Ewing Sarcoma Family of Tumors

Total Page:16

File Type:pdf, Size:1020Kb

Ewing Sarcoma Family of Tumors Provided by Ewing Sarcoma Family of Tumors Lead contributors: Carlos Rodriguez-Galindo, MD, Fariba Navid, MD, Joseph Khoury, MD Matthew Krasin, MD St. Jude Children’s Research Hospital Memphis, Tennessee, United States of America Jaume Mora, MD Hospital Sait Joan de Deu Barcelona, Spain Algemir Brunetto, MD Hospital de Clinicas Porto Alegre, Brazil A. Introduction The term Ewing sarcoma family of tumors (ESFT) defines a group of small round cell neoplasms of neuroectodermal origin, that manifests as a continuum of neurogenic differentiation, with Ewing sarcoma of bone representing the least differentiated, and primitive neuroectodermal tumor and peripheral neuroepithelioma the most differentiated forms. ESFT comprise 3% of all pediatric malignancies, and are rare in the nonwhite population.1 The cell of origin has yet to be identified and some hypotheses have been proposed. Potential candidates include endothelial, pericytic, myeloid, mesenchymal, and neuroectodermal cells.2 However, it is currently accepted that either a mesenchymal stem cell or an early primitive neuroectodermal cell that has retained its ability for multilineage differentiation could be the cells of origin for this tumor. Even though they were described as different entities in the past, it is now recognized that the ESFT constitute a single group of neurally derived neoplasms with unique cytogenetic, immunohistochemical and molecular features.2,3 Most patients with localized disease survive with current aggressive treatment but up to 80% of patients with metastases disease die because of disease progression.4 A. References 1 Gurney JG, Swensen AR, Bulterys M. Malignant bone tumors. In: Ries LAG et al (eds). Cancer incidence and survival among children and adolescents: United States SEER program 1975- 1995, National Cancer Institute, SEER Program. NIH Pub. No. 99-4649. Bethesda, MD, 1999. 2 Dehner LP. Primitive neuroectodermal tumor and Ewing's sarcoma. Am J Surg Pathol 1993; 17:1-13. 3 de Alava E, Gerald WL. Molecular biology of the Ewing's sarcoma/primitive neuroectodermal tumor family. J Clin Oncol 2000; 18:204-213. 4 Cotterill SJ, Ahrens S, Paulussen M, Jürgens HF, Voûte PA, Gadner H et al. Prognostic factors in Ewing's tumor of bone: Analysis of 975 patients from the European Intergroup Cooperative Ewing's Sarcoma Study Group. J Clin Oncol 2000; 18:3108-3114. B. Epidemiology and Pathogenesis ESFT of bone is the second most common bone malignancy in children after osteosarcoma occurring in 2.9 cases per million.1 It is extremely uncommon in the first five years of age and it peaks in the second decade of life.1 The disease is slightly more common in males with a male/female ratio of 1.3:1. ESFT is predominantly seen in Caucasians, and distinctly uncommon in the African-American population.1 The incidence of this tumor is also lower in Hispanic and Asian populations.2 Page 2 of 31 However, there is no clear evidence that ESFT is associated with any environmental factor, disease, familial predisposition syndrome. Some cases of ESFT occurring as a second malignancy were reported after retinoblastoma, non-Hodgkin lymphoma, leukemia, Hodgkin’s disease and Wilms tumor. 3 The elucidation of the pathogenesis of ESFT has been limited by our ignorance about the cell of origin of this tumor. A recent study,4 showed that bone marrow-derived stromal cells transduced with EWS/ETS fusion proteins could recapitulate some features of ESFT, such as osteogenic and adipogenic differentiation and expression of neural markers. It was critical for our understanding of the pathogenesis of this tumor, the identification of recurring chromosomal translocations involving the N- terminus transactivation domain of the EWS gene on chromosome 22 band q12 with the C-terminus DNA-binding domain of an ETS family of transcription factors. The ETS family fusion partner most commonly detected is FLI-1 on chromosome 11 band q24 followed by ERG on chromosome 21 band q22 and less commonly FEV, ETV1 and E1AF.5,6 The resulting fusion protein from the rearrangement of these genes has been postulated in the tumorigenesis of ESFT. In this tumor, genetic alterations, growth factor and apoptotic signaling pathways have been shown to play a role in its pathogenesis. EWS/ETS fusion proteins have been recognized as playing a central role in this process and some downstream potential targets of these fusion proteins have been identified. The contribution of each of these proteins and their targets, as well as their mechanism of action requires further elucidation. EWS-FLI1 has been well characterized. FLI1 is a transcription factor and contains a sequence specific DNA binding domain, GGA(A/T). FLI1 plays a role in embryonic development, hematopoiesis, cell growth and differentiation, as well as tumorigenesis. The fusion product of these two genes, EWS and FLI-1, can cause neoplastic