Molecularlevelstudiesonthedistributionandfateoforganic

matteratcontinentalmargins

Dissertation

zurErlangungdesDoktorgrades

derNaturwissenschaften

Dr.rer.nat.

AmFachbereichGeowissenschaften

derUniversitätBremen

vorgelegtvon

FraukeSchmidt

Bremen

Mai2009

1.Gutachter:Prof.Dr.KaiUweHinrichs

2.Gutachter:Prof.Dr.BorisKoch

Preface

Preface

ThestudiespresentedinthisthesiswerefundedbytheDeutscheForschungsgemeinschaft throughtheDFGResearchCenter/ExcellenceCluster“TheOceanintheEarthSystem”and theBremenInternationalGraduateSchoolforMarineSciences(GLOMAR).Thethesiswas preparedinthetimefromMarch2006toMay2009intheOrganicGeochemistrygroupof

Prof.Dr.KaiUweHinrichsattheUniversityofBremen.

This thesiscontributes to a better understanding of the processes and mechanisms behind the distribution and early diagenesis of organic matter in marine sediments. In the first chaptergeneralaspectsoforganicmattercyclingintheoceanandinmarinesedimentsare examined to provide a base for the studies in Chapters 2 – 4. Both study sites, the NW

IberianmarginandthenorthernBlackSea,arebrieflyintroducedandthechapterconcludes withageneraldescriptionofthemethodologicalapproach.Chapter2(submittedtoMarine

Chemistry)investigatesthesources,transportand,distributionoforganicmatterattheNW

Iberian margin. Chapters 3 and 4 focus on early diagenetic processes in the sedimentary dissolvedorganicmatterpoolattheNWIberianmargin(Chapter3,publishedinGeochimica et Cosmochimica Acta) and in the northern Black Sea (Chapter 4, draft in preparation for submission). The data from both chapters were generated in collaboration with Bruker

DaltonikGmbH,Bremen,andthecompletedatasetisprovidedintheelectronicappendix.

The thesis closes with the major findings of the studies and perspectives for future investigations.

Tableofcontents

TABLEOFCONTENTS

Abstract 4

Zusammenfassung 6

1Introduction11 1.1Organicmatterinthecontemporaryocean 12 1.1.1Compositionoforganicmatter14 1.1.2AlterationofOMinthewatercolumn16 1.1.3EarlydiagenesisofOMinmarinesediments 17 1.1.4ProductionandsignificanceofDOMinsedimentporewaters 18 1.2OMatcontinentalmargins 19 1.2.1Studyarea1:TheShelf20 1.2.2Studyarea2:ThenorthernBlackSea 21 1.3Mainobjectivesandthesisoutline 23 1.4Methodologicalapproach 25 References30

2Sources,transport,andpartitioningoforganicmatteratahighlydynamic continentalmargin37 Abstract 38 2.1Introduction 39 2.2Studyarea 40 2.3Materialandmethods 42 2.3.1Sampling 42 2.3.2Totalorganiccarbon,totalcarbonandtotalnitrogen42 2.3.3Lipidextraction42 2.3.4Bacteriohopanepolyols 43 2.3.5Branchedandisoprenoidtetraetherindex 43 2.3.6Ligninextraction 43 2.3.7Gaschromatographycoupledtomassspectrometryor flameionizationdetection 44 2.3.8Highperformanceliquidchromatography 45 2.3.9Grainsizeanalysis 46 2.3.10Correlationanalysis,clusteranalysis,andOceanDataView 46 2.4Results46 2.4.1Bulkpropertiesofsediments 46 2.4.2Distributionsoflipidbiomarkersandligninphenols48 2.4.2.1Biomarkergrouping 48 2.4.2.2.Variationofbiomarkerdistributionsbetweensamples 48 2.4.2.3Terrestrialbiomarkerinput 49 2.4.2.4Marinebiomarkerinput 54 2.4.3Inventoryoflipidbiomarkersandligninphenolsinthelocal rivers 56 2.5Discussion 58 2.5.1SourcesoforganicmatterattheGaliciaMinhoshelf 58 2.5.1.1Thecompositionofterrestrialorganicmatterontheshelf 58 2.5.1.2Marinecontributionstosedimentaryorganicmatter 61 2.5.2Transportanddistributionalpatternsofterrestrialorganicmatter 64 1 Table of contents

2.5.3SpatialOMdistributioninrelationtoseasonalplanktonecology 65 2.5.4OMprovincesontheGaliciaMinhoshelf 66 2.6Conclusions 69 Acknowledgements 70 References 71 3Molecularcharacterizationofdissolvedorganicmatterinporewaterof continentalshelfsediments79 Abstract 80 3.1Introduction 81 3.2Materialsandmethods 83 3.2.1Samplingsite 83 3.2.2Sampling 83 3.2.3Dissolvedorganicmatterextraction 84 3.2.4Fouriertransformioncyclotronresonancemassspectrometry 85 3.2.5Dissolvedorganiccarbonandtotaldissolvednitrogen 86 3.2.6Totalorganiccarbon,totalnitrogenandtotalsulfur 86 3.2.7Lipidextraction87 3.2.8Ligninextraction 88 3.2.9Gaschromatographycoupledtomassspectrometryor flameionizationdetection 88 3.3Resultsanddiscussion 89 3.3.1Characterizationofsedimentaryorganicmatter 89 3.3.2Spatialdistributionofligninphenolsandlipidbiomarkersin theparticulateorganicmatter 90 3.3.3Molecularvariationsindissolvedorganicmatter 92 3.3.1DissolvedorganicmattercharacterizationviamolarH/Cand O/Cratios 92 3.3.3.2Dissolvedorganicmattercharacterizationviamolecular massandDBE 96 3.3.3.3Sourcesandoccurrenceofaromaticringstructures 97 3.3.3.3.1AromaticcompoundswithlowO/C(0.2) 98 3.3.3.3.2AromaticcompoundswithhighO/C(>0.4) 99 3.3.3.4Spatialvariationsofnitrogenbearingcompounds 100 3.3.3.5Sulfurcompoundsasindicatorsforearlydiagenesis? 102 3.4Summaryandconclusions 104 Acknowledgements 105 References 106 4Diagenetictransformationofdissolvedorganicmatterundercontrasting sedimentaryredoxconditionsintheBlackSea 111 Abstract 112 4.1Introduction 113 4.2Materialandmethods 114 4.2.1Sampling 114 4.2.2Dissolvedorganicmatterextraction 115 4.2.3Fouriertransformioncyclotronresonancemassspectrometry 115 4.2.4Dissolvedorganiccarbonandtotaldissolvednitrogen 116 4.2.5Totalhydrolyzabledissolvedaminoacids 117 2 Tableofcontents

4.2.6Totalorganiccarbonandtotalnitrogen 117 4.2.7Stableorganiccarbonisotopes 118 4.3Resultsanddiscussion 118 4.3.1Characterizationofsedimentaryorganicmatter 118 4.3.2Theeffectofearlydiagenesisonmoleculesizeandmolecule saturation 120 4.3.3VariationsinCHOmolecules 121 4.3.4VariationsofNbearingcompoundsinDOM123 4.3.5Nbearingcompoundsasproductsofproteindegradation 124 4.3.6OthersourcesforNbearingcompoundsinDOM 127 4.4Summaryandconclusions 128 Acknowledgements 129 References 130

5Concludingremarksandperspectives 135 References141

AppendixA1 143

AppendixA2 147

Danksagung 154

Erklärung 157

ElectronicAppendix

3 Abstract

ABSTRACT

Continentalmarginsareamajorreservoirfororganiccarbon(OC)burialintheoceansand play an essential role in the global carbon cycle. High primary productivity, supply of terrestrialderived organic matter (OM) and reduced remineralization rates during the shortedsinkingtimesofOMinthewatercolumncomparedtotheopenoceanarethemain reasonsforthehighOCaccumulation.However,continentalmarginsareoftencharacterized byhighwaterandsedimentdynamicspromotingOMremineralization.Thehighlydynamic conditions together with the multiple sources for organic matter complicate an understanding of the processes, responsible for OM preservation and remineralization in continentalmarginsediments,andatpresent,themainmechanismsremainelusive.

ThisthesisprovidesdeeperinsightsintothemolecularcompositionofOMwiththeaimto constrainthesources,distributionandearlydiageneticprocessesinthesedimentaryOMat continentalmargins.

ThefirststudyexaminestheeffectofhydrodynamicandsedimentologicalprocessesonOM at the NW Iberian margin by comparing the distribution of lipid biomarkers and lignin phenols to the grain size distribution as well as to the chemical and isotopic bulk OC composition. The comprehensive lipid biomarker and lignin phenol analyses indicate OM contributions from various terrestrial and marine sources subjected to different transport mechanisms.TerrestrialOMconsistingofvascularplantandsoilderivedmaterialismainly supplied by local rivers to the shelf. The distribution on the shelf is closely linked to the inorganic sediment fraction which is indicated by the correlation with the grain size distributioninthesediment.Theabundanceofhigherplantwaxderivedcompounds(long chainnalkanes,nalcoholsandnfattyacids)inthesedimentfromallareasofthecontinental margin, suggestsa second input pathway by wind. High water dynamics on the shelf are responsible for an internal sorting of the terrestrial OM according to the hydrodynamic properties, i.e., soft plant tissue (indicated by high ratios of cinnamyl phenols to vanillyl phenols (C/V)) is preferentially transported and deposited offshore, whereas the woody material (represented by plantderived triterpenoids and low C/V ratios) is primarily accumulatedclosetothesourceriversinalocalmidshelfmudbelt.Refractorysoilderived organic matter was identified via 3,5dihydroxybenzoic acid (major compound in tannic acid) and is distributed similar to the soft tissue. Algal lipid biomarkers reflect a complex marineplanktoncommunityontheshelfandadistributionofthealgalderivedOMclosely

4 Abstract linked to the nutrient conditions, i.e., accumulation of algalderived OM close to the continent and the NW Iberian upwelling cell. The interplay of plankton blooms, hydrodynamic and sedimentological processes results in three different OM provinces on theshelf:(I)theinnershelfregionwithfreshmarineOM,(II)themidshelfmudbeltasmajor sinkforterrestrialOM,and(III)theoutershelfwithalowaccumulationofratherrefractory terrestrialderived OM. Based on this characterization, the second study elucidates early diageneticprocessesinthesedimentsfromtheNWIberianmargin.Dissolvedorganicmatter

(DOM)fromsedimentporewaterswasanalyzedforthefirsttimebyhighresolutionFourier transformioncyclotronresonancemassspectrometry(FTICRMS)whichprovidednewand important insights into the molecular composition of DOM and thus into early diagenetic processes. More than 2000 molecular formulae were detected in the sediment pore water

DOMfromthemudbeltindicatingthevariousOMsources.Compoundswithlowelemental hydrogen to carbon (H/C) and high oxygen to carbon (O/C) ratios coincided with high concentrations of lignin phenols in the sedimentary OM and are probably released from terrestrialderivedparticulateOMviahydrolysis.TherefractorynatureoftheOMdeposited ontheoutershelfresultsinalowermoleculenumberintheFTICRMSdatasetandsmaller variationsintheirH/CandO/Cratios.

TheimpactoftheredoxconditionsonearlydiagenesiswereinvestigatedwithFTICRMSin athirdstudyinthenorthernBlackSeaindetail.ThebulksedimentaryOMrespondedtothe redox conditions by a high accumulation of refractory OM (total organic carbon (TOC) content of up to 6.2 % with a stable carbon isotopic signature of 13C = 25 ‰) and a chemically reduced DOM pool in the anoxic sediments. In contrast, the different remineralizationprocessesattheoxicsamplingsiteresultinalowerTOCcontent(1.2%)in thesedimentandahigheroxidizedDOMpool.Asetofnitrogenbearingcompoundsinthe

FTICRMS data set was interpreted as products from protein degradation via hydrolysis and deamination. The reaction pathway appears to differ depending on the redox conditions;oxidatativedeaminationpredominatesunderoxicconditions,whereastheanoxic sites contain also molecular formulae that may result from reductive deamination or a coupledreductiveandoxidativepathway.

This thesis reveals the processes controlling OM distribution at continental margins and providesnewandimportantinsightsintomolecularreactionsduringearlydiagenesis,thus contributingtoabetterunderstandingofthefateofOMinmarinesediments.

5 Zusammenfassung

ZUSAMMENFASSUNG

KontinentalrändersinddieHauptablagerungsgebietefürorganischenKohlenstoffimOzean und nehmen daher eine bedeutende Rolle im globalen Kohlenstoffkreislauf ein. Die wesentlichenGründefürdieverstärkteAkkumulationvonorganischemMaterial(OM)sind zumeinendiehohePrimärproduktion,undzumanderenderzusätzlicheEintragvonOM vomKontinentunddiegeringereRemineralisierungwährendkürzererSinkzeitendurchdie

WassersäuleimVergleichzumoffenenOzean.AndererseitsförderndiehohenWasserund

Sedimentdynamiken die Remineralisierung von OM. Die Kombination von hochdynamischen Bedingungen und von verschiedenartigen Quellen für das OM verhinderneinVerständnisderProzesse,diezurErhaltungoderderRemineralisierungvon

OM führen. Bis heute sind deren Hauptmechanismen unklar. Diese Dissertation eröffnet tiefere Einblicke in die molekulare Zusammensetzung vonOM mit dem Ziel, die Quellen, die Verteilung und frühdiagenetische Prozesse im sedimentären OM auf

Kontinentalrändernzuerfassen.

Die erste Studie untersucht die Auswirkung von hydrodynamischen und sedimentologischen Prozessen auf das OM am NWiberischen Kontinentalrand in einem

Vergleich der Verteilung von Lipidbiomarkern und Ligninphenolen mit der

Korngrößenverteilung und der Charakterisierung der Gesamtorganik. Die umfassende

Analyse von Lipidbiomarkern und Ligninphenolen zeigt, dass das OM aus verschiedenen terrestrischen und marinen Quellen stammt und verschiedenen Transportmechanismen unterliegt. Das terrestrische OM stammt zum einen von vaskulären Pflanzen und zum anderenausBödenundwirdhauptsächlichefluviatileingetragen.DieVerteilungaufdem

SchelfistengandieanorganischeSedimentfrachtgebunden;dieswirddurchdieKorrelation mit der Korngrößenverteilung im Sediment angezeigt. Spezifische Verbindungen, die von

Pflanzenwachsenstammen(langkettigenAlkane,nAlkoholeundnFettsäuren),sindinden

Sedimenten des NWiberischen Kontinentalhanges weit verbreitet und weisen damit auf einen weiteren Eintragsweg durch die Atmosphäre hin. Die großen Wasserdynamiken auf dem Schelf sind für eine interne Sortierung des terrestrischen Materials verantwortlich, entsprechend ihren hydrodynamischen Eigenschaften. Weiche Pflanzenmaterialen, wie

Blätter und Gräser (angezeigt in den erhöhten Verhältnissen von Cinnamylphenolen zu

Vanillylphenolen (C/V)) werden bevorzugt in Richtung des äußeren Schelfs transportiert und dort abgelagert, wohingegen hölzerne Materialien (repräsentiert in Pflanzen

6 Zusammenfassung

Triterpenoiden und niedrige C/VVerhältnisse) vor allem nahe der Quellflüsse in einem lokalen Mudbelt auf dem mittleren Schelf abgelagert werden. Refraktäres OM von terrestrischen Böden wurde mittels 3,5Dihydroxylbenzoesäure identifiziert (einem

Hauptbestandteil in Tanninsäure) und wird ähnlich wie die weichen Pflanzenmaterialien verteilt. Lipidbiomarker für Algen spiegeln eine komplexe marine

PlanktonvergesellschaftungaufdemSchelfwider.DieVerteilungderAlgenbiomassescheint engandieNährstoffbedingungeninderWassersäulegeknüpftzusein,d.h.Akkumulation nahe dem Kontinent und der NWiberischen UpwellingZelle. Das Zusammenspiel von

Planktonblüten, hydrodynamischen und sedimentologischen Prozessen führt zu der

AusbildungvondreiverschiedenenProvinzenfürOMaufdemSchelf:(I)derinnereSchelf mit frischem marinen OM, (II) der Mudbelt im Bereich des mittleren Schelfes, der das

Hauptablagerungsgebiet für terrestrisches OM darstellt und (III) der äußere Schelf mit geringer Akkumulation von eher refraktärem OM. Basierend auf dieser Charakterisierung werden in der zweiten Studie frühdiagenetische Prozesse in den Sedimenten des NW iberischen Kontinentalhanges untersucht. Gelöstes organisches Material (DOM, von engl. dissolved organic matter), das aus sedimentären Porenwässern stammt wurde erstmalig mittels hochauflösender Fourier Transform Ion Cyclotron Resonance Massenspektrometrie

(FTICRMS) untersucht, was neue und tiefere Einblicke in die molekulare

Zusammensetzung von DOM und die darin abgebildeten frühdiagenetischen Prozesse gewährte.Über2000molekulareFormelnkonntenimsedimentärenPorenwasserDOMaus dem Mudbelt ermittelt werden, die die mannigfaltigen Quellen für OM abbilden.

Molekulare Formeln mit niedrigen elementaren Wasserstoff zu Kohlenstoff (H/C)

VerhältnissenundhohenSauerstoffzuKohlenstoff(O/C)Verhältnissenfallenmiterhöhten

LigninphenolKonzentrationen im sedimentären OM zusammen und werden vermutlich durch HydrolyseausterrestrischempartikulärenMaterialfreigesetzt.DierefraktäreNatur des OM auf dem äußeren Schelf zeigt sich in der niedrigeren Anzahl an identifizierten molekularenFormelnundgeringerenVariationenindenH/CundO/CVerhältnissendieser

Moleküle.

DieBedeutungderRedoxbedingungenwährendderFrühdiagenesewurdedetailliertmittels

FTICRMS in einer dritten Studie im Schwarzen Meer untersucht. Die sedimentäre

GesamtorganikreagiertaufdieRedoxbedingungenmitderAkkumulationvonrefraktärem

OM(GesamtorganischerKohlenstoffgehalt(TOC,vonengl.:totalorganiccarbon)biszu6,2%

7 Zusammenfassung mit einer stabilen Kohlenstoffisotopie (13C) von 25‰) und einem chemischreduzierten

DOMPoolindenanoxischenSedimenten.ImGegensatzdazuführendieunterschiedlichen

Remineralisierungsprozesse an der oxischen Probenahmestelle zu einem geringeren TOC

Gehaltvon1,2%undeinemhöheroxidiertenDOMPool.EineReihevonstickstoffführenden

Verbindungen in den FTICRMSDaten konnte als Produkte von Proteinabbau via

Hydrolyse und Deaminierung interpretiert werden. Die Reaktionswege scheinen von den

Redoxbedingungen abzuhängen: oxidative Deaminierung dominiert unter oxischen

Bedingungen, wohingegen die anoxische Probenahmestelle ebenso molekulare Formeln enthält, die aus reduktiver Deaminierung oder einer gekoppelten reduktivenoxidativen

Reaktionhervorgehenkönnen.

Die Dissertation zeigt die Prozesses auf, die hinter der Verteilung von OM an

Kontinentalrändern stehen und gibt neue und bedeutende Einblicke in molekulare

Reaktionen während der Frühdiagenese. Damit trägt sie wesentlich zu einem besseren

VerständnishinsichtlichdesVerhaltensvonOMinmarinenSedimentenbei.

8 9 10

Chapter1

Introduction Chapter1

1.1ORGANICMATTERINTHECONTEMPORARYOCEAN

Theorganiccarbon(OC)1reservoirofthepresentoceansisdividedintofourcompartments, thelivingmarinebiota(3GtC),particulateorganicmatter(POM,20GtC)anddissolved organicmatter(DOM,680GtC)inthewatercolumn,andorganicmatter(OM)depositedin surfacesediments(100GtC)(Hedges,1992).Theoceanicsurfacewaterisindirectexchange withtheatmospherehavingabalancingeffectontheatmosphericcarbondioxidebudgetvia equilibration (Stuiver, 1980). The buildup of biomass by photosynthesis extracts carbon dioxide from the surface layer of the oceans. Subsequent burial of this biomass in marine sedimentsleadstoanetremovalofcarbondioxidefromtheatmosphereandtoanoxygen inputtotheatmosphere(Eq.1.1).

6CO2+12H2O (CH2O)6+6H2O+6O2(1.1)

Accordingly,OMpreservedinmarinesedimentsplaysanessentialroleintheglobalcarbon cycleandincontrollingatmosphericcarbondioxideandoxygenonlongtimescales(Berner,

1989;Hedges,2002).Remineralizationprocessesintheoceanwatersandsurfacesediments releasecarbondioxideandrecentlydepositedOMrepresentsanimportantlinkbetweenthe activebiologicalcarboncycleintheoceanandtheinactivecarbonpoolindeepersediments, whichispreservedovergeologicaltimescalesandthusdecoupledfromtheglobalcycle.

Most of the OM sequestered in marine sediments is derived from marine organisms inhabiting the euphotic zone of the oceans (Wakeham and Lee, 1993), although marine sedimentsalsoactassinkforterrestrialOMsuppliedbyrivers(0.4Gtyear1;Schlesingerand

Melack, 1981; Siegenthaler and Sarmiento, 1993) or wind (0.1 Gt C year1; Romankevich,

1984). Within the group of marine producers, phytoplankton represents 95% of the global primaryproduction(KillopsandKillops,2005).Theproductionratesofphytoplanktonare coupled to the nutrient availability and magnitude of insolation. Accordingly, the highest primary productivity is observed in coastal oceans due to nutrient supply from nearby continentsandinupwellingregionswherecolddeepoceanwatersascend(Wollast,1991).

AfterthedeathoftheorganismsintheupperlayersoftheoceansthebiomasssinksasPOM incorporatedinfecalpelletsandaggregatestotheseafloor(Alldredgeetal.,1993).However, a large part of the planktonic biomass is efficiently remineralized on the way through the

1 The term organic matter refers in this thesis to natural organic matter, i.e., products from living organisms comprising carbon, oxygen, hydrogen and nitrogen, whereas the term organic carbon refers to organic matter normalizedtocarbon.

12 Introduction watercolumnandassimilatedbyheterotrophicorganismsremainingintheactivepool(Fig.

1.1).

Figure1.1.OMcyclinginthecontemporaryoceans(adaptedfromWakehamandLee,1993).

Approximately 1% of the OM originally produced in the surface waters survives the transporttotheseafloorof4000mdepth(Suess,1980)andsubsequenttothelossesinOM throughremineralizationinthewatercolumn,approximately90%oftheOMdepositedon the sea floor is degraded. Thus, only 0.1% of the OM, originally synthesized in the upper oceanescapesremineralizationandisultimatelypreserved (Bergeretal.,1989).Onaglobal base, the burial efficiency exceeds 0.1% because a significant amount of OM is deposited undermorefavorablepreservationconditions(seeTable1.1andBerner,1989).Today,6%of all OC being deposited in marine sediments is accumulated under regions of high productivity with pronounced oxygen minimum zones and about 90% is buried at lower concentrations in sediments of continental margins (Berner, 1989; Hedges and Keil, 1995).

ThemechanismsthatfinallydeterminewhetheramarinesettingactsasasinkforOCare complex and vary considerably depending on the depositional circumstances. Therefore, detailed information about the OM composition in respect to its sources and quality are essential for a comprehensive understanding of remineralization or preservation processes

13 Chapter1 which in return is prerequisite for evaluating the potential of marine sediments for atmosphericcarbondioxideremoval.

Table1.1.Approximateorganiccarbonburialinthecontemporaryocean(calculatedfromtheyearlyOCburial rateafterBerner,1982). Environment Organiccarbonburial(%) Delta 44 Shelfandupperslope 42 Shallowwatercarbonate 4 Highproductivityslope 4 Highproductivitypelagic 2 Lowproductivitypelagic 3 Anoxicbasin <1

1.1.1COMPOSITIONOFORGANICMATTER

The molecular composition of OM is an important factor controlling the extent of OM remineralization.Organictissueconsistsofavarietyofmoleculeshavingdifferentproperties andreactivities.Onacompoundclasslevel,allorganismsarecomposedofthesamebasic chemical classes, of which geochemical most important are proteins, carbohydrates and lipids (Fig.1.2). OM in marine sediments can be simply classified as being derived either from marine or terrestrial sources. Marine OM is generally considered as phytoplankton detritusandiscomposedof25–50%proteins,5–25%lipidsandupto40%carbohydrates

(Raymont, 1983). Terrestrial OM consists of living biomass, plant litter and soil OM. The latterhasbeensubjectedtodegradationandconsiststhereforeofpreagedcompoundsthat might be refractory with a high potential for preservation while the labile compounds are lost. Vascular plants contain ~5% proteins, 30 – 50% carbohydrates (mainly cellulose) and verylittleamountsoflipidswhich aremostlyconcentratedinthefruitingbodiesandleaf cuticles (Killops and Killops, 2005). Instead, lignins are major chemical components and occur exclusively in vascular plants representing an important tracer for terrestrial OM

(HedgesandMann,1979b).Ligninsconsistofnonrepeatingunitswhicharelinkedtogether in a random network by ether and carboncarbon bonds (Fig. 1.2d). This combination increases the chemical stability of the macromolecules and enhances the preservation potential by limiting the number of microorganisms that are able to consume lignins

(Sarkanen and Ludwig, 1971). Proteins on the other hand are rather labile compounds,

14 Introduction because the peptide bond linking the amino acids subunits are more susceptible to hydrolysisandvariousorganismssynthesizespecificenzymes(proteases)enablingprotein consumption(e.g.,HollibaughandAzam,1983).Thesameappliesforglycosidiclinkagesin carbohydrates (Fig. 1.2). However, under certain conditions, even labile molecules are preservedinmarinesediments,e.g.,protectedinfrustulesofmarineorganisms(Ingallsetal.,

2003). Moreover, it is assumed that proteins and carbohydrates are incorporated into macromolecular OM and therefore shielded against further hydrolysis (Tissot and Welte,

1978; Hedges et al., 2001). This macromolecular OM is widely referred to as molecularly uncharacterized OM (MUOM) due to the incapability to resolve the composition of this residual OM on a molecular level by conventional analytical techniques (Wakeham et al.,

1997;Hedgesetal.,2000;Hedgesetal.,2001).MUOMsometimesaccountsforupto80%of theOMdepositedinmarinesediments(Wakehametal.,1997)possiblyformedduringOM degradationbyabioticrecombinationofreactiveintermediates,suchasmonomericsugarsor aminoacids(TissotandWelte,1978;Hedges,1988;KillopsandKillops,2005).

