habits, population changes, and gull-human interactions in an urban population of Herring Gulls (Larus argentatus) and Lesser Black-backed Gulls (Larus fuscus). Masters thesis, Middlesex University. [Thesis] Final accepted version (with author’s formatting) This version is available at: https://eprints.mdx.ac.uk/23265/ Copyright: Middlesex University Research Repository makes the University’s research available electronically. Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge. Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s). Full bibliographic details must be given when referring to, or quoting from full items including the author’s name, the title of the work, publication details where relevant (place, publisher, date), pag- ination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award. If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address: [email protected] The item will be removed from the repository while any claim is being investigated.
    [Show full text]
  • BIOLOGY and METHODS of CONTROLLING the STARFISH, Asterias Forbesi {DESOR}
    BIOLOGY AND METHODS OF CONTROLLING THE STARFISH, Asterias forbesi {DESOR} By Victor L. Loosanoff Biological Laboratory Bureau of Commercial Fisheries U. S. Fish and Wildlife Service Milford, Connecticut CONTENTS Page Introduction. .. .. ... .. .. .. .. ... .. .. .. ... 1 Distribution and occurrence....................................................... 2 Food and feeding ...................................................................... 3 Methods of controL........................................ ........................... 5 Mechanical methods : Starfish mop...................................................... .................. 5 Oyster dredge... ........................ ............. ..... ... ...................... 5 Suction dredge..................................................................... 5 Underwater plow ..... ............................................................. 6 Chemical methods .................................................................. 6 Quicklime............................. ........................... ................... 7 Salt solution......... ........................................ ......... ............. 8 Organic chemicals....... ..... ... .... .................. ........ ............. ...... 9 Utilization of starfish................................................................ 11 References..... ............................................................... ........ 11 INTRODUCTION Even in the old days, when the purchas­ ing power of the dollar was much higher, The starfish has long
    [Show full text]
  • Laughing Gull Larus Atricilla
    Laughing Gull Larus atricilla Laughing Gulls are normally associated with coastal shore- Since only a single Laughing Gull was known to reside in lines. In eastern North America, breeding colonies are found this colony between 1984 and 1986, these reports do not qualify along the Gulf of Mexico and Atlantic Ocean north to Nova as a confirmed nesting record for Ohio. Instead, they suggest Scotia and New Brunswick (AOU 1983). They are generally rare that breeding could occur in the future under appropriate visitors away from these coasts. Since the early 1970s, however, circumstances. At this time, however, there are no satisfactory small numbers have regularly appeared along the Great Lakes. reports of paired Laughing Gulls anywhere along the Great Laughing Gulls have been annually observed in Ohio since 1972 Lakes. (Peterjohn 1989a), and during the 1980s, at least one or two Laughing Gulls nest only in large colonies, either segregated summering individuals have annually appeared somewhere along from other larids or mixed with gulls and terns. Hence, the Lake Erie. Many of these summering gulls were immatures, Oregon colony is the only location in Ohio where they would be while the few adults were presumably nonbreeders. Hence, the expected to breed. They nest on the ground, usually in moderate discovery of an adult Laughing Gull within the Ring–billed Gull to heavy vegetation (Burger and Gochfeld 1985). If the nesting colony at Oregon (Lucas County) during 1984 provided the first dates of the Oregon Laughing Gull were indicative of their indication of nesting anywhere within the Great Lakes region.