transformation in a number of in vitro and in vivo experimental systems.7 Page 3 of 31 EWS is an RNA-binding protein whose function is unclear. When ESFT cell lines are transduced in culture or animal models with anti-sense oligonucleotides, small interfering RNAs (siRNA) or competitive inhibitors to EWS-FLI1, they demonstrate growth inhibition as well as increased susceptibility to chemotherapy induced apoptosis.8,9 The fusion protein binds to target genes in a sequence- specific fashion determined by FLI-1, but these genes are controlled by EWS regulatory domains, a more potent transcriptional activator than FLI-1.10 This aberrant gene regulation appears to result in the transforming properties of EWS-FLI1. The critical genes modulated by EWS-FLI1 that contribute to the oncogenesis are not known. There are several in-frame EWS-FLI1 chimeric transcripts. The most common fusions involve fusion of EWS exon 7 with FLI1 exon 6 (type 1) and fusion of EWS exon 7 with FLI1 exon 5 (type 2) with a relative frequency of 60% and 25%, respectively.11 Compared to other types, type1 fusion may be a weaker trans-activation type, probably justifying the better outcome that these patients have.12,13,18 The karyotype of ESFT cells is not restricted to the rearrangement involving chromosome 22. Other aberrations such as trisomies in chromosome 8 and 12 and an unbalanced1,14 translocation have also been repeatedly observed in ESFT.15,16,17 The biologic and clinical significance of these abnormalities are not known. Primarily homozygous deletions usually associated with loss of p15 and ARF genes, have been detected in a variable proportion of patient with ESFT.18 Some of these findings were correlated with poor overall survival.19,20 Dysregulation of growth factor and apoptotic pathways have also been reported in the pathogenesis of ESFT and the insulin-like growth factor (IGF) signaling pathway the most completely studied so far. Insulin-like growth factors, IGFI and IGFII, primarily mediate their effects through the insulin-like growth factor I receptor (IGFIR). IGFIR are found on the surface of most ESFT.21 Page 4 of 31 Activated IGFIR results in a number of different responses that are mediated by two primary pathways, mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3-K).22 Impairment of IGFIR function by antisense strategies, antibodies, or dominant negative constructs ameliorates its effects on proliferation, migration, angiogenesis, metastasis, and transformation as well as enhancing chemosensitivity of ESFT cells to conventional cytotoxic drugs.21,23,24 Therefore, it may be hypothesized that IGF signaling plays a crucial role in the tumorigenesis of ESFT. IGFIR is necessary for the transforming ability of EWS/ETS fusion proteins.25 Furthermore, it was recently suggested that EWS/FLI1 binds to the promoter region of insulin-like growth factor binding protein-3 (IGFBP-3), a negative regulator of IGF-I signaling, causing repression of its activity demonstrating a direct link between IGF-1 signaling and EWS-FLI1.8 Basic fibroblast growth factor (bFGF, a family of heparin-binding polypeptide growth factors that are important in neuronal development) and its receptors are also expressed in ESFT. However, its role in ESFT remains to be determined.26,27 C-KIT and its ligand, stem cell factor (SCF) as well as PDGFRβare expressed in some ESFT.28,29 Playing some role in cell proliferation, transformation and motility of ESFT and may serve as novel targets for therapy since pharmacological modulation of this pathway is available. 29,30 Death inducing ligands for TNF-related apoptosis-inducing ligand (TRAIL), Fas-ligand, and tumor necrosis factor (TNF) were also studied in this tumor.31 However, not all ESFT that express death receptors are sensitive to TRAIL. It has been shown that32 in the presence of a DNA demethylating agent, apoptosis can be induced in TRAIL insensitive ESFT cells. Page 5 of 31 B. References 1 Gurney JG, Swensen AR, Bulterys M. Malignant bone tumors. In Ries LAG et al (eds). Cancer incidence and survival among children and adolescents: United States SEER program 1975- 1995, National Cancer Institute, SEER Program. NIH Pub. No. 99-4649. Bethesda, MD, 1999. 2 Parkin DM, Stiller CA, Nectoux J. International variations in the incidence of childhood bone tumours. Int J Cancer 1993; 53:371-376. 3 Spunt S, Harper J, Krasin M, Billups C, Rodriguez-Galindo C. Ewing sarcoma family of tumors (ESFT) as a second malignant neoplasm (SMN) following treatment of a primary malignant neoplasm (PMN) during childhood. Proc Annu Meet Am Soc Clin Oncol 2004; 22:808 (abstract). 4 Torchia EC, Jaishankar S, Baker SJ. Ewing tumor fusion proteins block the differentiation of pluripotent marrow stromal cells. Cancer Res 2003; 63:3464-3468. 5de Alava E, Gerald WL. Molecular biology of the Ewing's sarcoma/primitive neuroectodermal tumor family. J Clin Oncol 2000; 18:204-213. 6 Delattre O, Zucman J, Melot T, Sastre Garau X, Zucker J-M, Lenoir GM et al.