Figure1.2.StructuresofexemplarymoleculesrepresentingthemostimportantOMcompoundclassesinmarine sediments: a) carnosine (peptides, i.e., protein building block), b) chitin (carbohydrates), c) lecithin (lipids), d) lignins (possible structure, adapted from Glazer and Nikaido, 1995), e) perylene (black carbon), f) kerogen, g) murein(peptidoglycan).

15 Chapter1

Other OM components in the oceans are black carbon, products of incomplete biomass burning, and recycled kerogen, both having a high preservation potential due to low reactivities.BacterialderivedOM,i.e.,reassimilatedandrepackedOC,mightbeimportant inmarinesedimentsduetotherecalcitranceofthecellwallcomponentpeptidoglycan(Keil et al., 2000; Pedersen and Thomsen, 2001; Lomstein et al., 2006), particularly in anoxic environmentsintheabsenceofgrazers(Lee,1992).

1.1.2ALTERATIONOFOMINTHEWATERCOLUMN

Prior to deposition in the marine sediments, the composition of OM is substantially transformedduringsinkinginthemarinewatercolumn(seeFig.1.1).Ingeneral,morelabile, reactive compounds are selectively lost and more refractory components become concentrated.TheextentbywhichOMisremineralizedinthewatercolumnisvariableand closelylinkedtotheenvironmentalconditions.Themostimportantparametersare:

1) The amount and composition of the OM, such as the extent of the primary

productivity in the euphotic zone (Suess, 1980; Pace et al., 1987) and/or the

proportionofrefractoryterrestrialOM(WestrichandBerner,1984).

2) The transport mechanisms controlling the residence time of the OM particles.

Aggregation, adsorption and incorporation in fecal pellets act protectively and

increase the sinking velocity which depends on particle size and shape (McCave,

1975;Armstrongetal.,2002).

3) The biological communities mediating the transformation reactions (Arnosti et al.,

2005).

4) The physical properties of the water column, e.g., depth (Suess, 1980), redox state

(Wakeham,1990),etc.

The effects of these parameters vary strongly between the different OM components. A preferential loss of pigments, amino acids and lipids was observed from plankton to particulate OM in the water column and to the surface sediment in the central equatorial pacific.AtthesametimethefractionofMUOMincreasesfrom<20%to>80%ofthetotal

OM (Wakeham et al., 1997). However, within the single compound classes selected componentsshowaconsistentpatternintheirrelativeabundancewithdepth,stillindicating thesourcematerial.

16 Introduction

1.1.3EARLYDIAGENESISOFOMINMARINESEDIMENTS

Once deposited in the marine sediment, OM undergoes several transformation processes resulting either in the remineralization or the preservation (Fig. 1.3). Generally during diagenesis,theelementalcompositionoftheinitialOMmoleculeshiftsindirectiontopure carbon,primarilybythereleaseofoxygenandfinallybythelossofhydrogen.Thefirststep in OM remineralization is the chemically and/or enzymatically hydrolysis of biopolymers, producing smaller water soluble molecules. The hydrolysis products may either be converted to the inorganic end products in microbialmediated oxidation and/or fermentationreactionsortheymaybeshieldedfromfurtherremineralizationbyadsorption ontomineralsurfacesand/orcondensationreactionresultingintheirpreservation.

Figure1.3.Schematicofearlydiagenesisinmarinesediments(adaptedfromHenrichs,1992).

The exact processes and mechanisms controlling OM preservation versus remineralization remainwidelyelusive,partlyduetothecomplexityofcompoundsandprocessesinvolved, andpartlyduetoanalyticallimitations.However,thefollowingfactorspromoteevidentially

OMburialinmarinesediments:

Reducedoxygenexposuretimesduetohighsedimentationrates/fastburialandlittle

bioturbation and/or little physical sediment reworking (Aller, 1994; Cowie et al.,

1995;Hartnettetal.,1998).

17 Chapter1

The availability and physical association with mineral phases (Keil and Hedges,

1993;Keiletal.,1994;Mayer,1994).

TheOMprovenance(Hedgesetal.,1988b;Prahletal.,1997;Hultheetal.,1998).

Naturally,therelativecontributionsofthesefactorstoOMpreservationvaryconsiderably, depending upon the specific depositional circumstances. Variations among individual compoundclassesduringearlydiagenesisareindicatedbytherelativereactivitieswhichare intheorder:totalhydrolysableaminoacids(THAA)totalcarbohydrates(TCHO)>total organiccarbon(TOC)>totalnitrogen(TN)>lipids(Wangetal.,1998).

1.1.4PRODUCTIONANDSIGNIFICANCEOFDOMINSEDIMENTPOREWATERS

Remineralization of POM in marine sediments produces large amounts of DOM having various molecule sizes and reactivities (Henrichs, 1992; Alperin et al., 1994). The net productionofDOMinthesurfacesedimentsisreflectedinelevatedDOCconcentrationsin the sediment pore water compared to the marine bottom water. In consequence of the concentration gradient pore water DOM is released via diffusion into the bottom water contributing to the oceanic DOM pool (Williams and Druffel, 1987; Mopper et al., 1991;

Hedges,1992;BurdigeandHomstead,1994)andprobably tothenutrientpoolforbenthic organismcommunities(BurdigeandZheng,1998).However,sincetheDOMfluxaccounts forlessthan10%ofthesedimentcarbonoxidationrate(Burdige,2002),sedimentsappearto beefficientinretainingDOM.TheprocessesproducingandconsumingDOMintermediates in the sediment are tightly coupled to the overall remineralization of sediment OM.

Accordingly, DOM passes through similar reactions as POM (Fig. 1.3). Evidence for the preservationofDOMongeologicaltimescalescomesfromfluorescencedataofporewater

DOM(Burdige,2001;Burdigeetal.,2004)andthedecreaseinPOMremineralizationrates andreactivities(Middelburg, 1989; Burdige, 1991) implyingadecreaseinthebulkreactivity oftheporewaterDOMsubsequentlyallowinganaccumulationwithdepth.Therefractory

DOMispossiblyacrucialfactorinpreservationofOMthroughcondensationreactionsas suggested in the classical geopolymerization model (Tissot and Welte, 1978) or in the mesoporeprotectionmodel(Mayer,1994;HedgesandKeil,1995).ThelatterproposesDOM sorption in small mesopores on mineral surfaces which physically protect DOM from microbialenzymeattackandcatalyzesabioticcondensationreactions.

18 Introduction

1.2OMATCONTINENTALMARGINS

Chapter1.1emphasizestheimportanceofcontinentalmarginsassinksforOC.Reasonsfor the high OC burial rates particularly on continental shelves are the elevated marine productivity which is fueled by nutrient input from the nearby continent and/or coastal upwelling(Wollast,1991),thehighsupplyofterrestrialOM,andtheshallowwaterdepths(<

200 m) implying less OM remineralization in the water column. 25 – 50% of the OM producedintheeuphoticzoneofshelvesreachestheseafloor(Suess,1980),and5–25%of thisfractionovercomesfurtherremineralizationandissubsequentlyburiedinthesediment

(HenrichsandReeburgh,1987).

ThehighinputofterrestrialOMwhichcomprisesalargeamountofsoilderivedandhighly refractory OM (Meybeck, 1982; Hedges et al., 1994) suggests an elevated proportion of terrestrial OM in the shelf sediments. However, several studies indicated that the OM depositedinshelfsedimentsderivespredominantlyfrommarinesources(Goughetal.,1993;

HedgesandKeil,1995;Hedgesetal.,1997).Onereasonispossiblythatcontinentalshelves are usually sites of high sedimentdynamics and the buried OM is subjected to oscillating redoxconditionswhichresultinsimilarremineralizationratesforreactivemarineOMand refractoryterrestrialOM(Cowieetal.,1995).However,giventhatthecalculatedterrestrial

OMsupplyexceedsthreetimesthetotalOCburialrateinmarinesediments(Berner,1989;

Hedges and Keil, 1995), similar remineralization rates are not sufficient to explain the predominance of marine OM in continental shelf sediments. Comprehensive studies regardingthemolecularcompositionofOMandthevariationsinshelfsedimentscanhelpto elucidatetheresponsiblemechanisms.Itisnecessarytocoverawidespectrumofcontinental margins, since environmental conditions, and thus the mechanisms, vary considerably between different sites influenced by local factors, including marine conditions (e.g., oceanographic current system, the marine productivity) as well as the continental setting

(e.g., geology, morphology and climate controlling the vegetation, the river runoff and aeolianflux).

The studies in this thesis were carried out in two different continental margin settings in order to cover a wide range of environmental conditions that influence the mechanisms behind OM distribution and early diagenesis. The GaliciaMinho shelf at the NW Iberian margin is an example for a highly dynamic continentalshelf with complex hydrodynamic and sedimentological processes, whereas the northern Black Sea shelf provides a suited

19 Chapter1 environmentforinvestigationsonearlydiagenesisundercontrastingredoxconditions.Both settingsarebrieflyintroducedandcharacterizedinthefollowing.

1.2.1Studyarea1:TheGaliciaMinhoShelf

TheGaliciaMinhoshelfislocatedbetween41.5–43.0°Nand9.0–9.8°Winthetemperate zoneofSouthEuropewithamildmaritimeclimate(Fig.1.4a).Duetoseasonalupwellingin summer, the GaliciaMinho shelf ranks among the areas with the highest primary productivityintheworld(Antoineetal.,1996)andthehighshearwavevelocitiesinwinter, particularlyduringfrequentstormevents,resultinextensivesedimentreworking(Vitorino etal.,2002).

Figure1.4.a)SatelliteimageoftheIberianPeninsula(NASAvisibleearth)withtheGaliciaMinhoshelf(yellow square)andb)conceptualmodelofthesedimentologicalprocessesontheGaliciaMinhoshelfadaptedfromDias etal.(2002).

The presentday shelf system was the subject of several detailed studies regarding the oceanography(e.g.,Coelhoetal.,2002;McCaveandHall,2002;Pelizetal.,2002),marine productivity(e.g.,Estrada,1984;Baoetal.,1997;Castroetal.,1997;Bodeetal.,2002),and sedimentationprocesses(e.g.,Jouanneauetal.,2002;Schmidtetal.,2002;VanWeeringetal.,

2002;Vitorinoetal.,2002).TheresultsofthesestudiesweresummarizedbyDiasetal.(2002) in a conceptual model (Fig. 1.4b) reflecting the complex sedimentological processes. The

20 Introduction contemporary sediment distribution is dominated by the winter dynamics: sediment supplied by rivers ( and Minho in Fig. 1.4b) is deposited initially at the inner shelf close to the source, resuspended during winter storms and downwelling conditions and subsequently carried offshore. This results in sediment sorting, i.e., fine sediment is successively transported offshore leaving the coarse sediment fraction behind. The fine sedimentispartlyincorporatedinalocalmudbelt,situatedinthemidshelfareaatfavorable hydrodynamicconditions.Sedimentsindeeperwaterdepth(>100m)areonlyreworkedand resuspended during large storm events which can favor sediment export across the shelf break. The sources and particularly the fate of OM in this highly dynamic system remain elusiveinthismodelandareexaminedinChapter2.

1.2.2Studyarea2:ThenorthernBlackSea

TheBlackSeaistheworld’slargestanoxicbasinwithpermanentwatercolumnstratification caused by a large salinity difference between dense saline deep waters (22.3‰) and the surfacelayer,withasalinityof18‰(Murrayetal.,1991),receivinglargeamountsoffresh water volumes by rivers (e.g., Danube, Dnieper, etc.). Slow renewal times for deep water

(Lee et al., 2002) in combination with oxygen consuming remineralization of POM during sinking from the surface to the lower layers (Sorokin, 1983) leads to permanent anoxic conditionsbelowawaterdepthof140–160m.

Figure1.5.a)SatelliteimageoftheBlackSea(NASAearthobservatory)indicatingsamplinglocations(redstars) onthenorthernshelfandinthecentralbasin;b)crosssectionshowingthedominatingprocessesinwatercolumn andsedimentdependingontheredoxconditions.

21 Chapter1

Theoxicanoxictransitionofthestratifiedwatercolumnseparatestheshelfinanoxicandan anoxiczoneprovidingasuitableenvironmentforinvestigationsregardingtheeffectofredox conditionsonOMcompositionandremineralization(Fig.1.5b).Theoxicshelfsedimentsare characterizedbyorganicmatteroxidationmediatedbymicroandmacroorganismactivity and effective sediment reworking, whereas the anoxic shelf sediments are not bioturbated anddominatedbybacterialsulfatereduction(e.g.,Albertetal.,1995;Thamdrupetal.,2000;

Jørgensenetal.,2001).

22 Introduction

1.3MAINOBJECTIVESANDTHESISOUTLINE

The thesis was prepared in the frame of the project “Sediment partitioning and transformation on the shelf” in the research area “Sedimentation processes” of the DFG

Research Center / Excellence Cluster “The Ocean in the Earth System”. A comprehensive understanding of the processes controlling the distribution and partitioning of sediments, and particularly the organic sediment compartment, is important due to the prominent positionofcontinentalmarginsastransitionbetweencoastalareas/continentsandtheopen ocean.AcomprehensiveknowledgeonthefateoftheOMatcontinentalmarginsisthekey toanunderstandingofOMremineralizationandpreservation.

The overarching goal of this thesis was to obtain deeper insights into the sources, distribution, and early diagenetic changes in the sedimentary OM pool in relation to sedimentation processes and environmental conditions. The two study sites in this thesis representtwodistinctdifferentcontinentalmarginsettings,i.e.,theNWIberianmarginwith the GaliciaMinho shelf is a highenergy system with complex hydrodynamic and sedimentologicalprocesses,whereasthenorthernBlackSeaischaracterizedbycontrasting redox conditions. The methodological approach (Chapter 1.4) combines established geochemical tools for the analysis of particulate organic matter (lipid biomarker, lignin phenol, and amino acid analyses) with analyses of pore water DOM by high resolution

Fouriertransformioncyclotronresonancemassspectrometry(FTICRMS),sedimentgrain sizeanalyses,andchemicalandisotopiccharacterizationofbulkOM.Theapproachaimsata detailedmolecularcharacterizationofthesedimentaryOMandDOMpoolwiththeintentto:

(1) identifythesources,transportmechanisms,anddistributionoftheOMatcontinental

margins.

(2) determine the impact of hydrodynamic and sedimentological processes on the

distribution and composition of OM and, more specifically, to determine whether

different types of OM (e.g., algal OM, vascular plantderived OM, soil OM, etc.)

responsedifferentlytotheseprocesses?

(3) examine the biogeochemical transformation of OM, and particularly of the

sedimentaryDOMpool,duringearlydiagenesisinrelationto:

a) hydrodynamicandsedimentologicalprocesses

b) prevailingredoxconditionsinthesedimentandwatercolumn

23 Chapter1

Chapter 2 investigates the sources, transport, and distribution of OM at the NW Iberian margininamultibiomarkerapproachcombinedwithgrainsizeanalysesandthebulkOC characterization. Various terrestrial and marine OM sources were identified and the relationship between OM deposition and sedimentological processes was examined. As a result of hydrodynamic sorting, sedimentological processes, and seasonal and spatial variationsinthemarineproductivity,thecontinentalmargincouldbesubcategorizedinto threedifferentdepositionalareaswithdistinctOMprovenance.

Chapter 3 examines the variations in the molecular composition of the pore water DOM fromtheNWIberianmarginaimingspecificallyatearlydiageneticprocesses.Forthefirst time, DOM extracted from marine sediment pore waters was analyzed by highresolution

FTICRMS providing detailed molecular information on the DOM composition. Since FT

ICRMSprovidesnostructuralinformation,thelipidbiomarkerandligninphenolinventory

(Chapter 2) helped to explain the detected variations in the molecular composition. The studyprovidesevidenceforthecloserelationshipbetweenthesedimentaryPOMandDOM pool; the OM provinces, identified in Chapter 2, were also reflected in the molecular compositionofDOMandresultedindistinctearlydiageneticsignals.

Chapter4investigatesearlydiageneticprocessesundercontrastingredoxconditionsinthe

BlackSea.FTICRMSanalyseswereperformedaimingatdifferentmolecularpatternsinthe

DOMpoolwhicharerelatedtooxicandanoxicremineralizationreactions.Dissolvedorganic nitrogencompoundswerethespecialfocusofthisstudy;aminoacidanalysesgaveevidence for the presence of protein degradation products in the DOM extracts and the FTICRMS dataprovidedinsightsintopossibledegradationpathways.

The complete data set of all studies is provided in the appendix. The printed appendix containsanabstractofamanuscript(A1)inwhichIcontributedthroughmyligninexpertise, and the correlation matrix from Chapter 2 (A2). The electronic appendix comprises the biomarkerandgrainsizedatafromChapter2(A3–A5)andthecompleteFTICRMSdata setfromChapter3(A6–A13)andfromChapter4(A14–A20).

24 Introduction

1.4METHODOLOGICALAPPROACH

Inthefollowing,selectedmethodsappliedinthestudiesarebrieflyintroduced,somemore indetailthanothers.Theapplicationofgaschromatographycoupledtomassspectrometry or a flame ionization detector (GCMS, GCFID) and high performance liquid chromatography (HPLC) in combination with MS for lipid biomarker, lignin phenol, and amino acid analyses in the scope of this thesis, are standard procedures in Organic

Geochemistry, and therefore will not be further discussed. On contrary, FTICRMS is a relativelynewapproachforOManalysesandwillbeexaminedmoreclosely.Moredetailed discussionsoftheirapplicationcanbefoundinthecorrespondingstudiesinchapter2–4.

Fig. 1.6 shows the methodological approach and an overview for the indications of the derivedparameters.

Figure1.6.Overviewoftheanalyticalapproachappliedinthesinglestudies(studytitlesinitalic,numbersrefer totheChapter).*13CwasnotincludedinChapter3.

The analytical window. Bulk parameters are useful for an overall characterization of the total OM pool; however, they do not allow deeper insights into the OM composition. At present,thecharacterizationofOMonmolecularlevelsuffersfromtheanalyticallimitations to resolve complex organic mixtures (Chapter 1.2). Therefore, direct source information is restrictedtothemolecularlycharacterizablefraction,whichcomprisesinthisstudy,solvent extractablecompounds(lipidbiomarkersandligninphenols)andwatersolublecompounds inamasswindowof200–600Da.

25 Chapter1

Bulk parameters. Source information for the total OM pool can be derived from the elementalandisotopiccompositionofthebulkOM,directlymeasuredinthesedimentbyan

Elemental Analyzer. Variations in the elemental carbon and nitrogen composition can be used to determine terrestrial contributions to the sedimentary OM (Meyers, 1994). Lignins andcellulose,majorcomponentsofhigherlandplants,containonlylittlenitrogenintheir structureswhichisreflectedintotalorganiccarbontototalnitrogenratios(TOC/TN)>20

(Hedges et al., 1986). On contrary, fresh algal OM consists of a large part of proteins and thereforedisplaysTOC/TNratiosof5–7(Redfield,1958).Thecarbonisotopiccomposition

(13CTOC)iscontrolledbythecarbonassimilationpathwayoftheorganismandthe13Cofthe carbonsource(Hayes,1993).ThepredominatingplanttypeinthestudyareasareC3plants whichhave13CTOCvaluesof25‰to27‰(Meyers,1990;TalbotandJohannessen,1992), whereas 13CTOC values of marine algae range between 22‰ and 20‰ (Prahl et al., 1980;

Gearingetal.,1984).

Lipidbiomarkers.Biomarkersare,ingeneral,organiccompoundsthatarespecificforone organismoroneorganismgroup(HedgesandPrahl,1993).Furtherrequirementsaregiven by their application, e.g., biomarkers as indicators for OM sources should be resistant to chemicalandbiologicaldegradation,whereasindicatorsfortransformationprocesseshave to be sensitive. Lipids are particularly suited as biomarkers, due to their high degree of structuralcomplexity,i.e.,theycomprisespecificcompoundsforbothapplications.Specific compoundsproducedbymarineorganismssuchasdinosterol(fromdinoflagellates;Boonet al.,1979),highlybranchedisoprenoids(fromdiatoms;Beltetal.,2000;Masséetal.,2004)and alkenones(fromcoccolithophoridae;Conteetal.,1994)canbeusedasindicatorsformarine

OM and marine productivity, whereas specific pentacyclic triterpenoids (e.g., amyrin, taraxerol; Ten Haven et al., 1992) and longchained nalkanes with an odd over even predominance in carbon number indicate contributions from terrestrial higher plants

(Eglinton and Hamilton, 1967) (see Chapter 2). More labile compounds such as polyunsaturated fatty acids, highly abundant in fresh algal biomass, decrease strongly duringearlydiagenesis(Wakehametal.,1997),andthereforetheyareindicativeoftheOM qualityofthemarinefraction.

Lignin phenols. Lignins are valuable biomarkers in marine sediments due to their high resistancetochemicalandbiologicaldegradationandtheirspecificoccurrenceinhigherland plants. The analytical approach via chemical cleavage through a copper oxide oxidation

26 Introduction releases lignin phenols from the marginal positions in the macromolecule (Fig. 1.7). The ligninphenolscanbesubdividedintofourdifferentgroups(vanillyl,syringyl,cinnamyland phydroxylgroup;Fig.1.7)thatformthebaseofseveralparametersregardingtheplanttype and degradation state. All higher land plants contain vanillyl, whereas only angiosperm tissue contains syringyl phenols and cinnamyl phenols are indicative of nonwoody plant tissuesuchasleaves,needlesandgrasses(HedgesandMann,1979a).Alterationofhigher planttissueisdisplayedinelevatedconcentrationsoftheacidicligninphenols,i.e.,vanillic acid and syringic acid (Hedges et al., 1988a) and/or in the loss of syringyl and vanillyl phenols relative to phydroxyl phenols (Opsahl and Benner, 1995) depending on the environmentalconditionsandtheresponsibleorganismgroup.

Figure 1.7. a) Possible lignin macromolecule structure (adapted from Glazer and Nikaido, 1995) and b) lignin oxidationproducts.

Aminoacids.Theaminoacidpoolinsedimentporewatersconsistsoffreeandcombined aminoacids,thelatterincludingaminoacidswhichareboundinproteins,peptides(Leeand

Bada, 1977) and other macromolecules such as glycoproteins and humic substances (Lytle andPerdue,1981).Duetodifferentstructuralassociations,individualaminoacidscanserve as diagnostic markers for sources and diagenesis; e.g., Dalanine and Dglutamic acid are highlyabundantinthebacterialcellwallcomponentpeptidoglycanandthereforeindicate bacterialderivedbiomass(Madiganetal.,2000;PedersenandThomsen,2001).Aminoacids

27 Chapter1 associatedwithstructuralcomponents(e.g.,cellwalls)suchasglycine,serineandthreonine are more stable during diagenesis and are consequently enriched, whereas phenylalanine, glutamic acid, tyrosine, deriving from cell plasma, are more easily degraded (Dauwe and

Middelburg,1998;Dauweetal.,1999).

Molecular characterization of DOM. FTICRMS is a relatively novel tool in Organic

Geochemistryandisfurtherintroducedinthefollowing.FTICRMSwasestablishedin1974

(Comisarow and Marshall, 1974) and first performances on DOM in combination with electrospray ionization (ESI) are dated to the early 2000’s (e.g., Kujawinski et al., 2002;

Stenson et al., 2002). The high resolving power (Fig. 1.8) enables the analyses of complex, watersoluble,organicmixtures.

Figure1.8.FTICRmassspectrumatm/z178forisobaricspeciesofneoxaxiton(structurebelow)showingthe highmassresolvingpowerinacomparisontoquadrupoletimeofflightcollisioninduceddissociationspectrum (QqTOF(CID))displayedasdashedline(takenfromMarshallandHendrickson,2008).

