Middlesex University Research Repository an Open Access Repository Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Urbanization Effect Gray Squirrel Behavior?
James L. Harris III Outline ....................................................................................................................................... 3 Abstract .................................................................................................................................. 8 Introduction ........................................................................................................................10 Background ........................................................................................................................12 Materials .........................................................................................................................19 Methods ......................................................................................................................20 Results ....................................................................................................................35 Discussion ...........................................................................................................38 Literature Review .............................................................................................41 1 James L. Harris III HOW URBANIZATION EFFECT GRAY SQUIRREL BEHAVIOR? James L. Harris III [DATE] [COMPANY NAME] [Company address] 2 James L. Harris III Urbanization and its effect on the Foraging behavior of Gray Squirrels James L. Harris III I would like to thanks, everyone who has allowed is to be at this point today: Chris Meyers and Dr. Nancy Solomon -
First Bolivian Record of Laughing Gull Leucophaeus Atricilla, and Two Noteworthy Records of Fulica Coots from Laguna Guapilo, Dpto
Cotinga 41 First Bolivian record of Laughing Gull Leucophaeus atricilla, and two noteworthy records of Fulica coots from Laguna Guapilo, dpto. Santa Cruz Matthew L. Brady, Anna E. Hiller, Damián I. Rumiz, Nanuq L. Herzog-Hamel and Sebastian K. Herzog Received 30 November 2018; fnal revision accepted 29 April 2019 Cotinga 41 (2019): 98–100 published online 21 June 2019 El 28 de enero de 2018, durante una visita a laguna Guapilo, al este de Santa Cruz de la Sierra, depto. Santa Cruz, Bolivia, observamos una Gaviota Reidora Leucophaeus atricilla, el primer registro en Bolivia. Adicionalmente, observamos comportamiento indicativo de anidación de la Gallareta Chica Fulica leucoptera, una especie que se consideraba como visitante no reproductiva en Bolivia, así como una Gallareta Andina Fulica ardesiaca, el primer registro para el depto. Santa Cruz. La reproducción de F. leucoptera en la laguna Guapilo fue confrmada el 5 de mayo de 2018 mediante la fotografía de un polluelo. On 28 January 2018, MLB, AEH, NLH-H and We aged the bird during the observation SKH observed several notable birds at Laguna based on the following combination of characters: Guapilo (17°46’50”S 63°05’48”W), a semi-urban uniformly dark primaries, without the white apical park 8.9 km east of Santa Cruz city centre, dpto. spots typical of older birds; a dark tail-band; Santa Cruz, Bolivia. The habitat is dominated by a extensive ash-grey neck and breast; and worn, c.35-ha lagoon, with dense mats of reeds and water brownish wing-coverts. These features are typical hyacinth Eichhornia crassipes at the edges, and of an advanced frst-year L. -
Population in Baton Rouge, Louisiana Using Social Media Ahsennur Soysal Louisiana State University and Agricultural and Mechanical College, [email protected]
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 11-16-2017 A Study of the Urban Red Fox (Vulpes vulpes) Population in Baton Rouge, Louisiana Using Social Media Ahsennur Soysal Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Animal Studies Commons, Behavior and Ethology Commons, Environmental Monitoring Commons, Population Biology Commons, Social Media Commons, and the Zoology Commons Recommended Citation Soysal, Ahsennur, "A Study of the Urban Red Fox (Vulpes vulpes) Population in Baton Rouge, Louisiana Using Social Media" (2017). LSU Master's Theses. 4364. https://digitalcommons.lsu.edu/gradschool_theses/4364 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. A STUDY OF THE URBAN RED FOX (VULPES VULPES) POPULATION IN BATON ROUGE, LOUISIANA USING SOCIAL MEDIA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Environmental Sciences by Ahsennur Soysal B.A., Louisiana State University, 2015 December 2017 I would like to dedicate my work to my parents, Hatice Soysal and Omer Soysal, -
Foxes at Your Front Door? Habitat Selection and Home Range of Urban Red Foxes (Vulpes Vulpes)