Recommended publications
  • Pediatric Soft Tissue Tumors of Head and Neck – an Update and Review
    IP Archives of Cytology and Histopathology Research 2020;5(4):266–273 Content available at: https://www.ipinnovative.com/open-access-journals IP Archives of Cytology and Histopathology Research Journal homepage: https://www.ipinnovative.com/journals/ACHR Review Article Pediatric soft tissue tumors of head and neck – An update and review Shruti Nayak1, Amith Adyanthaya2, Soniya Adyanthaya1,*, Amarnath Shenoy3, M Venkatesan1 1Dept. of Oral Pathology and Microbiology, Yenepoya Dental College, Yenepoya University, Mangalore, Karnataka, India 2Dept. of Pedodontics, KMCT Dental College, Kozhikode, Kerala, India 3Dept. of Conservative and Endodontics, Century Dental College Poinachi, Kasargod, Kerala, India ARTICLEINFO ABSTRACT Article history: Pediatric malignancies especially sarcomas are the most common and predominant cause of mortality in Received 01-12-2020 children. Such ongoing efforts are crucial to better understand the etiology of childhood cancers, get better Accepted 17-12-2020 the survival rate for malignancies with a poor prognosis, and maximize the quality of life for survivors. Available online 30-12-2020 In this review article we authors aim to discuss relatively common benign and malignant connective tissue tumors (soft tissue tumor), focusing on current management strategies and new developments, as they relate to the role of the otolaryngologist– head and neck surgeon. Other rarer paediatric head and neck tumors Keywords: beyond the scope of this review Pediatric Sarcoma © This is an open access article distributed under the terms of the Creative Commons Attribution Soft tissue License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and Tumor reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • The Role of Cytogenetics and Molecular Diagnostics in the Diagnosis of Soft-Tissue Tumors Julia a Bridge
    Modern Pathology (2014) 27, S80–S97 S80 & 2014 USCAP, Inc All rights reserved 0893-3952/14 $32.00 The role of cytogenetics and molecular diagnostics in the diagnosis of soft-tissue tumors Julia A Bridge Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA Soft-tissue sarcomas are rare, comprising o1% of all cancer diagnoses. Yet the diversity of histological subtypes is impressive with 4100 benign and malignant soft-tissue tumor entities defined. Not infrequently, these neoplasms exhibit overlapping clinicopathologic features posing significant challenges in rendering a definitive diagnosis and optimal therapy. Advances in cytogenetic and molecular science have led to the discovery of genetic events in soft- tissue tumors that have not only enriched our understanding of the underlying biology of these neoplasms but have also proven to be powerful diagnostic adjuncts and/or indicators of molecular targeted therapy. In particular, many soft-tissue tumors are characterized by recurrent chromosomal rearrangements that produce specific gene fusions. For pathologists, identification of these fusions as well as other characteristic mutational alterations aids in precise subclassification. This review will address known recurrent or tumor-specific genetic events in soft-tissue tumors and discuss the molecular approaches commonly used in clinical practice to identify them. Emphasis is placed on the role of molecular pathology in the management of soft-tissue tumors. Familiarity with these genetic events
    [Show full text]
  • Imaging of Pediatric MSK Tumors