The application as well as the data interpretation is rapidly evolving and this thesis contributes to the development of FTICRMS through the first analyses of DOM from marinesedimentporewaters.FTICRMSanalysesprovideexactmassinformationofsingle

OMcomponents(Fig.1.8)whichcanbetranslatedintomolecularformulae.Differentsource materials or transformation reactions within the OM are all reflected in the molecular

28 Introduction compositionandcanbeextractedfromthedataset.Severalsuccessfulapplicationsproved the potential of this method for the characterization of DOM in limnic and marine environments(e.g.,Kimetal.,2003;Kochetal.,2005;Hertkornetal.,2006).Theextensionof the application of FTICRMS performed on DOM extracted from sediment pore water openednewperspectivesandinsightswhicharediscussedinthecorrespondingChapters3 and4.

29 Chapter1

REFERENCES(Diasetal.,2002)

Albert,D.B.,Taylor,C.,andMartens,C.S.,1995.Sulfatereductionratesandlowmolecular weightfattyacidconcentrationsinthewatercolumnandsurficialsedimentsofthe BlackSea.DeepSeaResearchPartI:OceanographicResearchPapers42,12391260. Alldredge, A. L., Passow, U., andLogan, B. E., 1993. Theabundance and significance ofa classoflarge,transparentorganicparticlesintheocean.DeepSeaResearchI40,1131 1140. Aller,R.C.,1994.Bioturbationandremineralizationofsedimentaryorganicmatter:effectsof redoxoscillation.ChemicalGeology114,331345. Alperin,M.J.,Albert,D.B.,andMartens,C.S.,1994.Seasonalvariationsinproductionand consumption rates of dissolved organic carbon in an organicrich coastal sediment. GeochimicaetCosmochimicaActa58,49094930. Antoine,D.,Andre,J.M.,andMorel,A.,1996.Oceanicprimaryproduction:2.Estimationat global scale from satellite (coastal zone color scanner) chlorophyll. Global BiogeochemicalCycles10,5770. Armstrong,R.A.,Lee,C.,Hedges,J.I.,Honjo,S.,andWakeham,S.G.,2002.Anewmodel for deepocean remineralization of organic carbon and mineral ballasts. DeepSea ResearchII49,219–236. Arnosti,C.,Durkin,S.,andJeffrey,W.H.,2005.Patternsofextracellularenzymeactivities amongpelagicmarinemicrobialcommunities:implicationsforcycling ofdissolved organiccarbon.AquaticMicrobialEcology38,135145. Bao,R.,Varela,M.,andPrego,R.,1997.Mesoscaledistributionpatternsofdiatomsinsurface sediments as tracers of coastal upwelling of the Galician shelf (NW Iberian Peninsula).MarineGeology144,117130. Belt,S.T.,Allard,W.G.,Masse,G.,Robert,J.M.,andRowland,S.J.,2000.Highlybranched isoprenoids (HBIs): identification of the most common and abundant sedimentary isomers.GeochimicaetCosmochimicaActa64,38393851. Berger, W. H., Smetacek, V. S., and Wefer, G., 1989. Ocean productivity and paleoproductivity—an overview. In: Berger, W. H., Smetacek, V. S., and Wefer, G. Eds.),ProductivityoftheOcean:PresentandPast.Wiley,NewYork. Berner, R. A., 1982. Burial of organic carbon and pyrite sulfur in the modern ocean; its geochemicalandenvironmentalsignificance.AmericanJournalofScience282,451. Berner, R. A., 1989. Biogeochemical cycles of carbon and sulfur and their effect on atmosphericoxygenoverPhanerozoictime:Palaeogeography.Palaeoclimatology,and Palaeoecology73,97–122. Bode,A.,Varela,M.,Casas,B.,andGonzalez,N.,2002.IntrusionsofeasternNorthAtlantic centralwatersandphytoplanktoninthenorthandnorthwesternIberianshelfduring spring.JournalofMarineSystems36,197218. Boon,J.J.,Rijpstra,W.I.C.,deLange,F.,deLeeuw,J.W.,Yoshioka,M.,andShimizu,Y., 1979.TheBlackSeasterolamolecularfossilfordinoflagellateblooms.Nature277, 125127. Burdige, D. J., 1991. The kinetics of organic matter mineralization in anoxic marine sediments.JournalofMarineResearch49,727761. Burdige, D. J., 2001. Dissolved organic matter in Chesapeake Bay sediment pore waters. OrganicGeochemistry32,487505. Burdige, D. J., 2002. Sediment Pore Waters. In: Hansell, D., A. and Carlson, C., A. Eds.), BiogeochemistryofMarineDissolvedOrganicMatter.AcademicPress,SanDiego.

30 Introduction

Burdige,D.J.andHomstead,J.,1994.FluxesofdissolvedorganiccarbonfromChesapeake Baysediments.Geochim.Cosmochim.Acta58,3407–3424. Burdige, D. J., Kline, S. W., and Chen, W., 2004. Fluorescent dissolved organic matter in marinesedimentporewaters.MarineChemistry89,289311. Burdige,D.J.andZheng,S.,1998.Thebiogeochemicalcyclingofdissolvedorganicnitrogen inestuarinesediments.LimnologyandOceanography43,17961813. Castro, C. G., AlvarezSalgado, X. A., Figueiras, F. G., Perez, F. F., and Fraga, F., 1997. Transienthydrographicandchemicalconditionsaffectingmicroplanktonpopulations in the coastal transition zone of the Iberian upwelling system (NW ) in September1986.JournalofMarineResearch55,321352. Coelho,H.S.,Neves,R.J.J.,White,M.,Leitao,P.C.,andSantos,A.J.,2002.Amodelfor oceancirculationontheIberiancoast.JournalofMarineSystems32,153179. Comisarow, M. B. and Marshall, A. G., 1974. Fourier transform ion cyclotron resonance spectroscopy.ChemicalPhysicsLetters25,282283. Conte,M.H.,Thompson,A.,andEglinton,G.,1994.Primaryproductionoflipidbiomarker compoundsbyEmilianiahuxleyi.Resultsfromanexperimentalmesocosmstudyin fjordsofsouthwesternNorway.Sarsia79,319331. Cowie, G. L., Hedges, J. I., Prahl, F. G., and de Lance, G. J., 1995. Elemental and major biochemicalchangesacrossanoxidationfrontinarelictturbidite:Anoxygeneffect. GeochimicaetCosmochimicaActa59,3346. Dauwe,B.andMiddelburg,J.J.,1998.Aminoacidsandhexosaminesasindicatorsoforganic matterdegradationstateinNorthSeasediments.LimnologyandOceanography43,782 798. Dauwe,B.,Middelburg,J.J.,Herman,P.M.J.,andHeip,C.H.R.,1999.Particulateorganic matterdegradationintheocean:changesinbiochemicalcompositionandreactivity arelinked.LimnologyandOceanography44,18091814. Dias,J.M.A.,Jouanneau,J.M.,Gonzalez,R.,Araujo,M.F.,Drago,T.,Garcia,C.,Oliveira, A., Rodrigues, A., Vitorino, J., and Weber, O., 2002. Present day sedimentary processesonthenorthernIberianshelf.ProgressinOceanography52,249259. Eglinton,G.andHamilton,R.J.,1967.LeafEpicuticularWaxes.Science156,13221335. Estrada, M., 1984. Phytoplankton distribution and composition off the coast of Galicia (northwestofSpain).JournalofPlanktonResearch6,417434. Gearing, J. N., Gearing, P. J., Rudnick, D. T., Requejo, A. G., and Hutchins, M. J., 1984. Isotopic variability of organic carbon in a phytoplanktonbased, temperate estuary. Geochim.Cosmochim.Acta48,10891098. Glazer,A.W.andNikaido,H.,1995.MicrobialBiotechnology.W.H.Freeman,NewYork. Gough,M.A.,Fauzi,R.,Mantoura,C.,andPreston,M.,1993.Terrestrialplantbiopolymers inmarinesediments.GeochimicaetCosmochimicaActa57,945964. Hartnett,H.E.,Keil,R.G.,Hedges,J.I.,andDevol,A.H.,1998.Influenceofoxygenexposure timeonorganiccarbonpreservationincontinentalmarginsediments.Nature391,573. Hayes, J. M., 1993. Factors controlling 13C contents of sedimentary organic compounds: principlesandevidences.MarineGeology113,5558. Hedges,J.,2002.SedimentaryorganicmatterpreservationandatmosphericO2regulation.In: Gianguzza,A.,Pelizzeti,E.,andSammartano,S.Eds.),Chemistryofmarinewaterand sediments.Springer,Berlin. Hedges,J.I.,1988.Polymerizationofhumicsubstancesinnaturalenvironments.In:Frimmel, F.H.andChristman,R.F.Eds.),HumicSubstancesandTheirRoleintheEnvironment. JohnWileyandSonsLtd.,Chichester. 31 Chapter1

Hedges,J.I.,1992.Globalbiogeochemicalcycles:Progressandproblems.MarineChemistry 39,6793. Hedges, J. I., Baldock, J. A., Gélinas, Y., Lee, C., Peterson, M., and Wakeham, S. G., 2001. Evidencefornonselectivepreservationoforganicmatterinsinkingmarineparticles. Nature409,801804. Hedges, J. I., Blanchette, R. A., Weliky, K., and Devol, A. H., 1988a. Effects of fungal degradationontheCuOoxidationproductsoflignin:Acontrolledlaboratorystudy. GeochimicaetCosmochimicaActa52,27172726. Hedges,J.I.,Clark,W.A.,andCowie,G.L.,1988b.Fluxesandreactivitiesoforganicmatter inacoastalmarinebay.LimnologyandOceanography33,11371152. Hedges,J.I.,Clark,W.A.,Quay,P.D.,Richey,J.E.,andDevol,A.H.,1986.Compositions and fluxes of particulate organic material in the Amazon River. Limnology and Oceanography31,717738. Hedges,J.I.,Cowie,G.L.,Richey,J.E.,Quay,P.D.,Benner,R.,Strom,M.,andForsberg,B. R.,1994.OriginsandprocessingoforganicmatterintheAmazonRiverasindicated bycarbohydratesandaminoacids.LimnologyandOceanography39,743761. Hedges,J.I.,Eglinton,G.,Hatcher,P.G.,Kirchman,D.L.,Arnosti,C.,Derenne,S.,Evershed, R. P., KögelKnabner, I., De Leeuw, J. W., and Littke, R., 2000. The molecularly uncharacterized component of nonliving organic matter in natural environments. OrganicGeochemistry31,945958. Hedges,J.I.andKeil,R.G.,1995.Sedimentaryorganicmatterpreservation:anassessment andspeculativesynthesis.MarineChemistry49,81115. Hedges,J.I.,Keil,R.G.,andBenner,R.,1997.Whathappenstoterrestrialorganicmatterin theocean?OrganicGeochemistry27,195212. Hedges, J. I. and Mann, D. C., 1979a. The characterization of plant tissues by their lignin oxidationproducts.GeochimicaetCosmochimicaActa43,18031807. Hedges,J.I.andMann,D.C.,1979b.Theligningeochemistryofmarinesedimentsfromthe southernWashingtoncoast.GeochimicaetCosmochimicaActa43,18091818. Hedges, J. I. and Prahl, F. G., 1993. Early diagenesis: Consequences for applications of molecularbiomarkers.In:Engel,M.H.andMacko,S.A.Eds.),Organicgeochemistry: PrinciplesandApplications.PlenumPress,NewYork. Henrichs,S.M.,1992.Earlydiagenesisoforganicmatterinmarinesediments:progressand perplexity.MarineChemistry39,119149. Henrichs, S. M. and Reeburgh, W. S., 1987. Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy.GeomicrobiologyJournal5,191237. Hertkorn, N., Benner, R., Frommberger, M., SchmittKopplin, P., Witt, M., Kaiser, K., Kettrup,A.,andHedges,J.I.,2006.Characterizationofamajorrefractorycomponent ofmarinedissolvedorganicmatter.GeochimicaetCosmochimicaActa70,29903010. Hollibaugh, J. T. and Azam, F., 1983. Microbial degradation of dissolved proteins in seawater.LimnologyandOceanography28,11041116. Hulthe, G., Hulth, S., and Hall, P. O. J., 1998. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochimica et CosmochimicaActa62,13191328. Ingalls,A.E.,Lee,C.,Wakeham,S.G.,andHedges,J.I.,2003.Theroleofbiomineralsinthe sinking flux and preservation of amino acids in the Southern Ocean along 170 W. DeepSeaResearchPartII50,713738.

32 Introduction

Jørgensen, B. B., Weber, A., and Zopfi, J., 2001. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep Sea Research Part I: Oceanographic Research Papers48,20972120. Jouanneau,J.M.,Weber,O.,Drago,T.,Rodrigues,A.,Oliveira,A.,Dias,J.M.A.,Garcia,C., Schmidt,S.,andReyss,J.L.,2002.Recentsedimentationandsedimentarybudgetson thewesternIberianshelf.ProgressinOceanography52,261275. Keil, R. G. and Hedges, J. I., 1993. Sorption of organic matter to mineral surfaces and the preservationoforganicmatterincoastalmarinesediments.Chemicalgeology107,385 388. Keil,R.G.,Montlucon,D.B.,Prahl,F.G.,andHedges,J.I.,1994.Sorptivepreservationof labileorganicmatterinmarinesediments.Nature370,549552. Keil,R.G.,Tsamakis,E.,andHedges,J.I.,2000.Earlydiagenesisofparticulateaminoacids inmarinesystems.In:Goodfriend,G.A.,Collins,M.J.,Fogel,M.L.,Macko,S.A., andWehmiller,J.F.Eds.),PerspectivesinAminoAcidandProteinGeochemistry.Oxford UniversityPress. Killops, S. D. and Killops, V. J., 2005. Introduction to organic geochemistry. Blackwell Publishing. Kim, S., Kramer, R. W., and Hatcher, P. G., 2003. Graphical Method for Analysis of UltrahighResolution Broadband Mass Spectra of Natural Organic Matter, the Van KrevelenDiagram.AnalyticalChemistry75,53365344. Koch,B.P.,Witt,M.,Engbrodt,R.,Dittmar,T.,andKattner,G.,2005.Molecularformulaeof marineandterrigenousdissolvedorganicmatterdetectedbyelectrosprayionization Fourier transform ion cyclotron resonance mass spectrometry. Geochimica et CosmochimicaActa69,32993308. Kujawinski,E.B.,Freitas,M.A.,Zang,X.,Hatcher,P.G.,GreenChurch,K.B.,andJones,R. B.,2002.Theapplicationofelectrosprayionizationmassspectrometry(ESIMS)tothe structuralcharacterizationofnaturalorganicmatter.OrganicGeochemistry33,171180. Lee, B. S., Bullister, J. L., Murray, J. W., and Sonnerup, R. E., 2002. Anthropogenic chlorofluorocarbonsintheBlackSeaandtheSeaofMarmara.DeepSeaResearchPartI 49,895913. Lee,C.,1992.Controlsonorganiccarbonpreservation:Theuseofstratifiedwaterbodiesto compare intrinsic rates of decomposition in oxic and anoxic systems. Geochimica et CosmochimicaActa56,33233335. Lee, C.and Bada, J. L., 1977. Dissolved amino acids in the equatorial Pacific, theSargasso Sea,andBiscayneBay.LimnologyandOceanography22,502510. Lomstein, B. A., Jørgensen, B. B., Schubert, C. J., and Niggemann, J., 2006. Amino acid biogeoandstereochemistryincoastalChileansediments.GeochimicaetCosmochimica Acta70,29702989. Lytle,C.R.andPerdue,E.M.,1981.Free,proteinaceous,andhumicboundaminoacidsin river water containing high concentrations of aquatic humus. Environmental Science andTechnology15,224228. Madigan,M.T.,Martinko,J.M.,andParker,J.,2000.Brockbiologyofmicroorganisms.Prentice Hall,NewJersey. Marshall,A.G.andHendrickson,C.L.,2008.HighResolutionMassSpectrometers.Annual ReviewofAnalyticalChemistry1,19.119.21. Massé,G.,Belt,S.T.,GuyAllard,W.,AnthonyLewis,C.,Wakeham,S.G.,andRowland,S. J.,2004.Occurrenceofnovelmonocyclicalkenesfromdiatomsinmarineparticulate matterandsediments.OrganicGeochemistry35,813822.

33 Chapter1

Mayer,L.M.,1994.Surfaceareacontroloforganiccarbonaccumulationincontinentalshelf sediments.GeochimicaetCosmochimicaActa58,12711284. McCave, I. N. and Hall, I. R., 2002. Turbidity of waters over the Northwest Iberian continentalmargin.ProgressinOceanography52,299313. McCave,I.N.,1975.Verticalfluxofparticulatesintheocean.DeepSeaResearch22,511536. Meybeck,M.,1982.Carbon,nitrogen,andphosphorustransportbyworldrivers.American JournalofScience282,401. Meyers, P. A., 1990. Impacts of late quaternary fluctuations in water level on the accumulation of sedimentary organic matter in Walker Lake, Nevada. Palaeogeography,Palaeoclimatology,Palaeoecology78,229240. Meyers, P. A., 1994. Preservation of elemental and isotopic source identification of sedimentaryorganicmatter.ChemicalGeology114,289302. Middelburg, J. J., 1989. A simple rate model for organic matter decomposition in marine sediments.GeochimicaetCosmochimicaActa53,1577. Mopper,K.,Zhou,X.,Kieber,R.J.,Kieber,D.J.,Sikorski,R.J.,andJones,R.D.,1991.Roleof photochemicaldegradationinthecyclingofoceanicdissolvedorganiccarbon.Nature 353,6062. Murray,J.W.,Top,Z.,andÖzsoy,E.,1991.Hydrographicpropertiesandventilationofthe BlackSea.Deepsearesearch.PartA.Oceanographicresearchpapers38,663689. NASAearthobservatory.http://neo.sci.gsfc.nasa.gov. NASAvisibleearth.http://visibleearth.nasa.gov. Opsahl,S.andBenner,R.,1995.Earlydiagenesisofvascularplanttissues:Ligninandcutin decompositionandbiogeochemicalimplications.GeochimicaetCosmochimicaActa59, 48894904. Pace, M. L., Knauer, G. A., Karl, D. M., and Martin, J. H., 1987. Primary production, new productionandverticalfluxintheeasternPacificOcean.Nature325,803805. Pedersen, A. G. U. and Thomsen, T. R., 2001. Bacterial influence on amino acid enantiomerizationinacoastalmarinesediment.LimnologyandOceanography46,1358 1369. Peliz,A.,Rosa,T.L.,Santos,A.M.P.,andPissarra,J.L.,2002.Fronts,jets,andcounterflows intheWesternIberianupwellingsystem.JournalofMarineSystems35,6177. Prahl, F. G., Bennett, J. T., and Carpenter, R., 1980. The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington.GeochimicaetCosmochimicaActa44,19671976. Prahl,F.G.,DeLange,G.J.,Scholten,S.,andCowie,G.L.,1997.Acaseofpostdepositional aerobic degradation of terrestrial organic matter in turbidite deposits from the MadeiraAbyssalPlain.OrganicGeochemistry27,141152. Raymont,J.,1983.Planktonandproductivityintheoceans.PergamonPress,Oxford. Redfield,A.C.,1958.Thebiologicalcontrolofchemicalfactorsintheenvironment.American Scientist46,205–221. Romankevich,E.A.,1984.Geochemistryoforganicmatterintheocean.Springer,Berlin. Sarkanen, K. V. and Ludwig, C. H., 1971. Lignins: Occurrence, Formation, Structure and Reactions.Wiley,NewYork. Schlesinger,W.H.andMelack,J.M.,1981.Transportoforganiccarbonintheworld’srivers. Tellus33,172–187. Schmidt,S.,vanWeering,T.C.E.,Reyss,J.L.,andvanBeek,P.,2002.Seasonaldeposition andreworkingatthesedimentwaterinterfaceonthenorthwesternIberianmargin. ProgressinOceanography52,331348.

34 Introduction

Siegenthaler, U. and Sarmiento, J. L., 1993. Atmospheric carbon dioxide and the ocean. Nature365,119125. Sorokin,Y.I.,1983.TheBlackSea.In:Ketchum,P.H.(Ed.),EcosystemsoftheWorld.Elsevier, Amsterdam. Stenson, A. C., Landing, W. M., Marshall, A. G., and Cooper, W. T., 2002. Ionization and Fragmentation of Humic Substances in Electrospray Ionization Fourier Transform IonCyclotronResonanceMassSpectrometry.AnalyticalChemistry74,43974409. Stuiver, M., 1980. 14C distribution in the Atlantic Ocean. Journal of Geophysical Research 85, 27112718. Suess, E., 1980. Particulate organic carbon flux in the oceans—surface productivity and oxygenutilization.Nature288,260263. Talbot,M.R.andJohannessen,T.,1992.Ahighresolutionpalaeoclimaticrecordforthelast 27,500 years in tropical West Africa from the carbon and nitrogen isotopic compositionoflacustrineorganicmatter.EarthandPlanetaryScienceLetters110,2337. TenHaven,H.L.,Peakman,T.M.,andRullkötter,J.,1992.Earlydiagenetictransformationof higherplant triterpenoids in deepsea sediments from Baffin Bay. Geochimica et CosmochimicaActa56,20012024. Thamdrup, B., RosselloMora, R., and Amann, R., 2000. Microbial Manganese and Sulfate ReductioninBlackSeaShelfSediments.AppliedEnvironmentalMicrobiology66,2888 2897. Tissot,B.P.andWelte,D.H.,1978.Petroleumformationandoccurrence:anewapproachtooiland gasexploration.SpringerVerlag,Berlin. vanWeering,T.C.E.,deStigter,H.C.,Boer,W.,anddeHaas,H.,2002.Recentsediment transportandaccumulationontheNWIberianmargin.ProgressinOceanography52, 349371. Vitorino, J., Oliveira, A., Jouanneau, J. M., and Drago, T., 2002. Winter dynamics on the northern Portuguese shelf. Part 2: bottom boundary layers and sediment dispersal. ProgressInOceanography52,155170. Wakeham,S.G.,1990.Algalandbacterialhydrocarbonsinparticulatematterandinterfacial sedimentoftheCariacoTrench.GeochimicaetCosmochimicaActa54,13251336. Wakeham,S.G.andLee,C.,1993.Production,transport,andalterationofparticulateorganic matterinthemarinewatercolumn.In:Engel,M.H.andMacko,S.A.Eds.),Organic Geochemistry:principlesandapplications.PlenumPress,NewYork. Wakeham, S. G., Lee, C., Hedges, J. I., Hernes, P. J., and Peterson, M. J., 1997. Molecular indicators of diagenetic status in marine organic matter. Geochimica et Cosmochimica Acta61,53635369. Wang, X.C., Druffel, E. R. M., Griffin, S., Lee, C., and Kashgarian, M., 1998. Radiocarbon studies of organic compound classes in plankton and sediment of the northeastern PacificOcean.GeochimicaetCosmochimicaActa62,13651378. Westrich,J.T.andBerner,R.A.,1984.Theroleofsedimentaryorganicmatterinbacterial sulfatereduction:TheGmodeltested.LimnologyandOceanography29,236249. Williams,P.M.andDruffel,E.R.M.,1987.Radiocarbonindissolvedorganicmatterinthe centralNorthPacificOcean.Nature330,246248. Wollast,R.,1991.Thecoastalorganiccarboncycle:fluxes,sourcesandsinks.In:Mantoura,R. F. C., Martin, J.M., and Wollast, R. Eds.), Ocean Margin Processes in Global Change. Wiley,NewYork.

35 36

Chapter2

Sources,transport,andpartitioningoforganicmatteratahighly

dynamiccontinentalmargin

FraukeSchmidt,KaiUweHinrichs,MarcusElvert

SubmittedtoMarineChemistryinMay2009

MARUM – Center for Marine Environmental Sciences, Leobener Straße, D28359 Bremen,

Germany

Chapter2

ABSTRACT

Continentalshelvesplayamajorroleastransitionzoneduringtransportofmultiplysourced organicmatterintothedeepsea.Inordertoobtainacomprehensiveunderstandingofthe origin and fractionation processes of organic matter at the NW Iberian margin, 40 surface sedimentsampleswereanalyzedforastructurallydiverserangeoflipidbiomarkers,lignin phenols, grain size distribution, organic carbon content (TOC), its stable carbon isotopic composition (13CTOC), and the organic carbon to nitrogen ratio (TOC/TN). The biomarker inventory reflected a heterogeneous mixture of organic matter from various marine and terrestrialsources.Soilandvascularplantderivedcontinentalorganicmatter,indicatedby lignin phenols and plantderived triterpenoids, was primarily associated with the silt fraction and transported by river runoff. The spatial distribution patterns of higher plant waxesderivedlongchainnalkanes,nalcohols,andnfattyacidssuggesteddistinctdifferent transport mechanisms and/or sources. The branched tetraether index, a molecular proxy expressing the relative abundance of branched dialkyl tetraethers versus crenarchaeol and considered to signal soilderived organic matter, was not as sensitive as other molecular indicatorsindetectingcontinentalorganicmatter.Hydrodynamicsortingprocessesonthe shelfresultedinaseparationofdifferenttypesofterrestrialorganicmatter;grassandleaf fragmentsandsoilorganicmatterwerepreferentiallytransportedoffshoreanddepositedin areas of lower hydrodynamic energy. Algal lipid biomarker distributions indicated a complexcommunityofmarineplanktoncontributingtoorganicmatter.Spatialandseasonal patterns of phytoplankton growth primarily controlled the distribution of algal organic mattercomponents.Theinterplayofalloftheseprocessescontrolproduction,distribution, anddepositionoforganicmatterandresultinthreedistinctprovincesattheGaliciaMinho shelf: (I) fresh marine organic matter dominated the inner shelf region; (II) high inputs of terrestrial organic matter and high TOC content characterized the midshelf deposited mudbelt; (III) lower concentrations of relatively degraded organic matter with increased proportionsofrefractoryterrestrialcomponentsdominatedtheoutershelfandcontinental slope.