Foxes at your front door? Habitat selection and home range of urban red foxes (Vulpes vulpes) Halina Teresa Kobryn ( [email protected] ) Murdoch University https://orcid.org/0000-0003-1004-7593 Edward J. Swinhoe Murdoch University Philip W. Bateman Curtin University Peter J. Adams Murdoch University Jill M. Shephard Murdoch University Patricia A. Fleming Murdoch University Research Article Keywords: Invasive animal, pest, urban exploiter, autocorrelated KDE (AKDE), autocorrelation, home range, kernel density estimates, tracking data, utilisation distribution Posted Date: May 14th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-417276/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract The red fox (Vulpes vulpes) is one of the most adaptable carnivorans, thriving in cities across the globe. Understanding movement patterns and habitat use by urban foxes will assist with their management to address wildlife conservation and public health concerns. Here we tracked ve foxes across the suburbs of Perth, Western Australia. Three females had a core home range (50% kernel density estimate; KDE) averaging 37 ± 20 ha (range 22–60 ha) or a 95% KDE averaging 174 ± 130 ha (range 92–324 ha). One male had a core home range of 95 ha or a 95% KDE covering 352 ha. The other male covered an area of ~ 4 or ~ 6 times this: having a core home range of 371 ha or 95% KDE of 2,062 ha. All ve foxes showed statistically signicant avoidance of residential locations and signicant preference for parkland. Bushland reserves, golf courses, and water reserves were especially preferred locations. -
Movements, Habitat Selection, Associations, and Survival of Giant Canada Goose Broods in Central Tennessee
Human–Wildlife Interactions 4(2):192–201, Fall 2010 Movements, habitat selection, associations, and survival of giant Canada goose broods in central Tennessee 1 ERIC M. DUNTON, Department of Biology, Tennessee Technological University, 1100 N. Dixie Avenue, Box 5063, Cookeville, TN 38505, USA [email protected] DANIEL L. COMBS, Department of Biology, Tennessee Technological University, 1100 N. Dixie Avenue, Box 5063, Cookeville, TN 38505, USA Abstract: The brood-rearing period in giant Canada geese (Branta canadensis maxima) is one of the least-studied areas of goose ecology. We monitored 32 broods in Putnam County, Tennessee, from the time of hatching through fledging (i.e., when the goslings gained the ability to fly) and from fledging until broods left the brood-rearing areas during the spring and summer of 2003. We conducted a fixed-kernel, home-range analysis for each brood using the Animal Movement Extension in ArcView® 3.3 GIS (ESRI, Redlands, Calif.) software and calculated 95% and 50% utilization distributions (UD) for each brood. We classified 25 broods as sedentary (8 ha 95% UD), three as shifters (84 ha 95% UD), two as wanderers (110 ha 95%UD); two were unclassified because of low sample size. We measured 5 habitat variables (i.e., percentage of water, percentage of pasture, percentage of development, number of ponds, and distance to nearest unused pond) within a 14.5-ha buffer at nesting locations. We used linear regression, using multi-model selection, information theoretic analysis, to determine which, if any, habitat variables influenced home-range size at a landscape level. The null model was the best information-theoretic model, and the global model was not significant, indicating that landscape level habitat variables selected in this study cannot be used to predict home- range size in the Upper Cumberland region goose flock. -
A Recently Formed Crested Tern (Thalasseus Bergii) Colony on a Sandbank in Fog Bay (Northern Territory), and Associated Predation
Northern Territory Naturalist (2015) 26: 13–16 Short Note A recently formed Crested Tern (Thalasseus bergii) colony on a sandbank in Fog Bay (Northern Territory), and associated predation Christine Giuliano1,2 and Michael L. Guinea1 1 Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia. Email: [email protected] 2 60 Station St, Sunbury, VIC 3429, Australia. Abstract A Crested Tern colony founded on a sandbank in northern Fog Bay (Northern Territory) failed in 1996 presumably due to inexperienced nesters. Attempts to breed in the years following were equally unsuccessful until 2012 when the colony was established. In 2014, the rookery comprised at least 1500 adults plus numerous chicks. With the success and growth of the colony, the predators, White-bellied Sea Eagles and Silver Gulls, were quick to capitalise on the new prey. Changes in the species diversity and numbers of the avifauna highlight the dynamic and fragile nature of life on the sandbanks of Fog Bay. Crested Terns (Thalasseus bergii) are the predominant colonial-nesting sea birds in the Northern Territory, with at least five islands supporting colonies of more than 30 000 nesting birds each year (Chatto 2001). These colonies have appeared stable over time with smaller satellite colonies located in the vicinity of the major rookeries. Silver Gulls (Chroicocephalus novaehollandiae) and White-bellied Sea Eagles (Haliaeetus leucogaster) prey heavily on the adults and chicks (Chatto 2001). In December 1989, Guinea & Ryan (1990) documented the avifauna and turtle nesting activity on Bare Sand Island (12°32'S, 130°25'E), a 20 ha sand dune island with low shrubs and a few trees. -
Supplementary Information