    Imaging of Pediatric MSK Tumors Kirsten Ecklund, M.D. Boston Children’s Hospital Harvard Medical School [email protected] Tumor Imaging Goals Diagnosis Treatment Surveillance • Lesion • Size, extent • Local recurrence characterization • Treatment response • Metastatic search • Benign vs malignant – Tissue characterization • DDX (necrosis vs growth) – RECIST guidelines • Extent of disease • Surgical planning – Relationship to neurovascular structures – Measurements for custom reconstruction Current MR Imaging Goals • Highest resolution – even at small FOV • Tissue characterization – Functional imaging – Metabolic imaging • Decrease sedation – Motion correction • Increase acquisition speed Diagnosis: Normal RM Stress fx EWS Leukemia Tumor Mimics/Pitfalls • Inflammatory lesions – Osteoid osteoma – Chondroblastoma – Infection – Myositis ossificans – Histiocytosis – CRMO (CNO) • Trauma/stress fracture 19 y.o. right elbow mass Two 15 year olds with rt knee pain D. Femur stress fx, p. tibia stress reaction Primary bone lymphoma Primary Osseous Lymphoma • 6% of 1° bone tumors, <10% of NHL • Commonly involves epiphyses and equivalents • MR - “Infarct-like” appearance, sequestra • 10-30% multifocal • 10-15% metastases at dx 90% of malignant pediatric bone tumors Osteosarcoma ES family of tumors • ~ 400 new cases/yr in U.S. • ~ 200 new cases/yr • #1 malignant bone tumor < 18 y.o. • Caucasian predominance • Peak age: 13-16 y.o., boys > girls • Peak age: 10-15 y.o • Sites: d. femur (75%), p. tibia, p. • Sites: axial (54%), appendicular
    [Show full text]
  • Ewing's Sarcoma and Primary Osseous Lymphoma
    36 Ewing’s Sarcoma and Primary Osseous Lymphoma: Spectrum of Imaging Appearances Marc-André Weber, MD, MSc1 Olympia Papakonstantinou, MD2 Violeta Vasilevska Nikodinovska, MD, PhD3 Filip M. Vanhoenacker, MD, PhD4 1 Institute of Diagnostic and Interventional Radiology, University Address for correspondence Marc-André Weber, MD, MSc, Institute Medical Center Rostock, Rostock, Germany of Diagnostic and Interventional Radiology, University Medical Center 2 Second Department of Radiology, National and Kapodistrian Rostock, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany University of Athens “Attikon” Hospital, Athens, Greece (e-mail: [email protected]). 3 Department of Radiology, University Surgical Clinic “St. Naum Ohridski,” University “Ss. Cyril and Methodius,” Skopje, Macedonia 4 Department of Radiology, AZ Sint-Maarten Mechelen, University Hospital Antwerp, Ghent University, Mechelen, Belgium Semin Musculoskelet Radiol 2019;23:36–57. Abstract Ewing’s sarcoma (ES) is a rare, highly malignant anaplastic stem cell tumor. Histolo- gically, the tumor consists of uniform densely packed small monomorphic cells with round nuclei. The typical appearance at hematoxylin and eosin (H&E) staining is small blue round cells without any matrix formation. On conventional radiography, ES typically presents as a permeative lesion in the diaphysis of a long bone in a child. A Keywords large soft tissue component is another characteristic feature, best depicted by ► Ewing’sSarcoma magnetic resonance imaging. ► primary osseous Primary osseous lymphomas are most commonly highly malignant B-cell lymphomas. lymphoma At H&E histologic staining, the tumor stroma consists of diffuse round-cell infiltrates ► radiography that resembles the appearance of ES. Although there is no typical imaging appearance ► magnetic resonance of an osseous lymphoma, it should be considered in an adult presenting with a Lodwick imaging grade II or III lesion in the metaphysis or diaphysis of a large long bone, the pelvis, or the ► review vertebral column.