KEYWORDS:lipidbiomarkers,ligninphenols,BITindex,bacteriohopanepolyols, degradationratios,GaliciaMinhoshelf

38 Sources,transport,andpartitioningoforganicmatter

2.1INTRODUCTION

90% of the global organic carbon stored in modern marine sediments is deposited at continental margins (Hedges and Keil, 1995). Therefore, they are key locations for organic matter(OM)burialandplayanessentialroleintheglobalcarboncycle.Nevertheless,dueto varying OM composition, sedimentological regimes, and geochemical processes OM accumulation, preservation, and remineralization are not well understood. Common to all continental shelves is the diversity of OM sources. Terrestrial OM from plants and soils accumulatetogetherwithmarine,estuarineorevenriverineOMderivedfromautotrophic andheterotrophicorganisms.AccumulationofOMfromthesevarioussourcesinsediments is further influenced by transport and sinking behaviors of carrier particles and differing chemicalreactivity(Wangetal.,1998).Sedimentremobilizationandresuspensionenhances thesusceptibilityoftheOMtodegradationduetoextendedoxygenexposure(Cowieetal.,

1995; Sun et al., 2002; Moodley et al., 2005). Within the different OM fractions distinct transport behaviors and preservation potentials are observed under similar environmental conditions and consequently affect the ultimately preserved OM content and quality. For example,preagedterrestrialOMfromplantsandsoilsismorerecalcitrantthanfreshalgal

OM(e.g.,Prahletal.,1997).

TheexistingstudiesonOMburialincontinentalshelfsediments(e.g.,Prahl,1985;Prahlet al.,1994;Goñietal.,2000;Goñietal.,2005;Xuetal.,2006;Tesietal.,2007;Kuzyketal.,2008;

Ramaswamyetal.,2008;Volkmanetal.,2008;Yoshinagaetal.,2008;Schmidtetal.,2009) indicate complex mechanisms behind the OM distribution and strong variations in consequence of varying environmental conditions at each setting. Studies with a comprehensivesetofgeochemicalindicatorsareneededtoobtainadeeperunderstandingof thediverseprocessesthatcontrolOMdistributionandpreservationinshelfsediments.Bulk properties ofsedimentary OM such as itsstable carbon isotopic composition (13CTOC) and totalorganiccarbontototalnitrogenratio(TOC/TN)werefrequentlyusedtoevaluatethe sources of OM (e.g., Hedges and Parker, 1976; Peters et al., 1978; AltEpping et al., 2007;

Perdue and Koprivnjak, 2007; Ramaswamy et al., 2008). However, TOC/TN is seriously affected by the preferential remineralization of nitrogen in marine sediments or nitrogen sorptionontoclayminerals(SchubertandCalvert,2001)and13CTOCvaluesofamixtureof

C3 and C4 plants could mimic marine algae (e.g., Goñi et al., 1998). Furthermore, both indicescannotprovidedetailedinformationaboutspecificOMsources.Lipidbiomarkers,on

39 Chapter2 the other hand, can provide such information and, to a certain extent, they allow a determination of the degradation state of OM (e.g., Eglinton and Hamilton, 1963; Poynter andEglinton,1990;TenHavenetal.,1992;Wakehametal.,1997).

InordertoovercometheobstaclesassociatedwiththeinterpretationofsingleOMportions insedimentsofcontinentalshelvesweanalyzedabroadrangeoflipidbiomarkersandlignin phenols in surface sediments from the NW Iberian margin. Our aim was to reveal distributional and early diagenetic patterns of OM from various sources. The NW Iberian margin with the GaliciaMinho shelf is a highenergy shelf system characterized by high primary productivity in summer due to seasonal upwelling and sediment remobilization during severe winter storms. The material is deposited in the midshelf area in a local mudbeltwhichisprimarilyfedbymaterialfromtheDouroRiverandMinhoRiver(seeFig.

4.1 and Araújo et al., 2002; Jouanneau et al., 2002). This manuscript links the spatial variationsofsourcespecificbiomarkerstobulksedimentpropertiesinordertoconstrainthe relationshipbetweenOMdepositionandsedimentologicalprocesses.

2.2STUDYAREA

Thestudyareaislocatedbetween41.33°Nand42.49°Nlatitudeand8.58°Wand9.45°W longitudeattheNWIberianmargin(Fig.2.1).Theshelfisalmost50kmwideandbordered bysedimentfreerockyoutcropsinthecoastalareasandalongtheshelfedgeinthesouthern parts, the latter acting as sediment traps. Terrestrial sediment is mainly delivered by the

DouroandtheMinhoRivertotheshelf,althoughthesupplyhasbeensuppressedinrecent yearsduetoseveraldamconstructionsintherivers(Jouanneauetal.,2002;Oliveiraetal.,

2002; Vitorino et al., 2002). The smaller rivers along the GaliciaMinho shelf (e.g., Cavado

River,River)contributeonlyminoramountsofsediment(Araújoetal.,2002),whereas theRíasBaixaslocatedinthenorth,withislandsoffthecoast,retainmostofthesediment suppliedbytherivers(ReySalgado,1993).

TheoceanographicregimeoftheNWIberianmarginiscontrolledbytwocurrentsystems; thewarmsubtropicalEasternNorthAtlanticCentralWaters(ENACW)frombeneath40°N is in exchange with cold less saline subpolar ENACW (>45 °N) by a poleward slope undercurrent and on the surface by the Coastal Counter Current (PCCC). The

PCCC is controlled by the predominating wind system: winds from north to northeast in

40 Sources,transport,andpartitioningoforganicmatter summer direct the PCCC to the south and favor upwelling of cold nutrientrich subpolar

ENACWattheNandNWIberianmargin(Frouinetal.,1990).Themovementofthesewater massessouthwardinasubsurfacefrontresultsinenhancedprimaryproductivityofmultiple algal groups at the GaliciaMinho shelf (Bodeet al., 2002). During autumn and winter the

PCCCshiftsnorthwardsinresponsetothesoutherlywinds,creatingadownwellingfront

(Frouin et al., 1990) that results in the deposition of sediment on the shelf. During the frequentwinterstormeventswithincreasedbottomwavevelocities,sedimentisremobilized and transported northward by the bottom currents (Vitorino et al., 2002) and eventually depositedinthemidshelfmudbelt(Fig.2.1).Hence,theupper10to15cmofsedimenton theinnershelf(above100mwaterdepth)representamixinglayerwhichshowsadecrease inmixingfrequencyanddepthoffshore(Jouanneauetal.,2002).AlthoughthePCCChinders material export from the shelf in general, a transport of fine material occurs during storm events from the midshelf area that is subsequently eroded due to the northward slope currentattheoutershelf(Vitorinoetal.,2002).

Figure2.1.SamplinglocationsattheNWIberianmargin(Samplenames:GeoB110..)andthelocalrivers.Color code refers to TOC content in the analyzed sediment samples. The midshelf mudbelt (red dashed lines), mesozoic and cenozoic rocky outcrops (bricks), plutonic and metamorphic bedrock (crosses) are displayed accordingtoDiasetal.(2002a).

41 Chapter2

2.3MATERIALANDMETHODS

2.3.1Sampling

Sampling was performed with a giant box corer in August 2006 during the GALIOMAR expedition(P342)withtheGermanRVPoseidonattheGaliciaMinhoshelf(Hanebuthand participants,2007).Surfacesedimentsweresampledfromadepthintervalof02cmforlipid biomarker,ligninphenolandbulkanalyses.Additionalsedimentswerecollectedfromthe riverbankofthreelocalrivers(Minho,CavadoandUllaRivers)andfromthetidalflatofthe

Ríade.Allsampleswerestoredinprecombustedbrownglassbottlesat20°Ctoavoid

OMdegradationuntilfurtherpreparationinthehomelaboratory.

2.3.2Totalorganiccarbon,totalcarbonandtotalnitrogen

Totalorganiccarbon(TOC),totalcarbon(TC)andtotalnitrogen(TN)concentrationswere analyzedfromthefreezedriedhomogenizedsediment.TOCwasmeasuredwithaLecoCS

200. Prior to TOC measurements, 50 mg of each sample were treated with 12.5% hydrochloricacidtoremovecarbonates.ForTNandTCanalyses,25mgofeachsamplewas packedintinboatsandmeasuredonaVarioELIIIElementalAnalyzer.Bulkorganiccarbon stableisotopeanalyseswerecarriedoutusinganHeraeuselementalanalyzerconnectedtoa

FinniganMATDeltaPlusisotoperatiomassspectrometer.Priortoanalysis,thefreezedried samples were decalcified with 12.5% hydrochloric acid, homogenized and packed into tin boats. Standard deviation was below 0.1‰ as determined from repeated analysis of a referencesample.Valuesarequotedinthe13CnotationinpermilrelativetotheViennaPee

DeeBelemnite(VPDB)standard.

2.3.3Lipidextraction

30 g of wet sediment were spiked with a mixture of internal standards consisting of 5 cholestane, nonadecan2one, 1nonadecanol and 2methyloctadecanoic acid. Lipid biomarkerswereextractedthreetimeswithasolventmixtureofdichloromethane:methanol

(DCM:MeOH, 2:1, v/v) in a microwave extraction system (MARS X, CEM) at 80 °C. The combined extracts were washed with 0.05 M potassium chloride and residual water was removedfromtheorganicphasewithsodiumsulfate.Theremainingsolventwasevaporated under a stream of nitrogen. The total lipid extract was separated in a hexanesoluble

(maltene)andinsoluble(asphaltene)fraction.Themaltenefractionwasfurtherseparatedon

42 Sources,transport,andpartitioningoforganicmatter

SPEcartridges(SupelcoLCNH2,500mgsorbent)intofourfractions(hydrocarbons,esters andketones,alcohols,andfreefattyacids)accordingtotheprotocolbyHinrichsetal.(2000).

Priortoanalyses,alcoholswerereactedwithbis(trimethylsilyl)trifluoroacetamide(BSTFA,

Merck) in pyridine to form trimethylsilyl(TMS)derivatives. Fatty acids (FA) were derivatized with 12% boron trifluoride in methanol (Merck) and analyzed as fatty acid methylesters. Both reactions were conducted at 70 °C for 1 h followed by the removal of solventandreagentunderastreamofnitrogen.Allfourfractionswerestoredat–20°Cin thedarkuntilfurtheranalysis.

2.3.4Bacteriohopanepolyols

An aliquot of the asphaltene fraction from each sample was prepared for bacteriohopanepolyol(BHP)analysisaccordingtotheprotocolbyTalbotetal.(2001).Briefly, thefractionwasacetylatedwithaceticanhydrideinpyridine(1:1,v/v;Roth)for1hat50°C and left at room temperature overnight. Afterwards, the reagents were removed under a stream of nitrogen and stored at –20 °C in the dark until analysis. Prior to analysis, each samplefractionwasdissolvedinMeOH:isopropanol(3:1,v/v)andspikedwithaninjection standard(5cholestane)forcomponentquantification.

2.3.5Branchedandisoprenoidtetraetherindex

For the branched and isoprenoid tetraether index (BIT) measurements, the apolar fraction wasisolatedfromthetotallipidextractaftertheprotocolbyHopmansetal.(2004).Aliquots ofthetotallipidextractwereseparatedoveranAl2O3column(Merck,activebasic70–230 mesh)intoanapolarandapolarfractionusinghexane:DCM(9:1,v/v)andDCM:MeOH(1:1, v/v), respectively. The solvent was removed from the apolar fraction, containing the isoprenoidaltetraethers,underastreamofnitrogenandthefractionredissolvedinadefined volumeofhexane:isopropanol(99:1,v/v),correspondingtoanamountof2mg/ml.Priorto analysis,thefractionwasfilteredthroughaPTFEfilter(poresize0.45m,Roth)inorderto removesmallparticles.

2.3.6Ligninextraction

TheprotocolusedforligninextractionwasadaptedfromHedgesandErtel(1982).Briefly,1

2gofsolventextractedsedimentwasfilledintoamicrowavevesselfollowedbyadditionof

43 Chapter2

100 mg ammoniumiron(II) sulfate hexahydrate (Fe2(NH4)2(SO4) * 6 H2O, p.a. Fluka), 1 g

DCMextracted CuO powder, and 8 mL of nitrogenpurged sodium hydroxide (8% p.a. grade,Merck)underoxygenfreeconditions.Theoxidationwasconductedundernitrogen atmosphereinasealedextractionvesselinMARSXat150°Cfor3h.Afterthereactionwas completed,aninternalstandardmixtureconsistingofethylvanillinandtcinnamicacidwas added to the sediment slurry. The sediment was sonicated three times with 15 ml of 16% sodiumhydroxideandeachliquidphasewasseparatedfromthesedimentbycentrifugation.

The combined extracts were acidified with hydrochloric acid to pH 1 and ligninderived phenols were extracted from the aqueous solution three times with distilled diethylether, whichwastreatedwithFe2(NH4)2(SO4)*6H2Oinaqueoussolutionapriori.Thecombined extracts were dried with sodium sulfate and the solvent was removed under a stream of nitrogen.Priortoanalysisbygaschromatography(GC)eithercoupledtomassspectrometry

(MS)oraflameionizationdetector(FID),thephenolswerereactedwithBSTFAinpyridine toformTMSderivatives.

Inordertocheckforesterbondphenolsderivingfromcutinandsuberin,tworandompre extracted sediment samples were subjected to base hydrolysis to release esterbound phenols.2–3gofsedimentwereheatedwith25mlof1Mmethanolicpotassiumhydroxide solutionat80°Cfor3h.Aftercooling,5mlof22%hydrochloricacidwasaddedandthe mixture was sonicated three times with 30 ml of DCM/MeOH (2:1, v/v) for 15 min. Each extractwasseparatedfromthesedimentbycentrifugationand50mlofMilliQwereadded tothecombinedextract.Phenolswereextractedfromtheaqueoussolutionaccordingtothe ligninextractionprotocolreportedabove.Theextracted,saponifiedsedimentwassubjected toCuOoxidationandthephenolcompositionwascomparedtothecorrespondingextracted sediment.

2.3.7Gaschromatographycoupledtomassspectrometryorflameionizationdetection

AllfourlipidfractionsandthephenolextractwereanalyzedbyGCMSandGCFID.TheGC

(Thermo Electron Trace GC) was equipped with a 30m Rtx5MS fused silica capillary column(0.25mmi.d.,0.25mfilmthickness)andheliumwasusedascarriergas(flowrate

1.0mlmin1).Thelipidfractionswereinjectedinhexaneusinganinjectiontemperatureof

60°C,atemperaturerampof10°Cmin1upto150°Cfollowedbyatemperaturerampof4

°C min1 up to 320 °C (hold time: 30 min). The lignin phenol extract was injected in

44 Sources,transport,andpartitioningoforganicmatter pyridine:BSTFA(4:1v/v)inordertokeepallcarboxylicgroupsastrimethylsilylderivatives.

Theinitialtemperatureof100°Cwasfollowedbyatemperaturerampof4°Cmin1upto310

C(holdtime:12min).BHPswereanalyzedona30mDBXLBfusedsilicacapillarycolumn

(0.25mmi.d.,0.1mfilmthickness).Heliumwasusedascarriergaswithaflowrateof1.0 ml min1 and samples were injected in methanol:isopropanol (3:1, v/v) at an initial temperatureof100°C.Atemperaturerampof10°Cmin1upto300°Cwasfollowedbya temperaturerampof4°Cmin1upto360°C(holdtime:24min).

All components were identified via their mass spectra and concentrations were calculated from their peak area in the FID chromatogram relative to the internal standard with the exceptionofBHPswhichwerequantifiedviaaninjectionstandard.

Blanks for lipid and lignin extraction were prepared in parallel in the same manner as sedimentstocheckforcontaminationsduringsamplepreparation.Notargetcomponentsor other substances with similar retention times were detected in the blanks. Three random sampleswereanalyzedinduplicateforligninphenolsinordertodetectvariationsduring samplepreparationandanalysis.Relativestandarddeviationwasbelow15%whichisinthe previouslyreportedrangeforligninanalysis(HedgesandErtel,1982;Houeletal.,2006).The relative standard deviation between lignin phenols obtained from preextracted sediments withandwithoutbasichydrolysiswasbelow13%indicatingthatesterboundphenolscan beneglectedasanimportantsourceattheGaliciaMinhoshelf.

2.3.8Highperformanceliquidchromatography

Nonisoprenoidalglyceroldialkylglyceroltetraethers(GDGTs)wereanalyzedonanAgilent

1100serieshighperformanceliquidchromatograph(HPLC)coupledtoanAgilent1200MSD equippedwithautomaticinjectorandHPChemstationsoftware.Asamplevolumeof20l was injected on an Alltech Prevail Cyano column (150 mm x 2.1 mm; 3 m) with hexane:isopropanol(99:1,v/v)aseluentataflowrateof0.2mlmin1.After5minofisocratic elution, a linear gradient to hexane:isopropanol 98.2:1.8 (v/v) within 45 min was applied followedbyalineargradientwithinin2mintohexane:isopropanol95:5(v/v)thatwaskept for8min.

ThecompoundswereionizedinpositiveAPCImodeandexpressedasrelativeabundances of nonisoprenoidal GDGTs compared to crenarcheol by integrating the peak areas of the

[M+H]+ions.TheBITindexwascalculatedaccordingtoHopmansetal.(2004).Allsamples

45 Chapter2 were analyzed in duplicate and the maximum deviation of individual values for the BIT indexwas0.01units.

2.3.9Grainsizeanalysis

Thegrainsizedistributionwasdeterminedusingalaserparticleanalyzer(CoulterLS200).

Prior to analysis, 0.5 g of preextracted sediment was mixed with aqueous sodium pyrophosphatesolution(3mgin50mlofwater)andheatedupto100°Cinordertoavoid theformationofaggregates.Analyseswereperformedintherangeofgrainsizesbetween

0.04and1000mintriplicate.Thesiltpercentagewascalculatedbasedonthegranulometric intervalof62.5–3.9m.

2.3.10Correlationanalysis,clusteranalysis,andOceanDataView

Correlation and cluster analysis was performed using the software PAST (version 1.75;

Hammer, 2001). Correlation analysis was performed using Spearman’s rank correlation coefficient and for 40 samples a correlation was significant if r > 0.418 for a levelof confidence = 0.01 and r > 0.325 for = 0.05. Distribution maps were constructed in the softwareOceanDataView(ODV;Schlitzer,2002)usingthedivagriddingalgorithm.

2.4RESULTS

2.4.1Bulkpropertiesofsediments

Table 2.1 lists the bulk properties of surface sediments from the NW Iberian margin.

Generally,thesiltcontentvariedbetween11and83%correspondingtoameangrainsize distribution between 187 m and 21 m, respectively. Exceptions from this were the continentalslopesampleGeoB11033(92%silt,9.4mmeangrainsize)andthemidshelf sample GeoB 11011 (7.7% silt, 368 m mean grain size). The small grain sizes at the continentalslopesampleindicateanaccumulationofveryfinegrained,clayrichsedimentin this region, whereas the large grain sizes at station GeoB 11011 suggest a preferential accumulation of carbonate debris which is corroborated by a high total inorganic carbon

(TIC)contentof7.3%.Apartfromthis,thehighestsiltcontents(>50%)wereobservedinthe inner to midshelf area (Fig. 2.2a) confirming the previously reported extensions of the

Galiciamudbelt(Diasetal.,2002a).Adecreaseinthesiltcontentwasobservedoffshoreat

46 Sources,transport,andpartitioningoforganicmatter

Table 2.1. Location and bulk properties of samples from the Galician margin and adjacent rivers. Mudbelt samples are indicated by a silt content >50%, whereas the remaining zonation corresponds to water depth. 13 Sample Location Latitude (N) Longitude Water TOC [%] TIC [%] CTOC (‰) TOC/TN Silt [%] Mean grain (GeoB) (W) depth (m) size [μm]

11001 mudbelt 42°25 9°08 136 0.92 0.76 -23.5 9.55 69.2 28.8 11002 mudbelt 42°17 8°99 112 0.91 0.49 -23.6 9.61 63.7 34.6 11003 mudbelt 42°17 9°04 129 1.43 0.66 -23.7 10.51 83.0 21.4 11004 outer shelf 42°17 9°10 141 0.49 0.18 -22.8 8.93 48.7 59.4 11005 outer shelf 42°17 9°18 161 0.20 0.26 -21.7 5.91 17.7 122.8 11006 outer shelf 42°17 9°33 235 0.26 1.58 -22.0 8.89 22.5 77.6 11007 outer shelf 42°17 9°23 184 0.30 1.31 -21.9 8.06 22.7 73.7 11008 outer shelf 42°36 9°22 157 0.22 0.11 -22.1 7.77 17.6 145.1 11009 outer shelf 42°43 9°27 166 0.14 0.19 -21.4 4.96 10.6 187.3 11010 mudbelt 42°42 9°11 119 1.06 1.08 -23.2 8.99 69.6 27.6 11011 mid-shelf 42°53 9°20 100 0.16 7.30 -21.0 4.53 7.7 367.9 11012 mudbelt 42°71 9°27 119 0.73 1.37 -22.6 8.14 53.2 41.3 11013 mid-shelf 42°71 9°35 130 0.49 0.97 -22.6 8.07 46.1 53.5 11014 outer shelf 42°71 9°46 153 0.36 1.33 -22.8 8.17 33.7 73.3 11015 outer shelf 42°77 9°47 158 0.39 0.81 -22.8 8.78 40.5 55.8 11016 mid-shelf 42°82 9°35 132 0.28 0.92 -22.3 7.20 22.7 84.0 11017 mudbelt 42°52 9°24 120 0.81 2.23 -22.9 8.29 61.5 48.0 11018 mid-shelf 42°52 9°27 124 0.29 0.56 -22.2 7.64 31.6 83.5 11019 outer shelf 42°51 9°31 147 0.32 0.22 -22.4 8.05 32.4 88.6 11020 outer shelf 42°51 9°32 154 0.27 0.31 -22.2 7.04 28.7 104.2 11021 cont. slope 42°49 9°43 484 0.62 0.69 -22.5 12.45 45.2 44.7 11022 outer shelf 42°58 9°42 289 0.43 0.92 -22.8 8.83 35.0 77.6 11023 cont. slope 42°71 9°56 405 0.37 1.20 -22.5 8.33 30.1 66.8 11024 cont. slope 42°70 9°76 1823 0.44 2.16 -23.1 7.63 41.1 47.4 11025 mid-shelf 42°63 9°36 131 0.50 0.89 -22.7 8.20 44.2 53.5 11027 outer shelf 41°97 9°18 137 0.27 2.34 -22.2 7.25 21.1 103.2 11028 mudbelt 41°97 9°09 127 1.28 1.01 -24.1 11.06 76.4 26.0 11029 mudbelt 41°97 9°05 115 1.32 0.61 -24.5 12.62 69.9 32.9 11030 inner shelf 41°97 8°99 94 0.54 0.28 -23.7 8.86 37.4 58.4 11031 outer shelf 42°08 9°16 149 0.21 0.85 -21.8 7.66 17.7 90.6 11032 outer shelf 42°09 9°25 166 0.25 1.50 -22.0 7.41 25.2 72.0 11033 cont. slope 42°17 9°56 1873 1.10 3.18 -22.6 8.41 92.0 9.4 11037 inner shelf 41°72 8°98 80 0.53 0.63 -22.6 8.31 44.0 55.9 11038 inner shelf 41°64 8°89 78 0.35 0.98 -22.9 7.97 27.2 77.9 11039 mudbelt 41°55 9°08 99 2.21 1.98 -25.1 15.55 57.9 45.4 11040 mid-shelf 41°64 9°07 99 0.28 1.73 -22.8 7.73 20.5 120.7 11041 inner shelf 41°80 9°02 93 0.51 0.68 -23.7 11.02 31.1 76.3 11042 mudbelt 41°72 9°02 95 0.75 0.78 -23.7 10.08 52.8 47.6 11043 inner shelf 41°55 9°00 84 0.41 0.80 -23.2 9.94 30.3 70.7 11044 mid-shelf 41°89 9°17 126 0.36 4.17 -22.2 8.36 30.2 92.6 MR1 River 42°05 8°52 - 0.87 0.00 -27.1 17.27 - - MR2 River 41°93 8°78 - 0.24 0.06 -25.4 6.47 - - CR River 41°52 8°74 - 2.80 0.53 -26.5 9.76 - - UR River 42°52 8°71 - 1.42 0.13 -25.9 11.33 - - RdV Tidal flat 42°35 8°71 - 4.16 0.40 -26.3 12.81 - - the southern inner shelf and close to rocky outcrops in the northern shelf area, where the sedimentismainlycomposedoffinetomiddlesand.TheTOCcontentvariedfrom0.14–

47 Chapter2

2.21% with the lowest values found at the outer shelf (Fig. 2.1) and was significantly correlatedwiththesiltdistribution(r=0.95)asobservedinseveralstudiesbefore(Keiletal.,

1994;Mayer,1994).ThemudbeltitselfhadTOCcontentsbetween0.73and2.21%,whichis contrasting to all other inner to midshelf stations that ranged between 0.28 and 0.54%.