Supporting Information Balk et al. 10.1073/pnas.0902903106 Movie S1. A paralyzed herring gull (Larus argentatus). This movie shows a specimen from the County of So¨ dermanland (region G in Fig. 1). Both wings are equally paralyzed and the beak has no strength, whereas mobility and control of the head still remain. In this work we demonstrate that the probability to remedy an individual in this condition by thiamine treatment is very high. The movie is taken in the field, but the specimen is placed on a black tablecloth in order to remove disturbing background and enhance contrast. Movie S1 (AVI) Other Supporting Information Files SI Appendix Balk et al. www.pnas.org/cgi/content/short/0902903106 1of1 Supporting Information Wild birds of declining European species are dying from a thiamine deficiency syndrome L. Balk*, P.-Å. Hägerroth, G. Åkerman, M. Hanson, U. Tjärnlund, T. Hansson, G. T. Hallgrimsson, Y. Zebühr, D. Broman, T. Mörner, H. Sundberg *Corresponding author: [email protected] Contents Pages M & M Materials and Methods. 2–10 Text S1 Additional bird species affected by the paralytic disease. 11 Text S2 Additional results for eggs. 12–13 Text S3 Results for liver body index (LBI) in pulli. 14–15 Text S4 Breeding output and population estimates. 16–18 Text S5 Elaborated discussion of important aspects. 19–27 Acknowl. Further acknowledgements. 28 Fig. S1 a–j The 83 locations where samples were collected. 29–30 Fig. S2 a–d Pigmentation changes in the iris of the herring gull (Larus argentatus). 31 Fig. S3 Liver α-ketoglutarate dehydrogenase (KGDH) in common black-headed gull (Chroicocephalus ridibundus). -
Kittiwake Rissa Tridactyla Recorded in Rajasthan, India in 2001 Magnus Ullman
ULLMAN: Kittiwake in Rajasthan 67 Carey, G. J., Chalmers, M. L., Diskin, D. A., Kennerley, P. R., Leader, P. J., Lewthwaite, Kazmierczak, K., 2000. A field guide to the birds of India, Sri Lanka, Pakistan, Nepal, R.W., Leven, M. R., Melville, D. S., Turnbull, M., & Young, L., 2001. The avifauna of Bhutan, Bangladesh and the Maldives. 1st ed. London: Pica Press / Christopher HongKong. Hong Kong Bird Watching Society, Hong Kong. Helm. Pp. 1–352. Chandler, R., 2009. Shorebirds of the northern hemisphere. Christopher Helm London. Lainer, H., 2004. Birds of Goa. A reference book. Mapusa, Goa: The Goa Foundation. Pp. 1–448. Pp. i–ii, 1–244. Cramp, S., & Simmons, K. E. L., (eds.). 1983.The birds of the Western Palearctic. Volume Lees, A. C., & Gilroy, J. J., 2004. Pectoral Sandpipers in Europe: vagrancy patterns and the III. Waders to Gulls. Oxford University Press, Oxford. Pp. 1–652. influx of2003. British Birds 97 (12): 638–646. delHoyo, J., Elliott, A., & Sargatal, J., (eds.) 1996. Handbook of the birds of the world. Rasmussen, P. C., & Anderton, J. C., 2012. Birds of South Asia: the Ripley guide. 2nd ed. Volume 3. Hoatzin to Auks. 1st ed. Barcelona: Lynx Edicions. Vol. 3 of 17 vols.: Pp. Washington, D.C. and Barcelona: Smithsonian Institution and Lynx Edicions. 2 vols. 1–821. Pp. 1–378; 1–683. Dunn, J., & Alderfer, J. K., 2006. National Geographic field guide to the birds of North Sangha, H. S., Bhatnagar, G., & Poonia, S. S., 2010. Caspian Plover Charadrius asiaticus at America. National Geographic Society, USA. Tal Chhappar: first record for Rajasthan. -
3 Wildlife in the City: Human Drivers and Human Consequences
3 Wildlife in the City: Human Drivers and Human Consequences 1 2 3 4 Susannah B. Lerman *, Desiree L. Narango , Riley Andrade , Paige S. Warren , Aaron M. Grade5 and Katherine Straley5 1 USDA Forest Service Northern Research Station, Amherst, Massachusetts, USA; 2Advanced Science Research Center, City University of New York, New York, New York, USA; 3School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, Arizona, USA; 4Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA; 5Graduate Program in Organismic and EvolutionaryBiology, University of Massachusetts, Amherst, Massachusetts, USA Abstract on how built structures, species interactions and socio-cultural factors further influence The urban development process results in the local species pool. Within this context, we the removal, alteration and fragmentation of assess the ecosystem services and disservices provided by urban wildlife, how management natural vegetation and environmental features, decisions are shaped by attitudes and exposure which have negatively impacted many wildlife to wildlife, and how these decisions then feed species. With the loss of large tracts of intact back to the local species pool. By understanding wildlands (e.g. forests, deserts and grasslands), why some animals are better able to persist in and the demise of specific habitat features (e.g. human modified landscapes than others, land early successional habitat or native plants), managers, city planners, private homeowners many specialist species are filtered out from and other stakeholders can make better urban ecosystems. As a result, some argue that informed decisions when managing properties urbanization has a homogenizing effect on in ways that also conserve and promote wildlife. -
Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation
Overview Articles Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation CHRISTOPHER A. LEPCZYK, MYLA F. J. ARONSON, KARL L. EVANS, MARK A. GODDARD, SUSANNAH B. LERMAN, AND J. SCOTT MACIVOR As urban areas expand, understanding how ecological processes function in cities has become increasingly important for conserving biodiversity. Urban green spaces are critical habitats to support biodiversity, but we still have a limited understanding of their ecology and how they function to conserve biodiversity at local and landscape scales across multiple taxa. Given this limited view, we discuss five key questions that need to be addressed to advance the ecology of urban green spaces for biodiversity conservation and restoration. Specifically, we discuss the need for research to understand how green space size, connectedness, and type influence the community, population, and life-history dynamics of multiple taxa in cities. A research framework based in landscape and metapopulation ecology will allow for a greater understanding of the ecological function of green spaces and thus allow for planning and management of green spaces to conserve biodiversity and aid in restoration activities. Keywords: fragmentation, green city, green roof, landscape ecology, urban planning rban areas house the majority of the world’s value to society. Urban green spaces comprise a range of U population, and there has been a surge in interest in habitat types that cross a continuum from intact remnant researching urban ecosystems. For many, urban areas are patches of native vegetation, brownfields, gardens, and sometimes viewed as concrete jungles, with depauperate yards, to essentially terraformed patches of vegetation that fauna and flora dominated by nonnatives and homogenous may or may not be representative of native community asso- taxa across regions. -
Urban Wildlife Fact Sheets
BOBCATS BENEFITS OF BOBCATS Bobcats play an important ecological role. They are effective predators of small mammals, such as rodents and rabbits, TIPS FOR REDUCING HUMAN- helping to keep population numbers in check of these and other herbivores. BOBCAT CONFLICTS: Bobcats occasionally take larger mammals, such as deer, Do not feed wildlife. This increases the usually culling the weak ones. This limits over-browsing by chance that the animal will lose its deer and prevents unmanageable population increases. natural fear of humans. Feed dogs and cats indoors and clean up after them. Water, pet food, and NATURAL HISTORY droppings can attract wildlife, including bobcats. Bobcats are members of the feline family. Their range covers Do not leave unattended dogs and the entire continental United States. They inhabit places with cats outdoors, especially from dusk dense vegetation and plenty of prey. However, as their native to dawn. Left outside at night, small habitats shrink, they are increasingly common in urban areas. pets may become prey to bobcats. Bobcats live in dens, which can be in a tree trunk, cave, brush pile, or fallen tree. Do not move "abandoned" baby bobcats. Mothers leave their babies Bobcats are carnivores, meaning they eat only meat. Their alone while they hunt for food. Baby preferred food is rabbit, but they will also eat rodents, insects, bobcats found alone are typically not birds, and even deer! The bobcat sneaks up on its prey before orphans. ambushing it with a lethal bite. A leashed dog is a safer dog. When A female bobcat's territory is approximately 5 square miles. -
Space Use and Movement of Urban Bobcats
animals Article Space Use and Movement of Urban Bobcats Julie K. Young 1,2,* , Julie Golla 2, John P. Draper 2 , Derek Broman 3, Terry Blankenship 4 and Richard Heilbrun 5 1 USDA National Wildlife Research Center, Millville Predator Research Facility, Logan, UT 84321, USA 2 Department of Wildland Resources, Utah State University, Logan, UT 84322, USA; [email protected] (J.G.); [email protected] (J.P.D.) 3 Oregon Department of Fish & Wildlife, 4034 Fairview Industrial Drive SE, Salem, OR 97302, USA; [email protected] 4 Welder Wildlife Foundation, Sinton, TX 78387, USA; [email protected] 5 Government Canyon State Natural Area, Texas Parks and Wildlife Department, San Antonio, TX 78254, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-435-890-8204 Received: 29 March 2019; Accepted: 20 May 2019; Published: 24 May 2019 Simple Summary: The bobcat (Lynx rufus) is a medium-sized carnivore that lives in remote and urban habitats. Here, we evaluate how bobcats exploit a highly urbanized section of the Dallas–Fort Worth metroplex, Texas, USA by evaluating their space use and activity patterns. We found that bobcats use more natural habitat areas within urban areas, such as agricultural fields and creeks, and avoid highly anthropogenic features, such as roads. Bobcat home ranges overlap one another, especially in areas with preferred habitat types, but they are neither avoiding nor attracted to one another during their daily movements. This study highlights how bobcats are able to navigate a built environment and the importance of green space in such places.