    [Show full text]
  • Expression of ADAMTS4 in Ewing's Sarcoma
    569-581.qxd 16/7/2010 01:17 ÌÌ ™ÂÏ›‰·569 INTERNATIONAL JOURNAL OF ONCOLOGY 37: 569-581, 2010 569 Expression of ADAMTS4 in Ewing's sarcoma K. MINOBE1,2, R. ONO1*, A. MATSUMINE3*, F. SHIBATA-MINOSHIMA2, K. IZAWA2, T. OKI2, J. KITAURA2, T. IINO3, J. TAKITA4, S. IWAMOTO5, H. HORI5, Y. KOMADA5, A. UCHIDA3, Y. HAYASHI6, T. KITAMURA2 and T. NOSAKA1 1Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu; 2Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo; 3Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu; 4Department of Cell Therapy and Transplantation Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo; 5Department of Pediatrics and Developmental Science, Mie University Graduate School of Medicine, Tsu; 6Gunma Children’s Medical Center, Gunma, Japan Received March 29, 2010; Accepted May 18, 2010 DOI: 10.3892/ijo_00000706 Abstract. Ewing's sarcoma (EWS) is a malignant bone tumor Introduction that frequently occurs in teenagers. Genetic mutations which cause EWS have been investigated, and the most frequent one Ewing's sarcoma (EWS) is the second most frequent primary proved to be a fusion gene between EWS gene of chromo- bone tumor of childhood and adolescence with aggressive some 22 and the FLI1 gene of chromosome 11. However, a clinical course and poor prognosis. It is recognized that EWS limited numbers of useful biological markers for diagnosis of is a part of Ewing's sarcoma family of tumors (ESFTs) which EWS are available. In this study, we identified ADAMTS4 also include the peripheral primitive neuroectodermal tumor (a disintegrin and metalloproteinase with thrombospondin (PNET) (1,2), Askin's tumor and extraosseous EWS.
    [Show full text]
  • About Ewing Tumors What Is the Ewing Family of Tumors?
    cancer.org | 1.800.227.2345 About Ewing Tumors Overview and Types If you or your child have just been diagnosed with a Ewing tumor or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Is the Ewing Family of Tumors? Research and Statistics See the latest estimates for new cases of Ewing tumors in the US and what research is currently being done. ● Key Statistics for Ewing Tumors ● What’s New in Ewing Tumor Research and Treatment? What Is the Ewing Family of Tumors? Cancer starts when cells in the body begin to grow out of control. Cells in nearly any part of the body can become cancer, and can then spread to other areas of the body. To learn more about cancer and how it starts and spreads, see What Is Cancer?1 Ewing tumors (also known as Ewing sarcomas) are a group of cancers that start in the bones or nearby soft tissues and share some common features. These tumors can develop in people of any age, but they are most common in older children and teens. 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 For information about the differences between childhood cancers and adult cancers, see Cancer in Children2. The main types of Ewing tumors are: ● Ewing sarcoma of bone: Ewing sarcoma that starts in a bone is the most common tumor in this family. This type of tumor was first described by Dr. James Ewing in 1921, who found it was different from the more common bone tumor, osteosarcoma3.
    [Show full text]
  • Bone and Soft Tissue Tumors
    3/30/2009 BONE AND SOFT TISSUE TUMORS Fabrizio Remotti MD DEFINITION • Soft tissue pathology deals with tumors of the connective tissues. • The concept of soft tissue is understood broadly to include non-osseous tumors of extremities, trunk wall, retroperitoneum and mediastinum, and head & neck. • Excluded (with a few exceptions) are organ specific tumors. 1 3/30/2009 DEFINITION • Bone pathology deals with tumors of the skeletal system. • Included are subsets of tumors from extra- osseous sites that show osseous and cartilaginous differentiation. CLASSIFICATION • Purpose of classification is to link similar tumors in order to understand their behavior, determine the most approp riate treatment, and investi gate their biology. • However, purpose of a classification system is simplicity and reproducibility • Therefore tumors are classified according to the cell type they resemble. • Refinements are coming from cytogenetics, molecular, and gene expression studies. • The majority arise from -or show differentiation toward- mesenchymal cells, but some show other differentiation (neuroectodermal, histiocytic). • A small subset is of unknown histogenesis. 2 3/30/2009 CLASSIFICATION • Many tumors resemble tissues present in the region of origin. • These tumors may be derived from stem cells that belong to local, organ-specific pools. Vascular leiomyosarcoma • Other involved stem cells may be bone marrow derived. Lipoma Alveolar soft part sarcoma CLASSIFICATION • Some tumors have no resemblance to normal tissue in the region (metaplastic foci within a tumor, or tumors of different histogenesis from the normal cells of the region) • Some sarcomas have no normal cell counterparts, probably reflecting an unique genetic makeup. Epithelioid sarcoma, proximal type 3 3/30/2009 CLASSIFICATION • Tumors are also classified according their bio log ic po ten tia l.