Slightly lower values were observed in the sediments from the outer shelf region (0.14 –

0.49%). The TOC/TN ratio was significantly correlated with TOC and silt content (r = 0.82 and 0.72, respectively), whereas 13C of TOC was inversely correlated (r = 0.84 and 0.74, respectively).

Figure2.2.a)Siltcontent(grainsizeintervalof62.5–3.9m),b)13CTOC,andc)TOC/TNratioattheNWIberian margin.Dashedlinesrefertowaterdepth(fromtheleft:2000m,1000m,200m,100m).

2.4.2Distributionsoflipidbiomarkersandligninphenols

2.4.2.1Biomarkergrouping

Acorrelationanalysiswasperformedonallquantifiedbiomarkersandbulkpropertydatato reveal internal relationships. In order to reduce the data set and to facilitate data interpretation,themostabundantbiomarkerswerecombinedintogroupsaccordingtotheir sources (Table 2.2) and correlation coefficients (Table A2, Appendix A2). For example, all

5,22 and 5sterols in the range of C27toC29 were correlated (r > 0.80) and therefore combinedasindicatoroffreshmarinebiomass(sterols).Duetospecificsourceassignments, sterol biomarkers such as dinosterol, 24methylenecholestadienol, the C37:2 alkene or the triterpenoidfriedelinwereconsideredindividually.Allbulkparametersindicatingterrestrial input (13CTOC, TOC/TN, TOC content, silt content) generally agree well with the spatial

48 Sources,transport,andpartitioningoforganicmatter

distribution of lignins, plantderived triterpenonoids, BIT index, longchain C25toC35 n alkanes with high oddovereven carbon number predominance (LCalk), evennumbered longchainnalcoholswithachainlengthof22to32carbonatoms(LCOH),C16:0monoO alkyl glycerol ether (C16:0MAGE) and to a lesser extent the amount of plantderived triterpenols, phydroxyl phenols and evennumbered longchain nfatty acids with a chain length of 22 to 32 carbon atoms (LCFA). Sterols, shortchain nalcohols (SCOH including

C16:0andC16:1alcohol)andtheC18FAareinverselycorrelatedwith13CTOC.Severalspecific terrestrial biomarkers (LCalk, LCOH, LCFA, plantderived triterpenoids, lignin) and C16:0

MAGE,SCOHandC18FAcorrelatedwiththeTOCcontentinthesediment.Incontrast,the ratioof3,5dihydroxybenzoicacidtovanillylphenols(3,5Bd/V),theacidtoaldehyderatio of vanillyl ((Ad/Al)V) and the ratio ofphydroxyl phenols to syringyl and vanillyl phenols

(P/(S+V))increasedwithdecreasingTOC.MarinelipidbiomarkerswerenotrelatedtoTOC in the sediment. Similar patterns were observed in the relationship to the grain size distribution,i.e.,mostterrestrialbiomarkersincreasedwithincreasingsiltcontent,whereas marinebiomarkersdidnotcorrelatewiththesiltcontent.LCalk,lignin,andtheBITindex werecorrelatedwithTOC/TNratio,whilelignindegradationratios((Ad/Al)V,P/(S+V))were inverselycorrelatedwithTOC/TNratios.

2.4.2.2.Variationofbiomarkerdistributionsbetweensamples

Biomarkerconcentrationsweregenerallyhighestinthemudbeltsamplesanddecreasedwith increasing distance from the source rivers along the inner and midshelf area to the outer shelf and the continental slope (Table 2.3). Fig. 2.3 shows the biomarker distribution of a typicalmudbeltsample(GeoB11002).Highestconcentrationsofupto190g/gdryweight

(dw)wereobservedforligninphenolsinthesouthernpartsofthemudbeltatstationGeoB

11039 (Table 2.3). In general, concentrations of fatty acids and sterols, both absolute and relativetootherbiomarkers,werehighestinthesouthernregions,withmaximumvaluesof

180g/gdwand33g/gdwforshortchainfattyacids(SCFA)andsterols,respectively.Both compound groups showed the highest concentration at location GeoB 11042, indicating a stronginputofalgalOM.LCFAandLCOHyieldedconcentrationsof1.7to11g/gdwand

3.1to12g/gdwinthemudbelt.LCalkwereinthesameconcentrationrange,maximizingat nC31(Fig.2.2a).

49 Chapter2

Table2.2.Biomarkergrouping,internalcorrelation,andmainsourcesofsinglebiomarkersattheGalician margin.n.c.–nocorrelation.CorrelationindicesofSandVrefertothephenolicandtheacidicoxidation product.

Group/biomarker components correlation main source (reference)

LCalk Odd numbered C25 – C35 n-alkanes r > 0.72 Epicuticular plant waxes (Eglinton and Hamilton, 1967)

C37:2 alkene Coccolithophoridae, e.g., Emiliana huxleyi (Volkman et al., 1980)

HBI Monocyclic C25-triene, C25-triene 1, r > 0.57 Diatoms from the genus Rhizosolenia, Haslea, Navicula, Pleurosigma (Belt et al., C25-triene 2 2000; Belt et al., 2001; Massé et al., 2004)

Alkenone C37:2/37:3 alkenone r = 0.98 Coccolithophoridae, e.g., Emiliana huxleyi (Conte et al., 1994)

LCOH Even-numbered n-alcohols with a r > 0.62 Epicuticular plant waxes (Eglinton and Hamilton, 1967) chain length of C22-C32

Phytol Ester-linked side-chain of chlorophyll-a, degradation of chlorophyll (Johns et al., 1980; Sun et al., 1998)

Sterols 275,22, 275, 285,22, 285, 295,22, r > 0.80 Phytoplankton (Review by Volkman et al., 1998; Volkman, 2003) 295

Dinosterol Dinoflagellates (Boon et al., 1979)

24-Methylene- 285,24(28) Abundant in diatoms (Volkman, 1986 and references therein) cholestadienol

Alkyl-diols 1,15-C30:1-, 1,14-C30:0-, 1,15-C30:0- r > 0.75 Eustigmatophytes (Volkman et al., 1999) alkyl-diols & 12-hydroxy-C28 -fatty acid Plant-derived Taraxerol, -amyrin, lupeol r > 0.87 Angiosperm resin triterpenols

Plant-derived Taraxerone, -amyrone, lupenone r > 0.88 Oxidation of triterpenols (Medeiros and Simoneit, 2008) triterpenones

Friedelin Angiosperms LCFA Even numbered n-FA with a chain r > 0.70 Epicuticular pant waxes, minor source: microalgae, bacteria (Eglinton and length of C20-C30 Hamilton, 1967)

Sat.SCFA Saturated C14 – C16-fatty acid r > 0.83 Unspecific marine (Cranwell, 1982)

MUFA C16:15-, C16:17-, C18:17-, C18:19- r > 0.79 Alteration (Cranwell et al., 1987) fatty acid

PUFA Polyunsaturated fatty acids r = 0.81 Fresh phytoplankton biomass, mainly from diatoms (Shaw and Johns, 1985; including C20:4FA, C20:5FA Canuel and Martens, 1993)

C18:19-FA Zooplankton (Sargent, 1976)

C18:17-FA Bacteria (Cranwell, 1982)

BrFA i-+ai-C15, i-+ai-C17, 10-Me-C16-fatty r > 0.88 Bacteria (sulfate reducers) (Taylor and Parkes, 1983; Edlund et al., 1985; Kaneda, acid 1991)

C16:0-MAGE C16:0-Mono-O-alkyl glycerol ether Bacteria (Rütters et al., 2001)

Diploptene a) Soil (Prahl, 1985; Prahl et al., 1992) b) Marine OM (Venkatesan, 1988; Elvert et al., 2001)

C32-HOH C30-Hopanol, C32-bishomohopanol r = 0.80 Degradation product of highly functionalized biohopanoids (Innes et al., 1997; Winkler et al., 2001)

C32--HA C32--Hopanoic acid Degradation product of highly functionalized biohopanoids (Ourisson and Rohmer, 1992; Innes et al., 1997)

BHPs 32, 34-Anhydrobacterio- r > 0.81 Bacteria (Rohmer et al., 1980; Ourisson and Rohmer, 1982) hopanetetrol, bacteriahopanetetrol

3,5-Bd/V 3,5-Dihydroxybenzoic acid to vanillyl Soil (Prahl et al., 1994; Gordon and Goñi, 2003)

Lignin Vanillyl (V), syringyl (S), cinnamyl r > 0.50 Vascular plants (C), p-benzoic phenols (P) r > 0.70 (for S, V, P)

Vanillyl phenols Acetovanillone, vanillin, vanillic acid r = 0.87 Woody gymnosperms (Hedges and Mann, 1979)

Syringyl phenols Acetosyringone, syringealdehyde, r = 0.57 Woody angiosperms (Hedges and Mann, 1979) syringic acid

Cinnamyl phenols p-Coumaric acid, ferulic acid r = 0.52 Non-woody material (Hedges and Mann, 1979) p-Hydroxyl phenols p-Benzophenone, p-benzaldehyde, n.c. Lignin (Hedges et al., 1988) p-benzoic acid

50 Sources,transport,andpartitioningoforganicmatter

51 Chapter2

52 Sources,transport,andpartitioningoforganicmatter

Plantderivedtriterpenoidssuchasamyrin,lupeol,taraxerol,theircorrespondingketone derivatives, and friedelin were present in even lower concentrations than the plant wax components (LCalk, LCOH, LCFA), whereas bacteriohopanetetrol (BHT) and anhydrobacteriohopanetetrol(anhydroBHT)variedstronglyinaconcentrationrangefrom

2.1to17g/gdw.

Figure2.3.Gaschromatograms(FID)oflipidbiomarkerfractionsandCuOoxidationproductsfromthemudbelt sampleGeoB11002.a)hydrocarbon,b)esterandketonefraction,c)alcoholandsterolfraction,d)fattyacid fraction,andf)ligninfraction. 53 Chapter2

2.4.2.3Terrestrialbiomarkerinput

Withinthegroupofplantwaxcomponents,LCFAdivergedslightlyinthesouthernpartsof theinnerandmidshelffromthedistributionofLCalkandLCOH,i.e.,showingarelatively balanced distribution (Fig. 2.4, Table 2.3), whereas LCalk and LCOH were primarily accumulatedatstationsGeoB11039and11028.Plantwaxconstituentswereincreasedatthe continental slope with contents of up to 15 g/g dw. At the northern outer shelf, LCOH showedhighvaluescomparabletothenearbymidshelfarea.Longchainnalkaneswitha chainlengthof36to40carbonatoms(nC3640)butno carbonnumberpredominance(e.g.,

Fig.2.3a)wereobservedinallsamples.Theirspatialdistributiondivergedonlyslightlyfrom the plant wax pattern and thus these compounds may be derived from the same sources and/ortransportedbysimilarmechanisms. phydroxyl phenol concentrations ranged between 2.4 and 37 g/g dw with the highest amounts found at the northern shelf and were significantly correlated with vanillyl and syringyl phenols (r = 0.831), suggesting an origin of the phydroxyl phenols from lignin.

Possiblemarineprecursorsofphydroxylphenolssuchasproteins,aminosugars,andamino acids (Goñi and Hedges, 1995) were removed from the sediment samples by the lipid biomarkerextractionprocedurepriortotheCuOoxidationtreatment.

Figure2.4.DistributionofterrestrialorganicmatterontheNWIberianmarginindicatedbya)Ligninphenols, andb)plantwaxcomponents(nC2535,LCOHandLCFA).Dashedlinesrefertowaterdepth(fromtheleft:2000 m,1000m,200m,100m).

Thesumofallligninphenolsreachedthehighestconcentrationinthesouthernmostsample

GeoB11039(190g/gdw),followedbystationGeoB11025(150g/gdw)atthenorthern shelfandsamplesfromthesouthernmudbeltwithconcentrationsbetween110and140g/g

54 Sources,transport,andpartitioningoforganicmatter

(GeoB 11042, 11028 and 11029). The individual phenol groups of vanillyl, syringyl, p hydroxylandcinnamylphenolsgenerallyconfirmedthepartitioningoftotalligninphenols, except for the vanillyl phenols at station GeoB 11025. The relative contributions of single lignin phenol groups reflect different types of plant tissue (Table 4.2; Hedges and Mann,

1979).Theratioofsyringyltovanillylphenols(S/V)andcinnamyltovanillylphenols(C/V) reachedratherlowvaluesof0.31to0.81and0.02to0.35inthesedimentsofthesouthernto centralinnerandmidshelf(Table2.4).Bothratiosdisplayedageneraltrendtohighervalues attheoutershelfandinthenorthernpartoftheinnerandmidshelfarea,withaparticular enrichment in the central continental slope sample GeoB 11033. The ratio of 3,5Bd/V, a ligninbasedindicatorforsoilinput(Prahletal.,1994;GordonandGoñi,2003),yieldedlow valuesinthemudbeltandincreasedattheoutershelf(GeoB11020,11022,11032,11007)and the northern shelf region (e.g., GeoB 11025, 11016; Fig. 2.5a). By contrast, the BIT index, proposed as relative marker for soil input (Hopmans et al., 2004), showed only small variations at the GaliciaMinho shelf ranging between 0.04 in the northern outcrop and mudbeltareaand0.10inthecentralandsouthernmudbelt(Fig.2.5b,Table2.4).

Figure2.5.DistributionofsoilderivedOMontheNWIberianmarginindicatedbya)3,5Bd/Vratio,b)BITindex, andc)(Ad/Al)Vratio.Colorcodebelowreferstotypicallyobservedvaluesandwasadaptedfroma)Houeletal. (2006),b)Hopmansetal.(2004),andc)Goñietal.(1993).Dashedlinesrefertowaterdepth(fromtheleft:2000m, 1000m,200m,100m).

Plantderivedtriterpenoidsvariedstronglyintheinnershelfandmudbeltsamples(0.54to

6.6g/gdw)withenhancedconcentrationsatstationGeoB11039and11037inthesouthand at station GeoB 11010 in the central mudbelt. Friedelin was less abundant and showed an

55 Chapter2 accumulation at the mudbelt stations GeoB 11039 and 11003. Generally, these terrestrial biomarkersshowedadecreaseattheoutershelfandthecontinentalslope.

2.4.2.4Marinebiomarkerinput

Fig.2.6showsthedistributionoflipidbiomarkersfrommarinealgae.Dinosteroliswidely distributed in the sediments of the mudbelt and inner/midshelf area with the highest concentration of 15 g/g dw at the southern inner shelf station GeoB 11037. Similar distributional patterns were observed for other algal markers such as the alkyldiols, the sterol group, and 24methylenecholestadienol. Marine biomarkers decreased offshore with the exception of the central outer shelf station GeoB 11032. Highly branched isoprenoids

(HBIs)showedthehighestconcentrationofupto1.4g/gdwinthenorthernpartsofthe shelf(GeoB11016),regardlessofgrainsizedistributionorTOCcontentinthesediment(Fig.

2.6a). Areas of elevated accumulation of alkenones and the C37:2alkene appeared to be randomlyspreadoverthewholeshelfandexhibitedthehighestconcentrationsof1.7g/g dwatthecentralmudbeltstationGeoB11003.

Figure2.6.MarineorganicmatterproductionattheNWIberianmarginindicatedbya)HBIs(diatoms),b) dinosterol(dinoflagellates)andc)C37alkenones(coccolithophorides).Dashedlinesrefertowaterdepth(fromthe left:2000m,1000m,200m,100m).

SCOHwereratheraccumulatedinthecentralmudbelt(1.2to2.4g/gdw)andshowedonly low values in samples close to outcrops. Polyunsaturated fatty acids (PUFA) and monounsaturatedshortchainfattyacids(MUFA)showedingeneralelevatedvaluesinthe inner/midshelf area and decreased offshore. Remarkably high concentrations of bacterial biomarkers(upto33g/gdw)werefoundforthebranchedfattyacids(BrFAincludingi/ai

56 Sources,transport,andpartitioningoforganicmatter

C15andC17FAsand10methylC16FA),C16:0MAGE,andC18:17FAatthesouthernmudbelt station GeoB 11042 and the northern inner shelf station GeoB 11011. In contrast, BHPs as anotherindicatorofbacterialinputshowedveryhighconcentrations(upto38g/gdw)at other locations such as the inner/mid shelf stations GeoB 11016 and 11030 and the central outershelfatstationGeoB11008(Table2.3).Diplopteneandotherhopanoidsareelevatedin severalmudbeltsamples(GeoB11012,11028,and11039)anddeclineattheoutershelfand continentalslope.

The general distribution of terrestrial OM vs. aquatic OM is shown in the ratio of

SCFA/LCFA(Table2.4);thehighestvaluesof15to20wereobservedatthesouthernshelfat stations GeoB 11041, 11042, and 11043. In the central outer shelf SCFA were elevated, whereasthenorthernoffshoreregionswereratherdominatedbyLCFA.

2.4.3Inventoryoflipidbiomarkersandligninphenolsinthelocalrivers

Riverbanksedimentsfromthreelocalrivers(Minho,Cavado,andUllaRiver)andsediment samplesfromthetidalflatoftheRíadeVigo(RdV)wereanalyzedasareferenceforriver and landderived OM input. TOC ranged between 0.24% in the Minho River (MR2) and

4.16%intheRdVsample(Table2.1).TOC/TNand13CTOCreflectedterrestrialvaluesof9.8to

17.3and27.1to25.4‰,respectively.Themostabundantlipidbiomarkersintheriverbank sedimentsweresaturatedSCFAwithhighestconcentrationsof57and76g/gdwinMR1 and the Cavado River (CR), respectively. Sterols comprised the second most abundant compound group and were dominated by sitosterol. Dinosterol was present in all three riversamplesinconcentrationsupto14g/gdw,indicatingamigrationofdinoflagellates into the Galician rivers, probably in conjunction with red tides (e.g., Figueiras and Ríos,

1993). HBIs and several other algal biomarkers such as alkenones andC37:2 alkenes were eitherobservedatlowconcentrationsorbelowthedetectionlimit.

TheBITindexwasintherangeof0.72atMR1and0.96attheUllaRiver(UR)indicatinga strong impact of soil OM (Table 2.4). Lignin concentrations in the rivers of Galicia varied from16g/gdwatstationMR2to110g/gdwattheCR.Anevenhigheramountofupto

420g/gdwwasobtainedfromthetidalflatsedimentsoftheRdV.3,5Bdvariedstrongly betweenthesamplesfrom1.8g/gdw(MR2) to13g/g dw(UR).Consequently,the3,5

Bd/V ratio was as low as 0.25 and therefore below typical shelf values (Table 2.4).

DegradationproductsofBHPswereonlypresentinminoramounts,withC32hopanoic

57 Chapter2

acid(C32HA)reachingthehighestconcentrationsof1.7g/gdwatstationMR2,whereas totalBHPsvariedstronglybetweentheindividualsamplingsitesfrom1.0g/gdwatstation

MR1to32g/gdwintheRdV.

2.5DISCUSSION

2.5.1SourcesoforganicmatterattheGaliciaMinhoshelf

2.5.1.1Thecompositionofterrestrialorganicmatterontheshelf

ThebroadrangeofvaluesinTOC/TN(4.5to15.6)and13CTOC(21.0to25.1‰)insediments oftheGaliciaMinhoshelfisconsistentwithvariousdegreesofOMmixingfromcontinental andmarinesources(seealsoSchmidtetal.,2009).ElevatedTOC/TNvaluesbetween8.3and

15.6 and depleted 13CTOC values in the central mudbelt and the southern inner shelf may indicate substantial contributions of OM from terrestrial sources (Hedges et al., 1986) deliveredbytheDouroandMinhoRivers.ApredominantterrestrialOMsignalwouldshow

13CTOCvaluesintherangeof33to25‰(Petersetal.,1978;MiddelburgandNieuwenhuize,

1998).

Particularlyinthemudbelt,vascularplantmaterialplaysanimportantroleassuggestedby thehighlignincontent.S/Vvaluesof0.32to1.87(Table2.4)reflectlowcontributionsfrom gymnospermsandapredominanceofangiospermmaterial(GoñiandHedges,1992;seealso

Fig. 2.7). This is supported by a range of plantderived triterpenoids in the sediment that reflectthevegetationofthehinterland.ThecatchmentareaoftheMinhoandDouroRiversis predominated by angiosperm vegetation with oak trees and garigue in semiarid central

Spain and deciduous and mixed woodland as well as farmland in the humid north.

However,duetorecentmassivedamconstructionsintherivercourse,theplantOMinthe shelf sediments is probably mainly derived from the coastal region. The dominating angiospermvegetationisalsomirroredintheplantwaxcomponents.Themaximuminthe

LCalkdistributionatnC31,closelyfollowedbynC29,displayedintheaveragechainlength

(ACL) of nalkanes in Table 2.4, and the maximum of LCOH at nC26 is indicative for a mixtureofangiospermgrassesandtrees(Collisteretal.,1994a;Rommerskirchenetal.,2006).

Due to the rich, treedominated vegetation at the river sampling sites, the maximum for

LCalkisshiftedtonC29,atypicalindicationforangiospermtrees.Thistrendisevidentin

C/Vvaluesbelow0.22(Table2.4andFig.2.7)forwoodymaterial(GoñiandHedges,1992).

58 Sources,transport,andpartitioningoforganicmatter

Table2.4.VegetationandsoilratiosinallanalyzedsurfacesedimentsfromtheNWIberianmarginandsource rivers.ACL–nalkaneaveragechainlengthwhichistheweightedaveragenumberofCatomsinthe

rangefromC25toC33(PoynterandEglinton,1990).

Sample (GeoB) Location ACL SCFA/LCFA C/V S/V 3,5-Bd/V BIT 11001 Mudbelt 29.8 8.98 0.11 0.31 0.01 0.09 11002 Mudbelt 29.7 6.24 0.06 0.44 0.08 0.09 11003 Mudbelt 29.9 2.09 0.07 0.80 0.46 0.06 11010 Mudbelt 30.0 4.93 0.30 0.81 0.07 0.05 11012 Mudbelt 29.8 4.93 0.06 0.55 0.22 0.08 11017 Mudbelt 29.9 6.10 0.30 0.62 0.08 0.05 11028 Mudbelt 29.9 6.23 0.12 0.42 0.03 0.08 11029 Mudbelt 29.8 3.70 0.27 0.80 0.05 0.10 11039 Mudbelt 29.7 4.13 0.19 0.65 0.04 0.08 11042 Mudbelt 29.6 19.20 0.30 0.44 0.04 0.08 11011 Mid-shelf 29.6 10.63 0.47 0.93 0.87 0.04 11013 Mid-shelf 29.9 5.39 0.75 0.55 0.05 0.05 11016 Mid-shelf 30.0 6.25 0.32 0.68 0.67 0.04 11018 Mid-shelf 29.9 5.54 0.31 0.61 0.45 0.06 11025 Mid-shelf 30.0 10.71 0.64 1.87 1.60 0.09 11030 inner shelf 29.7 9.51 0.10 0.44 0.02 0.07 11037 Inner shelf 29.8 11.27 0.02 0.50 0.22 0.06 11038 Inner shelf 29.6 7.59 0.26 0.44 0.33 0.09 11040 Mid-shelf 29.7 7.49 0.08 1.03 0.26 0.05 11041 Inner shelf 29.3 15.81 0.35 0.61 0.07 0.08 11043 Inner shelf 29.5 15.02 0.12 0.50 0.14 0.07 11044 Mid-shelf 29.9 4.07 0.27 0.39 0.32 0.05 11004 Outer shelf 29.8 3.77 0.33 0.69 0.17 0.07 11005 Outer shelf 29.8 3.37 0.21 0.54 0.23 0.05 11006 Outer shelf 30.4 5.19 0.42 0.85 0.13 0.05 11007 Outer shelf 30.2 4.36 0.31 0.89 0.91 0.04 11008 Outer shelf 30.1 6.16 0.46 0.73 0.43 0.04 11009 Outer shelf 29.9 4.72 0.39 0.93 0.63 0.04 11014 Outer shelf 30.2 1.82 0.06 0.60 0.38 0.07 11015 Outer shelf 29.8 8.97 0.09 0.64 0.57 0.08 11019 Outer shelf 30.1 2.78 0.30 0.76 0.47 0.06 11020 Outer shelf 30.0 8.12 0.27 0.84 1.84 0.06 11022 Outer shelf 30.0 6.27 0.31 0.79 1.40 0.07 11027 Outer shelf 29.9 6.87 0.51 0.76 0.32 0.05 11031 Outer shelf 29.9 8.17 0.28 0.71 0.57 0.06 11032 Outer shelf 29.9 15.10 0.21 1.53 1.20 0.06 11021 Cont. slope 30.2 3.39 0.44 1.00 0.43 0.06 11023 Cont. slope 29.9 2.70 0.19 0.75 0.18 0.09 11024 Cont. slope 29.8 1.48 0.33 0.78 0.05 0.05 11033 Cont. slope 30.2 5.60 0.77 1.74 0.25 0.05 MR1 River 28.8 2.97 0.15 0.32 0.19 0.72 MR2 River 28.7 16.26 0.22 0.93 0.25 0.86 CR River 29.4 3.58 0.04 0.45 0.10 0.82 UR River 29.2 1.94 0.01 0.49 0.23 0.96 RdV Tidal flat 30.0 0.82 0.07 0.46 0.05 0.82

59 Chapter2

Intheshelfsediments,plantwaxesaccountforonequarteroftheplantwaxconcentrations detectedintheriverinesediments.LCOHwerealwaysmostabundant,closelyfollowedby

LCFA and LCalk, indicating rather fresh OM at the shelf (Cranwell, 1981). Moreover, the carbonpreferenceindex(CPI)fornalkanes(Table2.5)showedrelativelyhighvaluesthatare intherangeoffreshplanttissue(4.3to40.3;Collisteretal.,1994b).