    [Show full text]
  • Morphological Variation Among Herring Gulls (Larus Argentatus) and Great Black-Backed Gulls (Larus Marinus) in Eastern North America Gregory J
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New England University of New England DUNE: DigitalUNE Environmental Studies Faculty Publications Environmental Studies Department 4-2016 Morphological Variation Among Herring Gulls (Larus Argentatus) And Great Black-Backed Gulls (Larus Marinus) In Eastern North America Gregory J. Robertson Environment Canada Sheena Roul Environment Canada Karel A. Allard Environment Canada Cynthia Pekarik Environment Canada Raphael A. Lavoie Queen's University See next page for additional authors Follow this and additional works at: http://dune.une.edu/env_facpubs Part of the Ornithology Commons Recommended Citation Robertson, Gregory J.; Roul, Sheena; Allard, Karel A.; Pekarik, Cynthia; Lavoie, Raphael A.; Ellis, Julie C.; Perlut, Noah G.; Diamond, Antony W.; Benjamin, Nikki; Ronconi, Robert A.; Gilliland, Scott .;G and Veitch, Brian G., "Morphological Variation Among Herring Gulls (Larus Argentatus) And Great Black-Backed Gulls (Larus Marinus) In Eastern North America" (2016). Environmental Studies Faculty Publications. 22. http://dune.une.edu/env_facpubs/22 This Article is brought to you for free and open access by the Environmental Studies Department at DUNE: DigitalUNE. It has been accepted for inclusion in Environmental Studies Faculty Publications by an authorized administrator of DUNE: DigitalUNE. For more information, please contact [email protected]. Authors Gregory J. Robertson, Sheena Roul, Karel A. Allard, Cynthia Pekarik, Raphael A. Lavoie, Julie C. Ellis, Noah G. Perlut, Antony W. Diamond, Nikki Benjamin, Robert A. Ronconi, Scott .G Gilliland, and Brian G. Veitch This article is available at DUNE: DigitalUNE: http://dune.une.edu/env_facpubs/22 Morphological Variation Among Herring Gulls (Larus argentatus) and Great Black-Backed Gulls (Larus marinus) in Eastern North America Author(s): Gregory J.
    [Show full text]
  • New Longevity Record for Ivory Gulls (Pagophila Eburnea) and Evidence of Natal Philopatry M.L
    ARCTIC VOL. 65, NO. 1 (MARCH 2012) P. 98 – 101 New Longevity Record for Ivory Gulls (Pagophila eburnea) and Evidence of Natal Philopatry M.L. MALLORY,1 K.A. ALLARD,2 B.M. BRAUNE,3 H.G. GILCHRIST3 and V.G. THOMAS4 (Received 25 April 2011; accepted in revised form 2 August 2011) ABSTRACT. Ivory gulls (Pagophila eburnea) have been listed as “endangered” in Canada and “near threatened” interna- tionally. In June 2010, we visited Seymour Island, Nunavut, Canada, where gulls were banded in the 1970s and 1980s. We recaptured and released two breeding gulls banded as chicks in 1983, confirming natal philopatry to this breeding colony. These gulls are more than 28 years old, making the ivory gull one of the longest-living marine bird species known in North America. Key words: ivory gull, Pagophila eburnea, Nunavut, banding RÉSUMÉ. La mouette blanche (Pagophila eburnea) figure sur la liste des espèces « en voie de disparition » sur la scène canadienne et des espèces « quasi menacées » sur la scène internationale. En juin 2010, nous sommes allés à l’île Seymour, au Nunavut, Canada, où des mouettes avaient été baguées dans le courant des années 1970 et 1980. Nous avons recapturé et relâché deux mouettes reproductrices qui étaient considérées comme des oisillons en 1983, ce qui nous a permis de confirmer la philopatrie natale de cette colonie de nidification. Ces mouettes blanches ont plus de 28 ans, ce qui en fait l’un des oiseaux aquatiques vivant le plus longtemps en Amérique du Nord. Mots clés : mouette blanche, Pagophila eburnea, Nunavut, baguage Traduit pour la revue Arctic par Nicole Giguère.
    [Show full text]
  • The Feeding Ecology of the Harbour Porpoise Phocoena Phocoena L
    9th Meeting of the North Sea Group ASCOBANS/NSG9/Inf.3.4 Online, 20 – 21 January 2021 Dist. 21 January 2021 Agenda Item 3.4 Investigation of the Health, Nutritional Status and Diet of Harbour Porpoises (Action 10) Information Document 3.4 The Feeding Ecology of the Harbour Porpoise Phocoena Phocoena L. in a Changing Environment Action Requested Take note Submitted by Belgium ‘OCEANS AND LAKES’ INTERUNIVERSITY MASTER OF SCIENCE IN MARINE AND LACUSTRINE SCIENCE AND MANAGEMENT (JH/RBINS) THE FEEDING ECOLOGY OF THE HARBOUR PORPOISE Phocoena phocoena L. IN A CHANGING ENVIRONMENT Elke Lambert June 2020 Thesis submitted in partial fulfillment for master’s degree in Marine and Lacustrine Science and Management PROMOTOR: Dr. Steven Degraer (UGhent; RBINS) CO-PROMOTOR: Dr. Bob Rumes (RBINS) SUPERVISOR: Jan Haelters (RBINS) ABSTRACT The stomach contents of 180 harbour porpoises (Phocoena phocoena) stranded or bycaught along the Belgian coastline between 1997 and 2018 were analysed to reconstruct the diet and study the factors shaping their feeding ecology. This was investigated combining two techniques used in diet studies: population averages (i.e. diet indices) and analysis of individual variation in the diet through multivariate analysing techniques (nMDS and PERMANOVA). More than 25 fish and invertebrate prey taxa were identified, highlighting the broad prey spectrum that these generalist predators can feed on. However, the majority of porpoises consumed between 1 and 4 prey groups. The diet was primarily dominated by four key prey guilds (i.e. “The big four”): gadoids (mostly whiting Merlangius merlangus), gobies (Pomatoschistus sp.), sandeels (Ammodytes sp.) and clupeids (both herring Clupea harengus and sprat Sprattus sprattus), whilst other taxa were of less importance.