    [Show full text]
  • Sarcoma Fact Sheet
    Sarcoma Fact sheet What is sarcoma? A sarcoma is a rare type of cancer that begins in the connective tissues of the body such as fat, muscle, blood vessels, nerves, bone and cartilage. Sarcoma occurs when abnormal cells in these types of tissue grow in an uncontrolled way. Sarcomas can develop anywhere in the body. Although sarcomas are rare across all age groups, they are among the more common types of solid tumour in childhood. Types of sarcoma Soft tissue sarcoma Soft tissue sarcomas develop in soft tissues such as fat, muscle, blood vessels, lymphatic vessels, nerves, tendons and cartilage. There are more than 50 types of soft tissue sarcomas. In adults, the most common types are: Undifferentiated pleomorphic sarcoma (UPS): an aggressive type of soft tissue sarcoma with high incidence of local recurrence and metastasis, most common in the age group of 50-70 years. Leiomyosarcoma: a malignant smooth muscle tumour that arises most commonly in the limbs, abdomen and uterus. Liposarcoma: a malignant tumour that arises from fat cells, most commonly in the trunk, limbs and abdomen. Angiosarcoma: a malignant tumour that arises from blood vessels or lymphatic vessels. Prior radiotherapy is a risk factor for angiosarcoma, often with a median latency period of 10 years. Malignant peripheral nerve sheath tumour: a malignant tumour that arises in the lining of nerves, often in the deep tissue of the arms, legs and trunk.. Fibroblastic sarcoma (fibrosarcoma): a malignant tumour that develops in the fibrous tissues of the body, most commonly in the limbs, skin and trunk. Gastrointestinal stromal tumour: a common type of soft tissue sarcoma that starts in the digestive tract.
    [Show full text]
  • Imaging of Bone Sarcomas
    JN054_Jrnl_50408Cummi.qxd 4/12/07 12:23 AM Page 438 438 Original Article Imaging of Bone Sarcomas Judd E. Cummings, MD; J. Andrew Ellzey, MD; and Robert K. Heck, MD, Memphis, Tennessee Key Words Diagnostic Evaluation Bone sarcoma, imaging, staging Patient evaluation begins with a thorough history and physical examination. Most commonly, patients present Abstract with pain at the affected site. The pain usually does not Identification, staging, and treatment of bone sarcomas rely on both improve and may progress to become independent of clinical and imaging evaluations. Although conventional radiogra- phy remains the primary imaging modality for characterizing bone activity. Ultimately, the patient may experience pain at tumors, bone scintigraphy, computed tomography, magnetic rest or at night. resonance imaging, and positron emission tomography can each Although some tumors show a sex predilection (fe- add information for staging and treatment planning. (JNCCN male predominance with giant cell tumor and parosteal 2007;5:438–447) osteosarcoma), this rarely is useful for diagnosis. Similarly, race is of little diagnostic benefit except with Ewing’s sar- Although much less prevalent than other forms of can- coma, which is extremely rare in people of African de- cer, bone sarcomas pose a dilemma in both diagnosis and scent. In contrast, the patient’s age is very helpful in treatment. Fortunately, over the past several decades, the directing the differential diagnosis of a suspected bone advancement and refinement of modalities aimed at treat- tumor.14,15 Examples include primary osteosarcoma, which ing bone sarcomas, such as adjuvant chemotherapy and usually occurs between the ages of 10 and 25 years; Paget’s limb-sparing surgical techniques, have resulted in better osteosarcoma, between 55 and 80 years; Ewing’s sarcoma, 1–13 outcomes for many patients.
    [Show full text]
  • Bone & Soft Tissue
    ANNUAL MEETING ABSTRACTS 11A of the placenta provided confirmatory evidence concerning the COD; provided new likely express other phosphaturic hormones (e.g., frizzled related protein 4). Our finding information and COD; or did not provide additional information regarding the COD. of expression of FGF-23 in 69% of histologically identical tumors without known TIO Results: During the 21-year period examined, 458 stillborn autopsies were performed; confirms the reproducibility of the diagnosis of PMTMCT, even in the absence of known 388 of these autopsies revealed structurally normal fetuses (84.7%). Of the structurally phosphaturia. FGF-23-positive PMTMCT without known TIO were likely excised prior normal fetal autopsies, 94 cases (24%) were performed prior to the policy institution and to becoming symptomatic. The exact nature of FGF-23-negative putative PMTMCT 294 after. Comparing the frequency of placental examination and COD determination without TIO is unclear, although histological re-review did not suggest alternative before and after the policy (1992), we demonstrated that the percentage of placental diagnoses. Ongoing study of additional non-PMTMCT should further establish the examinations increased from 42.2±5.3 % (1987-1991) to 92.1±2.1 % (1992-2007), frequency of FGF-23 expression in other tumor types. and the frequency of COD determination increased from 38.5±7 % to 79.5±3.2 % (P=<0.0001). The placental examination provided confirmatory evidence in 24.6 %, 36 Characterization of CXCR4 Expression in Chondrosarcoma of new diagnostic information and COD in 44.7 % and no additional information in Bone 30.7 %. However, in those that did not yield any additional information, COD was S Bai, D Wang, MJ Klein, GP Siegal.