Figure2.7.C/Vratiovs.S/Vratioforallmarine(Samplenames:GeoB110..)andriverinesamples(MR1,MR2,UR, CR,RdV)analyzedinthisstudy.Squaresindicatetypicalrangesforwoodyandnonwoodytissueofangioand gymnosperms,respectively.Symbolsrefertosamplinglocation:blackcircles–mudbelt,greycircles–innerand midshelf,yellowsquares–outershelf,redrhomb–continentalslope,greencrossrivers.

ThesoilderivedfractionofOMisidentifiedbytheBITindexandthe3,5Bd/Vratioinour dataset.BasedonBIT,thecontributionofsoilOMtothesedimentOMoffIberiaappearedto besmall.HighBITindicesbetween0.72and0.96testifiedtosoilOMinriverbanksediments but BIT values in shelf sediments were low and ranged from 0.04 to 0.10. These low BIT values are not unusual for shelf sediments as shown in previous studies (Hopmans et al.,

2004; Herfort et al., 2006; Kim et al., 2006). However, they are in stark contrast to the soil index 3,5Bd/V (Fig. 2.5). 3,5Bd/V appeared to be a more sensitive indicator of soil OM depositionattheNWIberianmarginandyieldedvaluesof0.01to1.84withgenerallyhigher values found offshore. These values are comparable to those reported in studies of other shelfsediments(e.g.,Prahletal.,1994;Goñietal.,2000).Thedisparityofthetwosoilindices suggests that they are associated with different soil fractions. 3,5Bd was detected in high

60 Sources,transport,andpartitioningoforganicmatter concentrationsinwoodandtannicacids(Dickensetal.,2007)andwasparticularlyenriched inthemineralhorizonofsoils(Houeletal.,2006),whereasnonisoprenoidalGDGTsused for calculation of the BIT index are presumed to be produced by anaerobic soil bacteria

(Weijersetal.,2006).Generally,theapplicationoftheBITindexiscriticalinregionswitha highprimaryproductivityandconsequentlyhighautochthonouscrenarchaeolinput,which will lower the BIT values and thus mask the allochthonous signal. Variations in primary productivitystronglyaffecttheBITindexandmaymisleadinglyappeartoindicatechanges insoilinputandriverrunoff.Inspectionoftherawdatasuggeststhatthevariationofthe

BIT index is largely governed by the spatial variation of crenarchaeol rather than the branchedtetraethers.3,5Bd/Vrepresentsamorerobust,absolutemeasureofthesoilinput andisthereforemoresuitablefordetectingsoilOMinthestudiedsystem.

2.5.1.2Marinecontributionstosedimentaryorganicmatter

Particularly in the northern shelf areas and offshore, elevated 13CTOC values and TOC/TN ratiosintherangeoftheRedfieldratioof~6.7(Redfield,1958)suggestedapredominanceof marine algal OM (Fig. 2.2b, c). The high abundance of sterols and SCFA indicated the accumulation of relatively fresh algal OM, probably as consequence of high marine productivityinareasofincreasedupwelling.Lowstanoltostenolratios(0/5<0.6,Table

2.5) in all areas reflected fresh unaltered material (Nishimura, 1982; Wakeham, 1989). The distributional pattern of sterols in river and marine sediments suggested that sterol contributions from higher land plants to the Galician shelf are only of minor importance.

Landplantderivedsitosteroldominatedbyfarintheriversediments,whereastheshelf sediments showed the following sterol abundance: cholesterol > sitosterol (295) > brassicasterol(285)>dinosterol>cholesta5,22dienol(275,22)24methylenecholestadienol

(285,24(28)) stigmasterol (295,22). In addition, sitosterol significantly correlated with the other algal sterols (r > 0.77) and algal compounds (e.g., alkyldiols, 12OHC28FA), suggesting diatoms or haptophyceae as main sources (see Volkman, 2003, and references therein).

More specific markers are HBIs which are produced only by a restricted range of diatom species (Table 2.2). Other characteristic biomarkers such as dinosterol indicate important contributions from dinoflagellates, whereas alkenones and C37:2alkene originate from specifichaptophyceaealgaesuchasEmilianiahuxleyi.

61 Chapter2

Table2.5.BiomarkerdegradationratiosattheNWIberianmarginandsourcerivers.CPI–carbonpreference indexfornalkanescalculatedovertherangeC24toC34(EglintonandHamilton,1963);HPA–higherplant alkanesindexbasedontheconcentrationsofC24,26,28nalcoholstoC27,29,31nalkanes(PoynterandEglinton,1990). P/(V+S)indicatessubaquaticdegradation(DittmarandLara,2001).

0 5 Sample (GeoB) Location CPI HPA / Alkene/ Alkenone (Ad/Al)V P/(S+V) 11001 Mudbelt 4.21 0.54 0.20 0.88 0.47 0.29 11002 Mudbelt 3.80 0.61 0.16 1.20 0.08 0.52 11003 Mudbelt 5.62 0.64 0.41 0.09 0.31 0.58 11010 Mudbelt 4.17 0.65 0.43 0.73 0.39 0.31 11012 Mudbelt 3.57 0.65 0.21 0.45 0.41 0.91 11017 Mudbelt 4.05 0.71 0.44 0.92 0.40 0.41 11028 Mudbelt 6.00 0.61 0.33 0.70 0.29 0.39 11029 Mudbelt 5.43 0.63 0.33 1.20 0.40 0.21 11039 Mudbelt 6.11 0.62 0.23 0.75 0.34 0.20 11042 Mudbelt 4.26 0.66 0.10 0.75 0.78 0.35 11011 Mid-shelf 2.69 0.72 0.27 0.48 11.56 1.72 11013 Mid-shelf 3.53 0.69 0.21 0.54 2.11 0.81 11016 Mid-shelf 5.08 0.62 0.34 0.80 0.98 1.30 11018 Mid-shelf 5.12 0.54 0.36 0.72 1.26 0.72 11025 Mid-shelf 6.07 0.74 0.33 0.37 1.81 0.39 11030 inner shelf 4.15 0.70 0.25 0.56 0.48 0.47 11037 Inner shelf 4.08 0.60 0.55 0.91 0.09 1.05 11038 Inner shelf 4.23 0.72 0.30 0.61 0.43 0.85 11040 Mid-shelf 4.30 0.73 0.47 1.74 0.55 1.01 11041 Inner shelf 3.41 0.63 0.15 0.60 0.88 0.60 11043 Inner shelf 4.37 0.70 0.13 0.58 0.14 0.87 11044 Mid-shelf 5.82 0.66 0.40 0.40 0.67 0.85 11004 Outer shelf 4.21 0.70 0.16 0.51 0.47 0.29 11005 Outer shelf 4.12 0.64 0.19 0.57 0.92 0.54 11006 Outer shelf 4.40 0.13 0.38 0.57 0.62 0.53 11007 Outer shelf 4.98 0.73 0.43 0.46 5.73 0.65 11008 Outer shelf 6.89 0.69 0.38 0.52 2.92 0.60 11009 Outer shelf 4.98 0.68 0.31 0.54 14.88 1.33 11014 Outer shelf 4.42 0.76 0.35 0.90 0.24 0.53 11015 Outer shelf 3.38 0.56 0.29 0.59 0.44 1.11 11019 Outer shelf 5.37 0.72 0.45 0.79 1.15 0.66 11020 Outer shelf 4.85 0.61 0.87 0.72 10.83 0.88 11022 Outer shelf 3.47 0.76 0.25 0.37 4.86 0.83 11027 Outer shelf 3.28 0.66 0.45 0.97 1.44 0.96 11031 Outer shelf 4.01 0.69 0.51 0.35 0.92 1.14 11032 Outer shelf 3.61 0.79 0.41 1.05 0.76 0.95 11021 Cont. slope 5.40 0.59 0.34 1.29 1.41 0.74 11023 Cont. slope 4.38 0.67 0.25 0.38 0.47 0.35 11024 Cont. slope 3.51 0.65 0.12 0.52 1.56 1.04 11033 Cont. slope 1.80 0.64 0.22 0.73 0.93 0.73 MR1 River 6.86 0.60 0.26 - 0.53 0.19 MR2 River 5.36 0.63 0.19 - 0.66 0.42 CR River 2.82 0.43 0.27 - 0.03 0.23 UR River 9.61 0.80 0.43 - 0.11 0.45 RdV Tidal flat 5.14 0.70 0.31 - 0.74 0.41

62 Sources,transport,andpartitioningoforganicmatter

These three algal groups were previously reported as main primary producers on the

GaliciaMinho shelf (e.g., Estrada, 1984; Bode et al., 2002). A more recent study found evidence that cyanobacteria account for 55 to 65% of the primary production at the NW

Iberianshelf(Lorenzoetal.,2005).However,thelowconcentrationsofhopanesandthelack ofspecificcyanobacterialmarkerssuchasmidchainmethylheptadecanes(Shieaetal.,1990;

Kenigetal.,1995)inthisstudysuggestthatcyanobacteriaarenotmajorcontributorstothe sedimentaryOM.

Theorganismsproducingtheabundant1,15C30:1,1,14C30,and1,15C30alkyldiolsandthe

12OHC28FAarenotfullyconstrained.C32alkyldiolswithapredominanceofthe1,15C32:0 andthe1,15C32:1isomerweredetectedineustigmatophyceaespecies(Volkmanetal.,1992), anddiatomsofthegenusProbosciaabundantlyproducesaturatedandmonounsaturatedC28

1,14diolsand12OHC28FA(Rampenetal.,2007).However,thesourcesforC30diols,which usuallyarethemostabundantdiolsinmarinesedimentsremainunclear(seealsoreviewby

Versteegh et al., 1997). In late Pleistocene sediments underlying highly productive surface watersintheSoutheastAtlantic,theabundanceofalkyldiolswasstronglycorrelatedwith other major algal biomarkers and TOC, suggesting that the producing algae were major contributors to paleoproductivity (Hinrichs et al., 1999). At the GaliciaMinho shelf, the distributionalpatternofalkyldiolsand12OHC28FAresembledthatofsterolsbutdiffers from HBIs (Tables 2.3, Figs. 2.6a and b), suggesting that the HBIs and alkyl diols are producedbydifferentgroupsoforganisms.

LowTOC/TNvaluesintherangeof5.5to7.7asfoundatthenorthernoutcropstationGeoB

11011couldindicateelevatedcontributionsofbacterialbiomasstothesedimentaryOMpool

(Fukudaetal.,1998).However,bacterialbiomarkerswerenotcorrelatedwithTOC/TNand theoriginofseveralofthebacterialbiomarkers,i.e.,insituproducedbiomassvs.inputfrom thewatercolumnorfromterrestrialsources,werehardtoassign.Forexample,diploptene correlatedwithmarinederivedHBIsandtheC37:2alkene,whichcouldindicateadominant marine origin (Venkatesan, 1988; Elvert et al., 2001). On the other hand, it was also significantlycorrelatedwithLCalkandwaspresentintheriversamples,whichwouldpoint toaterrestrialsource,e.g.,fromsoilOM(Prahl,1985;PrahlandHayes,1992).Likewise,the exact sources of BHPs in the shelf sediments could not be unambiguously identified.

Amongst others, BHT was identified in several environments, such as soils, marine sediments and cyanobacterial mats (see Talbot et al., 2008 and references therein). It

63 Chapter2 correlatedsignificantlywithanhydroBHT,apossibledegradationproduct(Schaefferetal.,

2008),butshowedadistinctdistributionalpatternfromallotherbiomarkers.Furthermore, bothcompoundsshowednocorrelationwithdegradationproductsofBHPs,i.e.,hopanes, hopanolsandhopanoicacids(Table2.2).

2.5.2Transportanddistributionalpatternsofterrestrialorganicmatter

The major fraction of the terrestrial OM is transported to the shelf in winter and spring during periods of maximum rainfall in the Iberian hinterland and occasional river floods

(Diasetal.,2002b).Theterrestrialmatterisprimarilydepositedclosetothesourceriversand redistributed during dynamic winter conditions (Vitorino et al., 2002). High shear wave velocities in winter, particularly during storm events, induce sediment remobilization, northward transport with the bottom currents, and probably also export of a sediment fraction across the shelf break (Dias et al., 2002b; Vitorino et al., 2002). These processes influencethelateraldistributionofOM(e.g.,Figs.2.4and2.7).Apparently,plantdebriswas hydrodynamic sorted and deposited in different areas of the shelf. High C/V ratios at the outershelfandcontinentalslopeindicatedanaccumulationofgrassandleafmaterial,i.e., softplanttissues.WoodymaterialwithlowC/Vratioswasdepositedclosertothecontinent andthesourceriversinthemudbeltsediments,thusshowingahighertotalligninphenol concentration, whereas the soft plant tissue was effectively transported offshore, probably due to its hydrodynamic properties. Plantderived triterpenoids resembled a partitioning similartothewoodyligninfraction(Table2.3)duetoanenrichmentofresinsinwood(e.g.,

Bulletal.,2000).DuetothehighabundanceofLCalk,LCOHandLCFAinepicuticularplant waxes(EglintonandHamilton,1967),whichareprimarilyassociatedwithsofttissues,one wouldexpectaspatialdistributionofplantwaxcomponentscomparabletoC/V.However, the high concentrations of plant wax components indicated a general abundance of plant waxesinsedimentsoffNWIberia(Fig.2.4b).Duetotheirpositionontheplantsurface,wax componentsaremoresusceptibletoweatheringthanligninswhicharepartofthecellwalls.

Therefore, beside remobilization by water leaching, runoff, and riverine transport, plant waxesarealsotransportedviatheatmosphere(e.g.,Schefussetal.,2003;Rommerskirchenet al.,2006).ThefrequentwildfiresinGaliciaandnorthernPortugalduringthehotanddry summermonthscouldpromoteahighabundanceofplantwaxcomponentsintheaerosols andtheoffshoredirectedwindsfromnorthandnortheastinsummerfavoranaeolianinput.

64 Sources,transport,andpartitioningoforganicmatter

SoilOMwasmainlytransportedoffshoreasindicatedbyelevated3,5Bd/Vratios(Fig.2.6a).

Coinciding with the increase in 3,5Bd/V is an increase in (Ad/Al)V offshore (Table 2.5), likewiseobservedinsoils(Houeletal.,2006),riverestuaries(Louchouarnetal.,1997)andon shelves (Prahl et al., 1994). (Ad/Al)V indicates aerobic degradation of lignin. As a consequence of propyl side chain oxidation in lignin macromolecules by whiterot fungi

(Goñietal.,1993),theacidicCuOoxidationproductsincreaseandresultin(Ad/Al)Vratios>

0.5. Low (Ad/Al)V values in the sediments from the inner/midshelf area suggested a deposition of fresh plant tissue, whereas values higher than 5 in the outer shelf and the northern outcrop region indicated highly degraded, preaged material. This fraction probablyderivedfromdegradedplantmaterialthatwasaccumulatedinthesoils,leached, andtransportedtothecontinentalmarginbywaterandriverrunoffaspartofsoilOM.

2.5.3SpatialOMdistributioninrelationtoseasonalplanktonecology

ParticletransportontheGaliciaMinhoshelfoccurspreferentiallyinthesurfacenepheloid layer (SNL) and the bottom nepheloid layer (BNL), the former enriched in large organic particlesandthelatterinsmallinorganicmaterial(Oliveiraetal.,2002).Theassociationof terrestrialOMwiththesiltfraction,asdiscussedabove,impliesadistributionofterrestrial

OMthatiscontrolledmainlybytheBNL,whereasthenoncorrelationofmarinebiomarkers with silt suggests a transport and partitioning that is distinct from the terrestrial OM and occurredmostlikelyintheSNL.However,thedistributionofmarinebiomarkersisnotonly theresultofatransportbehaviorthatisdistinctfromtheterrestrialOM;italsoreflectsthe seasonal and spatial succession of plankton assemblages. The seasonal phytoplankton successionstartsinspringwiththeonsetofupwellingresultinginadiatombloom,followed by a predominance of heterotrophic organisms in summer and a dinoflagellate bloom in autumn,thelatterinducedbystratifiedwaterconditionsafterthewindrelaxation(Figueiras andRíos,1993).

The high concentrations of HBIs in the northern parts of the shelf (> 42.25 °N, Fig. 2.6a) suggested an accumulation of diatomderived OM close to the NW Iberian upwelling cell furtherupintheNorthofthestudyarea.Diatomsdwellundereutrophicconditionsthatare causedbythenutrientrichupwellingwaterswhicharedominantlylocatedinthenorthern partsoftheGaliciaMinhoshelfduringthediatombloomperiodinspring(e.g.,Bodeetal.,

2002).ThepreferentialoccurrenceofHBIsrightinfrontoftheRíasBaixascouldalternatively

65 Chapter2 indicateabiomassexportoutoftheRías(e.g.,Tilstoneetal.,2000).Theprimaryproductivity in the Rías Baixas exceeds the shelf production by far due to their favorable growth conditions,i.e.,highnutrientinputfromlandandparticularlyfromtheupwellingcellintoa semiclosed protected environment (Prego, 1993; AlvarezSalgado et al., 1996; Alvarez

Salgado et al., 1999). Nevertheless, such an export of biomass should be visible in the dinosteroldistribution,sincedinoflagellateshavebeenreportedtoaccountfor13to30%of the primary productivity in the Ría de Vigo (Lorenzo et al., 2005). The dinosterol concentrationmaximaare,however,moreorlessrestrictedtotheinner/midshelf(Fig.2.6b), whichcorrespondtothefavoredhabitatofdinoflagellatesinautumn.Thehighdinosterol concentrationsatstationsGeoB11010(northernmudbelt)andGeoB11020(outershelf)could indicateremobilizationandredistributionofdinoflagellatederivedOMduringthedynamic wintermonths.Theformerstationparticularlyshowedalsoincreasedconcentrationsofmost of marine and terrestrial biomarkers as well as TOC which is most likely caused by the proximitytorockyoutcropsthatactassedimenttraps(Fig.2.1).

Haptophytesdonotsuccessfullycompetewithotherphytoplanktongroupssuchasdiatoms ordinoflagellatesandthereforearemoreadaptedtooligotrophicwaters(Winteretal.,1994).

This explains the fairly high alkenone concentrations farther offshore. In winter, the downwellingfrontseparatestwocontrastingenvironments(Castroetal.,1997);thecoastal areasexhibitmesotrophicconditionsduetothenutrientsupplyfromlandandprovidean environment for diatoms and larger dinoflagellates (AlvarezSalgado et al., 2003). The surface mixed layer of the PCCC with its oligotrophic conditions advances towards the continent together with the downwelling front, which shifts the habitat of haptophyceae algaeandsmallflagellatestothemidshelfregion.Theelevatedalkenoneconcentrationsin themidshelfarea(Fig.2.6c)mayreflectthewinterconditionsandtheonshoremovementof theoligotrophicplanktonassemblageduringthattime.

2.5.4OMprovincesontheGaliciaMinhoshelf

Representative biomarkers were subjected to a cluster analysis (Fig. 2.8) which revealed a partitioningoftheNWIberianmarginintothreemainregionswithdistinctOMprovenances

(Fig.2.9):theinnershelf,themuddominated,andtheoffshoreregion.Theinnershelfregion

(<130mwaterdepth)ischaracterizedbyahighOMinputfrommarinesourcesasindicated bythehighestvaluesofSCFA/LCFA.Theprimaryproductivityinthisregionisfuelledby

66 Sources,transport,andpartitioningoforganicmatter nutrientsupplyfromthecontinentandupwelling,resultinginhighconcentrationsofalgal biomarkerssuchassterols,alkyldiols,andSCFA.ThecomparablyhighabundanceofPUFA andMUFAsignalsfreshOM.Ligninconcentrationsvarystronglyintheinnershelfregion, consistentwithbypassingofterrestrialderivedOMtothemudbeltregionandeventually fartheroffshore.

Figure2.8.Clusteranalysisofselectedparametersandbiomarkersforallsedimentsamples(Samplenames:GeoB 110..)fromtheNWIberianmargin(variables:waterdepth,TOC,silt,TOC/TN,13CTOC,BIT,nC2535,nC3640,HBIs, alkenones,SCOH,LCOH,sterols,dinosterol,24methylenecholesterol,diols,higherplantderivedtriterpenoids, friedelin,LCFA,sat.SCFA,MUFA,PUFA,C18FA,C18:19,C18:17,BrFA,C16:0MAGE,diploptene,3,5Bd,V,S,C,P).

Theterrestrialmuddominatedregionextendsacrossthemidshelfareafrom41.8°to42.8°

N,comprisingmostofthemudbelt.Here,concentrationsofmostterrestriallipidbiomarkers andligninareparticularlyhigh.Comparedtothemarinedominatedinnershelfregion,the absoluteconcentrationsofmarinebiomarkersdecreaseonlyslightly(e.g.,dinosterol,alkyl diols and 12OHC28FA) or are invariable (e.g., alkenones, phytol, sterols, SCOH, HBIs).

High accumulation of terrestrial OM in the midshelf region generally dilutes the regular background sedimentation. Terrestrial OM from the Minho and Douro Rivers is redistributed and accumulated with the sedimentary material in this region, yielding the highestsiltandTOCcontents.Thesouthernmostbranchofthisregion(stationGeoB11039) is very likely directly fed by the Douro River including sediment remobilization from the

67 Chapter2

Douromudpatchlocatedfurtherinthesouth(Araújoetal.,1994;Dragoetal.,1998).The extension of the terrestrial muddominated region to the outer shelf in the North (GeoB

11020,11022and11025)ismainlyattributedtotheaccumulationofligninandsoilOMin thesesediments.ThetransportofterrestrialOMnotonlynorthwardbutalsooffshorecould indicateanexportpathwayforparticulatematterinthenorthernshelfareaassuggestedby

Diasetal.(2002).Asecondexportpathwayrunspossiblyacrosstheoutershelf,inthenorth oftherockyoutcropsborderingthesouthernshelfbreak(Fig.2.9)asimpliedbyabiomarker patternatstationGeoB11032thatissimilartothemarinedominatedinnershelfregion.

Figure2.9.OrganicmatterprovincesattheNWIberianmarginidentifiedbybiomarkersandbulkparameters fromtheclusteranalysis(Fig.2.8).Blueregions:marinedominatedinnershelf;greenregion:terrestrialmud dominatedmidshelfbelt;redregions:outershelfandcontinentalslope,yellowregions:starvedoutershelfand continentalslope.PieplotsshowmainOMfractionsindicatedbyselectedbiomarkers.BacteriaincludeBrFA, C18:2FA,C18:17,UFA–unsaturatedfattyacids,i.e.,MUFAandPUFA,MPP–mainprimaryproducers,i.e., dinosterol,alkenonesandHBIs.

Sediment remobilization, resuspension, and ultimately deposition are the main controlling factors in the terrestrial muddominated midshelf region. Consequently, increased degradation due to prolonged exposure to oxygen is expected. However, the fairly high

68 Sources,transport,andpartitioningoforganicmatter valuesofthehigherplantalkaneindex(HPA,Table2.5)intheinner/midshelfareasandthe low abundance of triterpenones in the sediment (less than 10% of the total plantderived triterpenoids),suggestlowoxidativedegradationinthesurficialsediments.Moreover,low

P/(S+V) values in the terrestrial muddominated region also indicate rather fresh lignin relative to the other OM provinces further corroborating the finding of reduced in situ degradationinthisregion.

The offshore region finally comprises the outer shelf and the continental slope and is dominatedbylowsedimentation,resultinginalowsiltandTOCcontentofthesediment.

The oligotrophic conditions in the PCCC result in a low marine productivity, which is reflected in the low concentrations of sterols and fatty acids. Terrestrial biomarker concentrationsinthisregionwereloweronanabsolutelevelbutelevatedrelativetomarine biomarkers, atrend that is especially pronounced in thestarvedoffshoreregions (Stations

GeoB 11006, 11023 and 11024; Fig. 2.9). This observation can be explained by the lower productivityincombinationwiththehigherwaterdepththatenhancesremineralizationof marineOM,whilepreagedandchemicallymoreresistantterrestrialOMismorelikelytobe preserved.