    [Show full text]
  • (369) the Glaucous Gull in Winter
    (369) THE GLAUCOUS GULL IN WINTER BY G. T. KAY. (Plates 40-53). SINCE the winter of 1941-42 the Glaucous Gull (Larus hyperboreus) has become a comparatively numerous winter-visitor to the Shet­ land Islands. At a refuse dump on the outskirts of Lerwick where it had been rare to see more than half a dozen of these birds together, it is now a common occurrence to see thirty or forty and occasion­ ally as many as a hundred. During the winter of 1945-46, the writer, with others interested in the project, arranged for an attempt to be made to photograph particularly Glaucous Gulls and possibly Iceland Gulls (Larus glaucoides) in the vicinity of the dump. The proposal was to use still and cine cameras from hides. It was hoped that a series of photographs might be secured which would do something towards clearing up the difficulties of dis­ tinguishing between these two species in the field, which have proved to be in some respects greater than used to be supposed. We were fortunate as regards the Glaucous Gull. A series of photographs and 300ft. of cine film were taken of this arctic visitor at most stages of plumage from the bird in its first winter plumage to that of the fully adult. Further photographs were added during the winter of 1946-47. Unfortunately the only Iceland Gull seen during these two winters was a dead specimen ; an immature bird in its first winter which had been captured on a fishing boat off the east side of Shetland on January 16th, 1947.
    [Show full text]
  • The Herring Gull Complex (Larus Argentatus - Fuscus - Cachinnans) As a Model Group for Recent Holarctic Vertebrate Radiations
    The Herring Gull Complex (Larus argentatus - fuscus - cachinnans) as a Model Group for Recent Holarctic Vertebrate Radiations Dorit Liebers-Helbig, Viviane Sternkopf, Andreas J. Helbig{, and Peter de Knijff Abstract Under what circumstances speciation in sexually reproducing animals can occur without geographical disjunction is still controversial. According to the ring species model, a reproductive barrier may arise through “isolation-by-distance” when peripheral populations of a species meet after expanding around some uninhabitable barrier. The classical example for this kind of speciation is the herring gull (Larus argentatus) complex with a circumpolar distribution in the northern hemisphere. An analysis of mitochondrial DNA variation among 21 gull taxa indicated that members of this complex differentiated largely in allopatry following multiple vicariance and long-distance colonization events, not primarily through “isolation-by-distance”. In a recent approach, we applied nuclear intron sequences and AFLP markers to be compared with the mitochondrial phylogeography. These markers served to reconstruct the overall phylogeny of the genus Larus and to test for the apparent biphyletic origin of two species (argentatus, hyperboreus) as well as the unex- pected position of L. marinus within this complex. All three taxa are members of the herring gull radiation but experienced, to a different degree, extensive mitochon- drial introgression through hybridization. The discrepancies between the mitochon- drial gene tree and the taxon phylogeny based on nuclear markers are illustrated. 1 Introduction Ernst Mayr (1942), based on earlier ideas of Stegmann (1934) and Geyr (1938), proposed that reproductive isolation may evolve in a single species through D. Liebers-Helbig (*) and V. Sternkopf Deutsches Meeresmuseum, Katharinenberg 14-20, 18439 Stralsund, Germany e-mail: [email protected] P.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]