    [Show full text]
  • BONE and SOFT TISSUE TUMORS SOFT TISSUE TUMORS Disorder Inheritance Locus Gene Tumor
    CLASSIFICATION BONE AND SOFT TISSUE z Purpose of classification is to link similar tumors in order TUMORS to understand their behavior, determine the most appropriate treatment, and investigate their biology. z However, purpose of a classification system is simplicity and reproducibility z Therefore tumors are classified according to the cell type they resemble. z Refinements are coming from cytogenetics, molecular, and gene expression studies. z The majority arise from -or show differentiation toward- mesenchymal cells, but some show other differentiation (neuroectodermal, histiocytic). z A small subset is of unknown histogenesis. Fabrizio Remotti MD DEFINITION z Soft tissue pathology deals CLASSIFICATION with tumors of the connective tissues. z Many tumors resemble z The concept of soft tissue is tissues present in the understood broadly to region of origin. include non-osseous tumors z These tumors may be derived from stem cells of extremities, trunk wall, Vascular leiomyosarcoma retroperitoneum and that belong to local, mediastinum, and head & organ-specific pools. neck. z Other involved stem cells may be bone marrow z Excluded (with a few derived. exceptions) are organ specific tumors. Lipoma Alveolar soft part sarcoma DEFINITION CLASSIFICATION z Bone pathology deals with tumors of the z Some tumors have no skeletal system. resemblance to normal tissue in the region z Included are subsets of (metaplastic foci within a tumors from extra- ttftumor, or tumors of osseous sites that show different histogenesis from osseous and cartilaginous the normal cells of the region) differentiation. z Some sarcomas have no normal cell counterparts, probably reflecting an unique genetic makeup. Epithelioid sarcoma, proximal type 1 HISTOGENESIS EPIDEMIOLOGY All tumors are derived from stem cells that are programmed to differentiate into various mature cell types.
    [Show full text]
  • Treatment and Survival of Osteosarcoma and Ewing Sarcoma of the Skull: a SEER Database Analysis
    Acta Neurochirurgica (2019) 161:317–325 https://doi.org/10.1007/s00701-018-3754-y ORIGINAL ARTICLE - TUMOR - OTHER Treatment and survival of osteosarcoma and Ewing sarcoma of the skull: a SEER database analysis Enrico Martin1,2 & Joeky T. Senders1,3 & P. Valerie ter Wengel4,5 & Timothy R. Smith1 & Marike L. D. Broekman1,6,7 Received: 26 September 2018 /Accepted: 26 November 2018 /Published online: 21 December 2018 # The Author(s) 2018 Abstract Background Common primary bone tumors include osteosarcomas (OSC) and Ewing sarcomas (EWS). The skull is a rare site, and literature about their treatment and survival is scarce. Using the Surveillance, Epidemiology, and End Results (SEER) database, this study aims to assess the treatment and survival of skull OSC and skull EWS, as well as predictors for survival. Methods Skull OSC and EWS cases were obtained from the SEER database. Patient and tumor characteristics, treatment modalities, and survival were extracted. Overall survival (OS) was assessed using multivariable Cox proportional hazard regression stratified by tumor histology. Kaplan-Meier curves were constructed for OS comparing OSC and EWS, as well as histological subtypes in OSC. Results A total of 321 skull OSC and 80 skull EWS patients were registered from 1973 to 2013. EWS was more common in younger patients (p < 0.001). Resection was the predominant treatment strategy (80.1%), frequently in combination with adju- vant radiotherapy (30.4%). The 5-year survival rate varied significantly between OSC and EWS (51.0% versus 68.5%, p =0.02). Kaplan-Meier curves show that EWS had a significantly better survival compared to OSC.
    [Show full text]