2.6CONCLUSIONS

Themultibiomarkerapproachappliedinthisstudyenabledtheidentificationofthemajor sourcesintheheterogeneoussedimentaryOMpoolattheNWIberianmargin.Accordingly, thecontinentalshelfwasclassifiedintothreedistinctOMregions:

The inner shelf region is predominated by marine OM as indicated by the high

abundanceofmarinelipidbiomarkersinsedimentswithintermediatecontentsofsilt

and TOC as well as by TOC/TN and 13CTOC values consistent with a predominant

OMinputbymarinealgae.

Theterrestrialdominatedmidshelfregionisthemaindepositionalareaontheshelf

and revealed the highest contents of silt and TOC and the lowest 13CTOC values,

corresponding to the GaliciaMinho mudbelt (Dias et al., 2002b and references

therein).Thesedimentscomprisehighconcentrationsofmarineandterrestriallipid

biomarkers, and strikingly high lignin phenol contributions at a low degradation

state.

69 Chapter2

Theoffshoreregion,i.e.,theoutershelfandthecontinentalslopereceivesonlylittle

sediment and OM input, resulting in characteristically low concentrations of silt,

TOC, and lipid biomarkers. Furthermore, lipid biomarkers provide evidence that

starved regions are indicated by an advanced degradation state of marine and

terrestrial OM and a relative enrichment of terrestrial lipid biomarkers. This

predominance of terrestrial components is, however, not reflected in TOC/TN and

13CTOC.

ThedistributionofOMiscontrolledbyacomplexandseasonallyvaryinginterplayofocean currents, primary productivity, atmospheric conditions, and river runoff. Controls differ between terrestrial and marine OM pools with hydrodynamic sorting governing the partitioningofterrestrialOM.Thetransportanddepositionofsofttissueisfavoredoffshore, whereas woody material is accumulated in the midshelf mudbelt after shorter transport times. Soil OM behaves in a similar manner to the soft tissue and is preferentially accumulatedinthenorthernpartsofthestudyareaandontheoutershelf.Onthecontrary, the distribution of marine OM reflects the seasonal and spatial succession of plankton assemblagesandisdirectlycontrolledbytheoceanographicconditions.

Acknowledgements

WethankthecrewandshipboardscientificpartyofRVPoseidoncruiseP342GALIOMAR, particularly the chief scientist Till Hanebuth. We thank Brit Kockisch for assistance with sample collection and for TOC measurements. We are grateful to Gesine Mollenhauer for providing access to her HPLCMS system for BIT analysis and to JanBerend Stuut for assistanceingrainsizeanalysis.WethankHellaBuschoffforTNandTCanalysis,Monika

Seglfor13CTOCmeasurements,XavierPrietoandKevinBeckerforsupportinthelab,and

Daniel Birgel and Arne Leider for fruitful discussions and comments on data and the manuscript. Funding was provided by the “Deutsche Forschungsgemeinschaft” through

DFGResearchCenter/ExcellenceCluster“TheOceanintheEarthSystem”andtheBremen

InternationalGraduateSchoolforMarineSciences(GLOMAR).

70 Sources,transport,andpartitioningoforganicmatter

REFERENCES(HINRICHSETAL.,2000;TALBOTETAL.,2001)

AltEpping, U., MilHomens, M., Hebbeln, D., Abrantes, F. and Schneider, R.R., 2007. Provenance of organic matter and nutrient conditions on a river and upwelling influencedshelf:AcasestudyfromthePortugueseMargin.MarineGeology,243(14): 169179. AlvarezSalgado,X.A.,Doval,M.D.andPerez,F.F.,1999.Dissolvedorganicmatterinshelf waters off the Ria de Vigo (NW Iberian upwelling system). Journal of Marine Systems,18(4):383394. AlvarezSalgado,X.A.,Figueiras,F.G.,Perez,F.F.,Groom,S.,Nogueira,E.,Borges,A.etal., 2003. The Portugal coastal counter current off NW Spain: new insights on its biogeochemicalvariability.ProgressinOceanography,56(2):281321. AlvarezSalgado,X.A.,Rosón,G.,Pérez,F.F.,Figueiras,F.G.andPazos,Y.,1996.Nitrogen cycling in an estuarine upwelling system, the Ría de Arousa (NW Spain). I. Short timescalepatternsofhydrodynamicandbiogeochemicalcirculation.MarineEcology ProgressSeries,135:259273. Araújo,M.F.,Dias,J.M.A.andJouanneau,J.M.,1994.Chemicalcharacterizationofthemain finesedimentarydepositatthenorthwesternportugueseshelf.GAIA,9:5965. Araújo, M.F., Jouanneau, J.M., Valério, P., Barbosa, T., Gouveia, A., Weber, O. et al., 2002. Geochemical tracers of northern Portuguese estuarine sediments on the shelf. ProgressinOceanography,52(24):277297. Belt, S.T., Allard, W.G., Massé, G., Robert, J.M. and Rowland, S.J., 2000. Highly branched isoprenoids (HBIs): identification of the most common and abundant sedimentary isomers.GeochimicaetCosmochimicaActa,64(22):38393851. Belt, S.T., Allard, W.G., Massé, G., Robert, J.M. and Rowland, S.J., 2001. Structural characterisation of C30 highly branched isoprenoid alkenes (rhizenes) in the marine diatomRhizosoleniasetigera.TetrahedronLetters,42(32):55835585. Bode,A.,Varela,M.,Casas,B.andGonzález,N.,2002.IntrusionsofeasternNorthAtlantic centralwatersandphytoplanktoninthenorthandnorthwesternIberianshelfduring spring.JournalofMarineSystems,36(34):197218. Boon,J.J.,Rijpstra,W.I.C.,deLange,F.,deLeeuw,J.W.,Yoshioka,M.andShimizu,Y.,1979. Blackseasterolamolecularfossilfordinoflagellateblooms.Nature,277(5692):125 127. Bull, I.D., Bergen, P.F., Nott, C.J., Poulton, P.R. and Evershed, R.P., 2000. Organic geochemicalstudiesofsoilsfromtheRothamstedclassicalexperimentsV.Thefate oflipidsindifferentlongtermexperiments.OrganicGeochemistry,31(5):389408. Canuel, E.A. and Martens, C.S., 1993. Seasonal variations in the sources and alteration of organicmatterassociatedwithrecentlydepositedsediments.OrganicGeochemistry, 20(5):563577. Castro,C.G.,AlvarezSalgado,X.A.,Figueiras,F.G.,Perez,F.F.andFraga,F.,1997.Transient hydrographic and chemical conditions affecting microplankton populations in the coastal transition zone of the Iberian upwelling system (NW Spain) in September 1986.JournalofMarineResearch,55:321352. Collister, J.W., Lichtfouse, E., Hieshima, G. and Hayes, J.M., 1994a. Partial resolution of sources of nalkanes in the saline portion of the Parachute Creek Member, Green River Formation (Piceance Creek Basin, Colorado). Organic Geochemistry, 21(67): 645659.

71 Chapter2

Collister,J.W.,Rieley,G.,Stern,B.,Eglinton,G.andFry,B.,1994b.Compoundspecific13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. OrganicGeochemistry,21(67):619627. Conte,M.H.,Thompson,A.andEglinton,G.,1994.Primaryproductionoflipidbiomarker compoundsbyEmilianiahuxleyi.Resultsfromanexperimentalmesocosmstudyin fjordsofsouthwesternNorway.Sarsia,79(4):319331. Cowie, G.L., Hedges, J.I., Prahl, F.G. and de Lance, G.J., 1995. Elemental and major biochemicalchangesacrossanoxidationfrontinarelictturbidite:Anoxygeneffect. GeochimicaetCosmochimicaActa,59(1):3346. Cranwell,P.A.,1981.Diagenesisoffreeandboundlipidsinterrestrialdetritusdepositedina lacustrinesediment.OrganicGeochemistry,3:7989. Cranwell,P.A.,1982.Lipidsofaquaticsedimentsandsedimentingparticulates.Progressin LipidResearch,21(4):271308. Cranwell,P.A.,Eglinton,G.andRobinson,N.,1987.Lipidsofaquaticorganismsaspotential contributorstolacustrinesedimentsII.OrganicGeochemistry,11(6):513527. Dias, J.M.A., Gonzalez, R., Garcia, C. and DiazDelRio, V., 2002a. Sediment distribution patterns onthe GaliciaMinho continental shelf. Progress in Oceanography, 52(24): 215231. Dias,J.M.A.,Jouanneau,J.M.,Gonzalez,R.,Araújo,M.F.,Drago,T.,Garcia,C.etal.,2002b. Present day sedimentary processes on the northern Iberian shelf. Progress in Oceanography,52(24):249259. Dickens, A.F., Gudeman, J.A., Gélinas, Y., Baldock, J.A., Tinner, W., Hu, F.S. et al., 2007. Sources and distribution of CuOderived benzene carboxylic acids in soils and sediments.OrganicGeochemistry,38(8):12561276. Dittmar, T. and Lara, R.J., 2001. Molecular evidence for lignin degradation in sulfate reducing mangrove sediments (Amazônia, Brazil). Geochimica et Cosmochimica Acta,65(9):14171428. Drago, T., Oliveira, A., Magalhaes, F., Cascalho, J., Jouanneau, J.M. and Vitorino, J., 1998. Some evidence of northward fine sediment transport in the northern Portuguese continentalshelf.OceanologicaActa,21(2):223231. Edlund, A., Nichols, P.D., Roffey, R. and White, D.C., 1985. Extractable and lipopolysaccharidefattyacidandhydroxyacidprofilesfromDesulfovibriospecies. TheJournalofLipidResearch,26(8):982988. Eglinton, G. and Hamilton, R.J., 1963. The distribution of alkanes. In: T. Swain (Editor), ChemicalPlantTaxonomy.AcademicPressNewYork,pp.187217. Eglinton,G.andHamilton,R.J.,1967.Leafepicularwaxes.Science,208. Elvert, M., Whiticar, M.J. and Suess, E., 2001. Diploptene in varved sediments of Saanich Inlet:indicatorofincreasingbacterialactivityunderanaerobicconditionsduringthe Holocene.MarineGeology,174(1):371383. Estrada, M., 1984. Phytoplankton distribution and composition off the coast of Galicia (northwestofSpain).JournalofPlanktonResearch,6(3):417434. Figueiras, F.G. and Ríos, A.F., 1993. Phytoplankton succession, red tides, and the hydrographic regime in the Rías Bajas of Galicia. In: T.J. Smayda and Y. Shimizu (Editors), Toxic Phytoplankton Blooms in the Sea. Elsevier Publishing Company, NewYork,pp.239244. Frouin,R.,Fiúza,A.F.G.,Ambar,I.andBoyd,T.J.,1990.Observationsofapolewardsurface current off the coasts of Portugal and Spain during winter. Journal of Geophysical Research,95(C1):679691.

72 Sources,transport,andpartitioningoforganicmatter

Fukuda,R.,Ogawa,H.,Nagata,T.andKoike,I.,1998.Directdeterminationofcarbonand nitrogencontentsofnaturalbacterialassemblagesinmarineenvironments.Applied andenvironmentalmicrobiology,64(9):33523358. Goñi, M.A. and Hedges, J.I., 1992. Lignin dimers: Structures, distribution, and potential geochemicalapplications.GeochimicaetCosmochimicaActa,56(11):40254043. Goñi,M.A.andHedges,J.I.,1995.Sourcesandreactivitiesofmarinederivedorganicmatter in coastal sediments as determined by alkaline CuO oxidation. Geochimica et CosmochimicaActa,59(14):29652981. Goñi,M.A.,Nelson,B.,Blanchette,R.A.andHedges,J.I.,1993.Fungaldegradationofwood lignins: Geochemical perspectives from CuOderived phenolic dimers and monomers.GeochimicaetCosmochimicaActa,57(16):39854002. Goñi, M.A., Ruttenberg, K.C. and Eglinton, T.I., 1998. A reassessment of the sources and importance of landderived organic matter in surface sediments from the Gulf of Mexico.GeochimicaetCosmochimicaActa,62(18):30553075. Goñi, M.A., Yunker, M.B., Macdonald, R.W. and Eglinton, T.I., 2000. Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and BeaufortShelf.MarineChemistry,71(12):2351. Goñi, M.A., Yunker, M.B., Macdonald, R.W. and Eglinton, T.I., 2005. The supply and preservationofancientandmoderncomponentsoforganiccarbonintheCanadian BeaufortShelfoftheArcticOcean.MarineChemistry,93(1):5373. Gordon,E.S.andGoñi,M.A.,2003.Sourcesanddistributionofterrigenousorganicmatter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico. GeochimicaetCosmochimicaActa,67(13):23592375. Hammer, Ø., Harper, D.A.T., Ryan, P.D. , 2001. PAST: Palaeontological Statistics software packageforeducationanddataanalysis.PalaeontologiaElectronica4(1). Hanebuth,T.J.J.andparticipants,c.,2007.ReportandfirstresultsofthePOSEIDONCruise P342 GALIOMAR, Vigo Lisboa (Portugal), August 19th September 06th, 2006. Distributional pattern, residence times and export of sediments on the pleistocene/holocene Galician shelf (NW Iberian Peninsula). Berichte, Fachbereich Geowissenschaften,UniversitätBremen,255. Hedges,J.I.,Blanchette,R.A.,Weliky,K.andDevol,A.H.,1988.Effectsoffungaldegradation ontheCuOoxidationproductsoflignin:Acontrolledlaboratorystudy.Geochimica etCosmochimicaActa,52(11):27172726. Hedges,J.I.,Clark,W.A.,Quay,P.D.,Richey,J.E.andDevol,A.H.,1986.Compositionsand fluxes of particulate organic material in the Amazon River. Limnology and Oceanography,31(4):717738. Hedges,J.I.andErtel,J.R.,1982.Characterizationofligninbygascapillarychromatography ofcupricoxideoxidationproducts.AnalyticalChemistry,54(2):174178. Hedges, J.I. and Keil, R.G., 1995. Sedimentary organic matter preservation: an assessment andspeculativesynthesis.MarineChemistry,49(23):81115. Hedges, J.I. and Mann, D.C., 1979. The characterization of plant tissues by their lignin oxidationproducts.GeochimicaetCosmochimicaActa,43(11):18031807. Hedges,J.I.andParker,P.L.,1976.Landderivedorganicmatterinsurfacesedimentsfrom theGulfofMexico.GeochimicaetCosmochimicaActa,40(9):10191029. Herfort, L., Schouten, S., Boon, J.P., Woltering, M., Baas, M., Weijers, J.W.H. et al., 2006. Characterization of transport and deposition of terrestrial organic matter in the southernNorthSeausingtheBITindex.LimnologyandOceanography,51(5):2196.

73 Chapter2

Hinrichs,K.U.,Summons,R.E.,Orphan,V.,Sylva,S.P.andHayes,J.M.,2000.Molecularand isotopicanalysesofanaerobicmethaneoxidizingcommunitiesinmarinesediments. OrganicGeochemistry,31:16851701. Hinrichs,K.U.,Schneider,R.R.,Müller,P.J.andRullkötter,J.,1999.Abiomarkerperspective onpaleoproductivityvariationsintwoLateQuaternarysedimentsectionsfromthe SoutheastAtlanticOcean.OrganicGeochemistry,30(5):341366. Hopmans, E.C., Weijers, J.W.H., Schefuss, E., Herfort, L., Sinninghe Damste, J.S. and Schouten,S.,2004.Anovelproxyforterrestrialorganicmatterinsedimentsbasedon branchedandisoprenoidtetraetherlipids.EarthandPlanetaryScienceLetters,224(1 2):107116. Houel,S.,Louchouarn,P.,Lucotte,M.,Canuel,R.andGhaleb,B.,2006.Translocationofsoil organicmatterfollowingreservoirimpoundmentinborealsystems:Implicationsfor insituproductivity.LimnologyandOceanography,51(3):14971513. Innes,H.E.,Bishop,A.N.,Head,I.M.andFarrimond,P.,1997.Preservationanddiagenesisof hopanoids in recent lacustrine sediments of Priest Pot, England. Organic Geochemistry,26(910):565576. Johns, R.B., Gillan, F.T. and Volkman, J.K., 1980. Early diagenesis of phytyl esters in a contemporary temperate intertidal sediment. Geochimica et Cosmochimica Acta, 44(2):183188. Jouanneau,J.M.,Weber,O.,Drago,T.,Rodrigues,A.,Oliveira,A.,Dias,J.M.A.etal.,2002. RecentsedimentationandsedimentarybudgetsonthewesternIberianshelf.Progress inOceanography,52(24):261275. Kaneda, T., 1991. Isoand anteisofatty acids in bacteria: biosynthesis, function, and taxonomicsignificance.MicrobiologyandMolecularBiologyReviews,55(2):288302. Keil,R.G.,Tsamakis,E.,Fuh,C.B.,Giddings,J.C.andHedges,J.I.,1994.Mineralogicaland textural controls on the organic composition of coastal marine sediments: HydrodynamicseparationusingSPLITTfractionation.GeochimicaetCosmochimica Acta,58(2):879893. Kenig,F.,SinningheDamsté,J.S.,KockvanDalen,A.C.,Rijpstra,W.I.C.,Huc,A.Y.andde Leeuw, J.W., 1995. Occurrence and origin of mono, di, and trimethylalkanes in modernandHolocenecyanobacterialmatsfromAbuDhabi,UnitedArabEmirates. GeochimicaetCosmochimicaActa,59(14):29993015. Kim, J.H., Schouten, S., Buscail, R., Ludwig, W., Bonnin, J., Sinninghe Damsté, J.S. et al., 2006.OriginanddistributionofterrestrialorganicmatterintheNWMediterranean (Gulf of Lions): Exploring the newly developed BIT index. Geochemistry, Geophysics,andGeosystems,7. Kuzyk,Z.Z.A.,Goñi,M.A.,Stern,G.A.andMacdonald,R.W.,2008.Sources,pathwaysand sinks of particulate organic matter in Hudson Bay: Evidence from lignin distributions.MarineChemistry,112(34):215229. Lorenzo,L.M.,Arbones,B.,Tilstone,G.H.andFigueiras,F.G.,2005.Acrossshelfvariability ofphytoplanktoncomposition,photosyntheticparametersandprimaryproductionin theNWIberianupwellingsystem.JournalofMarineSystems,54(14):157173. Louchouarn,P.,Lucotte,M.,Canuel,R.,Gagné,J.P.andRichard,L.F.,1997.Sourcesand earlydiagenesisofligninandbulkorganicmatterinthesedimentsoftheLowerSt. LawrenceEstuaryandtheSaguenayFjord.MarineChemistry,58(12):326. Massé,G.,Belt,S.T.,GuyAllard,W.,AnthonyLewis,C.,Wakeham,S.G.andRowland,S.J., 2004. Occurrence of novel monocyclic alkenes from diatoms in marine particulate matterandsediments.OrganicGeochemistry,35(7):813822.

74 Sources,transport,andpartitioningoforganicmatter

Mayer,L.M.,1994.Surfaceareacontroloforganiccarbonaccumulationincontinentalshelf sediments.GeochimicaetCosmochimicaActa,58(4):12711284. Medeiros,P.M.andSimoneit,B.R.T.,2008.Multibiomarkercharacterizationofsedimentary organic carbon in small rivers draining the Northwestern United States. Organic Geochemistry,39(1):5274. Middelburg, J.J. and Nieuwenhuize, J., 1998. Carbon and nitrogen stable isotopes in suspendedmatterandsedimentsfromtheScheldeEstuary.MarineChemistry,60(3 4):217225. Moodley, L., Middelburg, J.J., Herman, P.M.J., Soetaert, K. and de Lange, G.J., 2005. Oxygenation and organicmatter preservation in marine sediments: Direct experimental evidence from ancient organic carbonrich deposits. Geology, 33(11): 889892. Nishimura,M.,1982.5isomersofstanolsandstanonesaspotentialmarkersofsedimentary organic quality and depositional paleoenvironments. Geochimica et Cosmochimica Acta,46(423):32. Oliveira, A., Vitorino, J., Rodrigues, A., Jouanneau, J.M., Dias, J.A. and Weber, O., 2002. Nepheloid layer dynamics in the northern Portuguese shelf. Progress in Oceanography,52(24):195213. Ourisson, G. and Rohmer, M., 1982. Prokaryotic polyterpenes: Phylogenetic precursors of sterols.In:F.BronnerandA.Kleinzeller(Editors),MembraneLipidsofProkaryotes, Current Topics in Membranes and Transport. Academic Press, New York, pp. 153 182. Ourisson,G.andRohmer,M.,1992.Hopanoids.2.Biohopanoids:anovelclassofbacterial lipids.AccountsofChemicalResearch,25(9):403408. Perdue,E.M.andKoprivnjak,J.F.,2007.UsingtheC/Nratiotoestimateterrigenousinputs oforganicmattertoaquaticenvironments.Estuarine,CoastalandShelfScience,73(1 2):6572. Peters,K.E.,Sweeney,R.E.andKaplan,I.R.,1978.Correlationofcarbonandnitrogenstable isotoperatiosinsedimentaryorganicmatter.Limnol.Oceanogr,23(4):598604. Poynter,J.andEglinton,G.,1990.MolecularcompositionofthreesedimentsfromHole717C: the Bengal Fan. Proceedings of the Ocean Drilling Program Scientific Results, 116: 155161. Prahl, F.G., 1985. Chemical evidence of differential particle dispersal in the southern washington coastal environment. Geochimica et Cosmochimica Acta, 49(12): 2533 2539. Prahl,F.G.,DeLange,G.J.,Scholten,S.andCowie,G.L.,1997.Acaseofpostdepositional aerobic degradation of terrestrial organic matter in turbidite deposits from the MadeiraAbyssalPlain.OrganicGeochemistry,27(34):141152. Prahl, F.G., Ertel, J.R., Goñi, M.A., Sparrow, M.A. and Eversmeyer, B., 1994. Terrestrial organiccarboncontributionstosedimentsontheWashingtonmargin.Geochimicaet CosmochimicaActa,58(14):30353048. Prahl,F.G.andHayes,J.M.,1992.Diploptene:anindicatorofterrigenousorganiccarbonin Washingtoncoastalsediments.LimnologyandOceanography:12901300. Prahl,F.G.,Hayes,J.M.andXie,T.M.,1992.Diploptene:anindicatorofterrigenousorganic carboninWashingtoncoastalsediments.LimnologyandOceanography,37(6):1290 1300. Prego,R.,1993.GeneralaspectsofcarbonbiogeochemistryintheriaofVigo,northwestern Spain.GeochimicaetCosmochimicaActa,57(9):Pages:20412052.

75 Chapter2

Ramaswamy,V.,Gaye,B.,Shirodkar,P.V.,Rao,P.S.,Chivas,A.R.,Wheeler,D.etal.,2008. Distributionandsourcesoforganiccarbon,nitrogenandtheirisotopicsignaturesin sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea.MarineChemistry,111(34):137150. Rampen,S.W.,Schouten,S.,Wakeham,S.G.andSinningheDamste,J.S.,2007.Seasonaland spatialvariationinthesourcesandfluxesoflongchaindiolsandmidchainhydroxy methylalkanoatesintheArabianSea.OrganicGeochemistry,38(2):165179. Redfield,A.C.,1958.Thebiologicalcontrolofchemicalfactorsintheenvironment.American Scientist,46(3):205221. Rey Salgado, L., 1993. Relacion morphosedimentaria entre la plataforma continental de Galicia y las rias bajas y su evolucion durante el Cuaternario. Publicaciones EspecialesInstitutodeOceanografia,17:233. Rohmer, M., Dastillung, M. and Ourisson, G., 1980. Hopanoids from C30 to C35 in recent muds.Naturwissenschaften,67(9):456458. Rommerskirchen, F., Plader, A., Eglinton, G., Chikaraishi, Y. and Rullkötter, J., 2006. Chemotaxonomicsignificanceofdistributionandstablecarbonisotopiccomposition of longchain alkanes and alkan1ols in C4 grass waxes. Organic Geochemistry, 37(10):13031332. Rütters,H.,Sass,H.,Cypionka,H.andRullkötter,J.,2001.Monoalkyletherphospholipidsin the sulfatereducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus.ArchMicrobiol,176(6):43542. Sargent, J.R., 1976. The structure, metabolism and function of lipids in marine organisms. BiochemicalandBiophysicalPerspectivesinMarineBiology,3:149–212. Schaeffer,P.,Schmitt,G.,Adam,P.andRohmer,M.,2008.Acidcatalyzedformationof32,35 anhydrobacteriohopanetetrol from bacteriohopanetetrol. Organic Geochemistry, 39(10):14791482. Schefuss, E., Ratmeyer, V., Stuut, J.B.W., Jansen, J.H.F. and Sinninghe Damste, J.S., 2003. Carbon isotope analyses of nalkanes in dust from the lower atmosphere over the centraleasternAtlantic.GeochimicaetCosmochimicaActa,67(10):17571767. Schmidt, F., Elvert, M., Koch, B.P., Witt, M. and Hinrichs, K.U., 2009. Molecular characterization of dissolved organic matter in pore water of continental shelf sediments.GeochimicaetCosmochimicaActa,73(11):33373358. Schubert,C.J.andCalvert,S.E.,2001.Nitrogenandcarbonisotopiccompositionofmarine and terrestrial organic matter in Arctic Ocean sediments:: implications for nutrient utilizationandorganicmattercomposition.DeepSeaResearchPartI:Oceanographic ResearchPapers,48(3):789810. Schlitzer,R.,2002.OceanDataViewsoftware.www.awibremerhaven.de/geo/odv. Shaw,P.M.andJohns,R.B.,1985.OrganicgeochemicalstudiesofarecentInnerGreatBarrier ReefsedimentI.Assessmentofinputsources.OrganicGeochemistry,8(2):147156. Shiea, J., Brassell, S.C. and Ward, D.M., 1990. Midchain branched mono and dimethyl alkanes in hot spring cyanobacterial mats: A direct biogenic source for branched alkanesinancientsediments?OrganicGeochemistry,15(3):223231. Sun, M.Y.i., Aller, R.C., Lee, C. and Wakeham, S.G., 2002. Effects of oxygen and redox oscillation on degradation of cellassociated lipids in surficial marine sediments. GeochimicaetCosmochimicaActa,66(11):20032012. Sun, M.Y., Wakeham, S.G., Aller, R.C. and Lee, C., 1998. Impact of seasonal hypoxia on diagenesis of phytol and its derivatives in Long Island Sound. Marine Chemistry, 62(12):157173.

76 Sources,transport,andpartitioningoforganicmatter

Talbot, H.M., Summons, R.E., Jahnke, L.L., Cockell, C.S., Rohmer, M. and Farrimond, P., 2008. Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmentalsettings.OrganicGeochemistry,39(2):232263. Talbot, H.M., Watson, D.F., Murrell, J.C., Carter, J.F. and Farrimond, P., 2001. Analysis of intactbacteriohopanepolyolsfrommethanotrophicbacteriabyreversedphasehigh performanceliquidchromatographyatmosphericpressurechemicalionisationmass spectrometry.JournalofChromatographyA,921(2):175185. Taylor, J. and Parkes, R.J., 1983. The cellular fatty acids of the sulphatereducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. Journal of generalmicrobiology,129(11):33033309. TenHaven,H.L.,Peakman,T.M.andRullkötter,J.,1992.Earlydiagenetictransformationof higherplant triterpenoids in deepsea sediments from Baffin Bay. Geochimica et CosmochimicaActa,56(5):20012024. Tesi, T., Miserocchi, S., Goñi, M.A. and Langone, L., 2007. Source, transport and fate of terrestrial organic carbon on thewestern MediterraneanSea, Gulf of Lions, France. MarineChemistry,105(12):101117. Tilstone,G.H.,Míguez,B.M.,Figueiras,F.G.andFermín,E.G.,2000.Diatomdynamicsina coastal ecosystem affected by upwelling: coupling between species succession, circulationandbiogeochemicalprocesses.MarineEcologyProgressSeries,205:2341. Venkatesan, M.I., 1988. Organic geochemistry of marine sediments in Antarctic region: MarinelipidsinMcMurdoSound.OrganicGeochemistry,12(1):1327. Versteegh, G.J.M., Bosch, H.J. and De Leeuw, J.W., 1997. Potential palaeoenvironmental informationofC24toC36midchaindiols,ketoolsandmidchainhydroxyfattyacids; acriticalreview.OrganicGeochemistry,27(12):113. Vitorino, J., Oliveira, A., Jouanneau, J.M. and Drago, T., 2002. Winter dynamics on the northern Portuguese shelf. Part 2: bottom boundary layers and sediment dispersal. ProgressInOceanography,52(24):155170. Volkman, J., 2003. Sterols in microorganisms. Applied Microbiology and Biotechnology, 60(5):495506. Volkman,J.K.,1986.Areviewofsterolmarkersformarineandterrigenousorganicmatter. OrganicGeochemistry,9(2):8399. Volkman,J.K.,Barrett,S.M.,Blackburn,S.I.,Mansour,M.P.,Sikes,E.L.andGelin,F.,1998. Microalgal biomarkers: a review of recent research developments. Organic Geochemistry,29(57):11631179. Volkman,J.K.,Barrett,S.M.,Dunstan,G.A.andJeffrey,S.W.,1992.C30C32alkyldiolsand unsaturated alcohols in microalgae of the class Eustigmatophyceae. Organic Geochemistry,18(1):131138. Volkman,J.K.,Johns,R.B.,Gillan,F.T.,Perry,G.J.andBavorJr,H.J.,1980.Microbiallipidsof anintertidalsedimentI.Fattyacidsandhydrocarbons.GeochimicaetCosmochimica Acta,44(8):11331143. Volkman, J.K., Revill, A.T., Holdsworth, D.G. and Fredericks, D., 2008. Organic matter sources in an enclosed coastal inlet assessed using lipid biomarkers and stable isotopes.OrganicGeochemistry,39(6):689710. Volkman,J.K.,Rijpstra,W.I.C.,deLeeuw,J.W.,Mansour,M.P.,Jackson,A.E.andBlackburn, S.I., 1999. Sterols of four dinoflagellates from the genus Prorocentrum. Phytochemistry,52(4):659668. Wakeham, S.G., 1989. Reduction of stenols to stanols in particulate matter at oxicanoxic boundariesinseawater.Nature,342(6251):787790.

77 Chapter2

Wakeham, S.G., Lee, C., Hedges, J.I., Hernes, P.J. and Peterson, M.J., 1997. Molecular indicators of diagenetic status in marine organic matter. Geochimica et CosmochimicaActa,61(24):53635369. Wang, X.C., Druffel, E.R.M., Griffin, S., Lee, C. and Kashgarian, M., 1998. Radiocarbon studies of organic compound classes in plankton and sediment of the northeastern PacificOcean.GeochimicaetCosmochimicaActa,62(8):13651378. Weijers,J.W.H.,Schouten,S.,Spaargaren,O.C.andSinningheDamsté,J.S.,2006.Occurrence anddistributionoftetraethermembranelipidsinsoils:Implicationsfortheuseofthe TEX86proxyandtheBITindex.OrganicGeochemistry,37(12):16801693. Winkler, A., Haumaier, L. and Zech, W., 2001. Variation in hopanoid composition and abundance in forest soils during litter decomposition and humification. Organic Geochemistry,32(12):13751385. Winter,A.,Jordan,R.andRoth,P.H.,1994.Biogeographyoflivingcoccolithophoresinocean waters. In: A. Winter and W.G. Siesser (Editors), Coccolithophores. Cambridge UniversityPress,Cambridge,pp.161177. Xu,Y.,Mead,R.andJaffé,R.,2006.Amolecularmarkerbasedassessmentofsedimentary organicmattersourcesanddistributionsinFloridaBay.Hydrobiologia,569(1):179 192. Yoshinaga, M.Y., Sumida, P.Y.G. and Wakeham, S.G., 2008. Lipid biomarkers in surface sediments from an unusual coastal upwelling area from the SW Atlantic Ocean. OrganicGeochemistry,39(10):13851399.

78

Chapter3

Molecularcharacterizationofdissolvedorganicmatterinporewaterof

continentalshelfsediments

FraukeSchmidta,MarcusElverta,BorisP.Kochb,MatthiasWittc,KaiUweHinrichsa

PublishedinGeochimicaetCosmochimicaActa

vol73,issue11,page33373358doi:10.1016/j.gca.2009.03.008

©2009ElsevierLtd.

Appendixfrompublicationhasbeenmovedtotheelectronicappendix

aMARUM – Center for Marine Environmental Sciences, Leobener Straße, D28359 Bremen,

Germany bAlfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D27570

Bremerhaven,Germany cBrukerDaltonikGmbH,Fahrenheitstraße4,28359Bremen,Germany

Chapter3

ABSTRACT

Dissolved organic matter (DOM) in sediment pore water is a complex molecular mixture reflectingvarioussourcesandbiogeochemicalprocesses.Inordertoconstrainthosesources andprocesses,molecularvariationsofporewaterDOMinsurfacesedimentsfromtheNW

Iberian shelf were analyzed by ultrahighresolution Fourier transform ion cyclotron resonancemassspectrometry(FTICRMS)andcomparedtoriverandmarinewatercolumn

DOM. Weighted average molecular element ratios of oxygen to carbon ((O/C)wa) and hydrogen to carbon ((H/C)wa) provided general information about DOM sources. DOM in localriverswasmoreoxygenated((O/C)wa0.52)andcontainedlesshydrogen((H/C)wa1.15) than marine pore water DOM (mean (O/C)wa 0.50, mean (H/C)wa 1.26). The relative abundanceofspecificcompoundgroups,suchashighlyoxygenatedaromaticcompoundsor nitrogenbearing compounds with low H/C ratios, correspond to a high concentration of lignin phenols (160 g/g sediment dry weight) and a high TOC/TN ratio (13.3) in the sedimentary organic matter and were therefore assigned to terrestrial sources. The lower degreeofunsaturationandahigherrelativeabundanceofnitrogenbearingcompoundsin theporewaterDOMreflectedmicrobialactivitywithinthesediment.Onesamplingsiteon theshelfwithahighsedimentaccumulation,andahumicrichriversampleshowedawide range of sulfur compounds in the DOM, accompanied by a higher abundance of lipid biomarkersforsulfatereducingbacteria,probablyindicatingearlydiageneticsulfurization oforganicmatter.

80 CharacterizationofDOMinsedimentporewater

3.1INTRODUCTION

Continentalmarginsarethedominantreservoiroforganicmatter(OM)burialinthemarine environment.Inthemodernocean,approximately90%oftheOMisburiedalongcontinental margins (Hedges andKeil, 1995).In particular, continental shelves receive a high input of

OM derived from different sources. 0.21 Gt C in form of dissolved organic matter (DOM) and0.17GtCinformofparticulateorganicmatter(POM)areannuallytransportedbyrivers totheocean(Ludwigetal.,1996).Besides,thehighriverineinputofinorganicnutrientsfuels the marine primary production on continental shelves. High OM production and short sinkingtimesinshallowwaterdepthsarethereasonthatlessOMisremineralizedonthe shelfandtheupperslope.Therefore,around68%ofthemarineproducedorganiccarbonis buriedintheseregions(HedgesandKeil,1995).

Thevarietyofsourcesandprocessessuchassedimentremobilizationandresuspensiondue to currents and storm induced bottom waves complicate studying OM preservation in continentalshelfsediments.Transportandsubsequentdepositioncauseamixingofoldand freshOMfromvarioussourcesandenableincreasedchemicalorbiologicaltransformationof

OM. Selective adsorption of OM onto mineral surfaces, a process sensitive to changes in chemicalconditions(suchassalinityandpH,e.g.,duringthetransitionriver–ocean),can alsobiasthecompositionofDOMandPOMinthesediment(Whiteetal.,2007;Meadand

Goñi, 2008). Both OM pools share common sources and are closely linked by dynamic processes,e.g.dissolutionofPOMbymicrobialexoenzymescontributestoDOM(Burdige andGardner,1998),whereasDOMflocculatesinthecourseofpolymerization(Amonand

Benner,1996;Verdugoetal.,2004).SimilarstablecarbonisotoperatiosofporewaterDOM and sedimentary POM emphasize the interlinkage of those processes inmarine sediments

(Baueretal.,1995).

DOMinsedimentporewatersplaysanimportantroleforatleasttworeasons.Ontheone hand, it is assumed that pore water DOM is involved in sedimentary preservation of OM

(Hedgesetal.,1992;Henrichs,1992;HedgesandKeil,1995),andontheotherhand,itisan important source of nutrients (e.g. Burdige and Zheng, 1998). The integrated dissolved organiccarbon(DOC)fluxof0.19GTCyear1fromcoastalandcontinentalmarginsediments

(Burdigeetal.,1999)iscomparabletotheassumedcarbonburialrateof0.16GTCyear1of all marine sediments (Hedges and Keil, 1995). These fluxes suggest that refractory pore waterDOMplaysanimportantroleintheglobaloceanicDOMcycleonlongterms.Sincethe

81 Chapter3 natureofthebenthicDOMflux(refractoryorreactive)isstillunderdebate(Burdigeetal.,

2002), the identification of specific molecular compounds that serve as markers for sedimentaryporewaterDOMandtheirdetectioninoceanicDOMcouldbethekeytothis problem.

One reason for the gap in the knowledge of OM composition and transformation is the analytical challenge to resolve complex molecular mixtures. Thus, 80% of the OM accumulated in sediments cannot be characterized on the molecular level (Hedges et al.,

2000). The limitations of DOM analysis are attributed to its high complexity, low concentration and high polarity. Hence, DOM is not amenable to analysis by gas chromatography coupled to mass spectrometry (GCMS). Other approaches such as pyrolysis or thermochemolysis are invasive methods and can form new products during analysis.NMRspectroscopy,ontheotherhand,providesaninsightintothefunctionalities ofDOM,butduetothecomplexityofthesamplematrixcannotprovideindepthmolecular details.

In recent years, the application of Fourier transform ion cyclotron resonance mass spectrometry(FTICRMS)hasbeenappliedtothemolecularcharacterizationofDOMfrom different natural environments, e.g. from the marine water column (Koch et al., 2005;

Hertkorn et al., 2006; Sleighter and Hatcher, 2008), rivers (Kim et al., 2003), mangrove estuaries (Koch et al., 2005; Tremblay et al., 2007), groundwater (Einsiedl et al., 2007) and soils (Kujawinski et al., 2002a; Kramer et al., 2004; Hockaday et al., 2006). FTICRMS is capableofresolvingcomplexmolecularmixturesandprovidesinformationabouttheexact elemental composition of individual compounds. Although analytical challenges such as chemicalselectivityduringionizationdonotallowquantitation,theanalyticalmethodofFT

ICRMS and its data interpretation has been improved over the last years providing a valuable tool for the molecular characterization of lowmolecularweight (LMW)DOM

(<1000Da).

Here,weanalyzedforthefirsttimesmallvolumes(50ml)ofmarinesedimentporewater

DOMwithFTICRMSfromfivedistinctlocationsattheshelfandcontinentalslopeofthe

NWIberianmargin.TheFTICRMSdatawerecomparedtoDOMfromlocalriverswhich are the major sources of terrestrial material to the shelf (Dias et al., 2002). The associated sedimentary OM was additionally characterized via lipid biomarkers and lignin phenols, which are both routinely used for the identification of OM sources, degradation state and

82 CharacterizationofDOMinsedimentporewater environmental conditions (e.g. Canuel and Martens, 1996; Goñi et al., 2000; Birgel et al.,

2004). By this twopronged approach we specifically aim to identify molecules and compoundgroupsinthesedimentporewaterDOMthatcanserveasdiagnosticmarkersfor eitherdifferentOMsourcesortransformationprocessesduringearlydiagenesis.

3.2MATERIALSANDMETHODS

3.2.1Samplingsite

All samples derive from the GaliciaMinho shelf, the adjacent continental slope and local rivers. The shelf is a stormdominated, highly energetic environment, located at the NW

Iberianmargin(Fig.3.1).ThemodernoceanographyofGaliciawaspartofseveralstudies

(e.g., Coelho et al., 2002; Oliveira et al., 2002; Vitorino et al., 2002a; Vitorino et al., 2002b;

AlvarezSalgadoetal.,2003).Insummer,thenorthwardflowoftheEasternNorthAtlantic

Central Waters (ENACW) is controlled by trade winds and shifted offshore resulting in upwellingofcoldnutrientrichwatermasses(Frouinetal.,1990)andanenhancedprimary productionfromMarchtoOctober.Inwinter,SWstormsproducedownwellingconditions resulting in sediment resuspension, remobilization and eventually sediment deposition on theshelf(Jouanneauetal.,2002;Vitorinoetal.,2002b)orsedimenttransportacrosstheshelf break(Diasetal.,2002).Mostofthemodernsedimentaccumulatesinthemidshelfmudbelt

(Dias et al.,2002). However, sedimentation rates atthe GaliciaMinho shelf are difficult to assess due to a sediment mixing layer that comprises the upper 10 cm of sediment at the innershelf(Jouanneauetal.,2002).Themajorfractionofsedimentattheshelfissuppliedby the Douro and Minho River during storms and river floods. Subsequent to the primary sedimentation close to the source, the terrestrial material is remobilized and transported northwardswiththepredominantcurrents(Oliveiraetal.,2002;Vitorinoetal.,2002b).

Due to their importance as sedimentary OM suppliers, Douro and Minho River were sampledtoobtainaterrestrialDOMfingerprint.AnadditionalDOMsamplewastakenfrom the small Ave River (Fig. 3.1), which was enriched in humic substances, and serves as a referencesitefordegradedDOM.

3.2.2Sampling

Sampling was performed with a giant box corer in August 2006 during the GALIOMAR expedition(P342)withtheGermanresearchvesselRVPoseidonattheGaliciaMinhoshelf.

83 Chapter3

50 ml of pore water was extracted with rhizons (Eijkelkamp, pore size 0.1 m) from each surface sediment sample (depth interval of 02 cm). Afterwards, sediments, including additional pore waters, of the same depth horizon were sampled for sedimentary OM analysis (lipids, lignin phenols) and bulk measurements. 50 ml of water from three local rivers were collected and filtered through GF/F filter (Whatman, pore size 0.7 m). River samplingsitesatthelocalriverswerelocatedat:DouroRiver41°06’45N,8°32’18W;Ave

River 41°21’06 N, 8°40’54 W; Minho River 42°03’06 N, 8°40’54 W. All water samples were stored in precombusted glass bottles without headspace at +4°C in the dark until further preparationinthehomelaboratory.Sedimentsampleswerestoredinprecombustedbrown glassbottlesat20°CtoavoidOMdegradation.

Figure3.1.Samplingsites(GeoB,opencircles)attheGaliciaMinhoshelfandassociatedlocalrivers(distribution ofthemidshelfmudbeltadaptedfromDiasetal.,2002).Latitude(°N),longitude(°W)andwaterdepthatthe samplingsitesarelistedinTable3.1.

3.2.3Dissolvedorganicmatterextraction

Watersamples(50ml)wereconcentratedbysolidphaseextractiononSPEcartridges(PPL bondelut,200mgsorbent,suitableforhighlypolartononpolarsubstances,Varian).Priorto extraction,sampleswereacidifiedtopH2withhydrochloricacid(HCl,p.a.grade,Merck).

AfterDOMadsorption,thecartridgeswererinsedwith6ml0.1MHClsolutioninorderto

84 CharacterizationofDOMinsedimentporewater remove any salt from the cartridges, which is a prerequisite for subsequent electrospray ionization (ESI) in FTICRMS analysis. DOM was then eluted with 1 ml methanol

(LiChrosolv, Merck) into precombusted glass ampoules and stored under nitrogen atmosphereat18°Cinthedarkuntilanalysis.

3.2.4Fouriertransformioncyclotronresonancemassspectrometry

Analyses were performed with an Apex Qe mass spectrometer (Bruker Daltonics Inc.

Billerica, USA) equipped with a 9.4 T superconducting magnet (Bruker Biospin,

Wissembourg,France)andanApolloIIelectrospraysource.DOMextractswereanalysedin a methanol:water solution (50:50 v/v) with ESI in negative ion mode (capillary voltage: +4 kV)ataninfusionflowrateof2Lmin1.Spectrawerecalibratedwitharginineclustersand

400 to 500 scans were added to one spectrum. All ions were singly charged and mass accuracy was below 0.4 ppm. The latter was obtained by internal calibration with compounds, which were repeatedly identified in marine DOM samples (e.g. Koch et al.,

2007).Forthecalculationofmolecularformulas,amassrangeof200600m/zwasselected forpeakswithasignaltonoiseratio(S/N)of>3.Formulaassignmentincludedtheelements

1H0,12C0,16O0,32S02,14N010and13C02.Aformulatoleranceof±0.5ppmwasconsideredas amatch.ThedatasetwasrestrictedtoamolecularelementratioofO/C1.2andtointeger doublebondequivalent(DBE)values.DBEdefinesthenumberofdoublebondsand/orrings inamoleculeanditiscalculatedfromthenumberofatoms(Ni)andthevalence(Vi)ofeach element(i)afterthefollowingequation:

i max  B N i (Vi 2) DBE=1 i (3.1) 2

Forthefinaldatasetwefocusedonionswitharelativeabundance>2%(correspondingtoa

S/Nratio>20inthespectrawiththehighestintensities(GeoB11002and11006),themost abundantsamplecompoundwassetto100%),usingfollowingrestrictionswithrespectto the molecular composition: 1H0, 12C0, 16O0, 32S02, 14N02. With this approach, one unequivocalmolecularformulawasassignedforeachpeakinthemassrangeof200500m/z.

Multipleformulamatchesinthemassrange500600m/zwereexcludedbythehomologues series/buildingblockapproach(seeKochetal.,2007forasummary).

85 Chapter3

Weightedaveragedoublebondequivalents(DBEwa),molecularelementratios(e.g.(O/C)wa,

(H/C)wa,(C/N)wa)andmolecularweight((m/z)wa)werecalculatedforeachsamplefromthe intensity(Int)ofeachassignedpeak(x)usingequation3.2:  B(O / C) x Int x ) (O / C)  (3.2) wa B Int

AromaticcompoundswereidentifiedusingthemodifiedaromaticityindexAImod(Kochand

Dittmar,2006)afterequation3.3: 1 C  0.5O  S  0.5H AI  (3.3) mod C  0.5O  S  N

3.2.5Dissolvedorganiccarbonandtotaldissolvednitrogen

TodeterminetheDOCconcentration(excludingMeOH)andtotaldissolvednitrogen(TDN) inthesolidphaseextract,analiquotoftheextractwasdriedwithN2atroomtemperature, redissolved in ultrapure water and measured with hightemperature catalytic oxidation using a Shimadzu TOC/TN analyzer equipped with an infrared and a chemiluminescence detector(gasflowoxygen:0.6lmin1).Intheautosampler,6mlofsamplevolumeinpre combustedvialswereacidifiedwith0.12mlHCl(2M)andspargedwithoxygentoremove inorganic carbon. 50 l sample volume was directly injected on the catalyst (heated to

680°C).FinalDOCconcentrationswereaveragevaluesoftriplicatemeasurements.Detection limit(5oftheblank)was7MCwithanaccuracyof±2MCdeterminedwithlowcarbon water and seawater reference material (DOCCRM, Hansell Research Lab, University of

Miami, US). Due to the limited availability of porewater samples the extraction efficiency couldonlybeexemplarydeterminedforonesamplewhichwasavailableinalargervolume

(sample GeoB 11033). The DOC concentration in the redissolved methanol extract was dividedbytheconcentrationfactor(50)andtheDOCconcentrationintheporewatersample.

With this approach we determined an extraction yield of 53% of the total DOC (305 M

DOC)inthatsample.Generally,thedescribedmethodextracts4365%ofthepelagicDOC

(Dittmaretal.,2008).

3.2.6Totalorganiccarbon,totalnitrogenandtotalsulfur

Total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS) concentrations were analyzedfromthefreezedriedhomogenizedsediment.TSandTOCwasmeasuredwitha

86 CharacterizationofDOMinsedimentporewater

LecoCS200.PriortoTOCmeasurement,thesamplesweretreatedwith12.5%hydrochloric acidtoremovecarbonates.FortheTNandTCanalysis,25mgofthesamplewaspackedin tinboatsandmeasuredonaVarioELIIIElementalAnalyzer.

Figure 3.2. Scheme of analytical methods applied in this study. Bulk parameters comprise dissolved organic matter(DOM)andparticulateorganicmatter(POM).Ateachsamplinglocation,DOMwasseparatedbysolid phase extraction (SPE) from pore or river water; lipid biomarkers and lignin phenols were analyzed in the sedimentaryOM.

3.2.7Lipidextraction

Lipid biomarkers were extracted three times from 30 g of freezedried homogenized sediment with a solvent mixture of DCM:methanol (2:1 v/v) with a microwave extraction system(MARSX,CEM)at80°C.Priortoextraction,aninternalstandardmixconsistingof

5cholestane,behenicacidmethylester,1nonadecanoland2methyloctadecanoicacidwas added. The combined extracts were washed with 0.05 M potassium chloride. Water was removedfromtheorganicphasewithsodiumsulfateandthesolventwasevaporatedunder a stream of nitrogen. Subsequently, the total lipid extract was separated into a hexane soluble (maltene) and insoluble (asphaltene) fraction. The maltene fraction was further separated on SPE cartridges (Supelco LCNH2, 500 mg sorbent) into four fractions

(hydrocarbons, esters and ketones, alcohols, and free fatty acids, Fig. 3.2) according to the protocol by Hinrichs et al. (2000). Prior to analysis, alcohols were derivatized with bis

(trimethylsilyl)trifluoroacetamide (BSTFA, Merck) in pyridine and analyzed as trimethylsilyl(TMS)derivatives; fatty acids were reacted with 12% boron trifluoride in

87 Chapter3 methanol(Merck)yieldingfattyacidmethylesters.Bothreactionswereconductedat70°Cfor

1 h. Afterwards, solvent and reagent were removed under a stream of nitrogen and the fractionswerestoreduntilanalysisat20°Cinthedark.

3.2.8Ligninextraction

Theextractionprotocolwasadaptedfrom(HedgesandErtel,1982).Briefly,12gofalready extractedsedimentwasoxidizedinamicrowavevesselunderoxygenfreeconditionsusing

CuO.Priortothereaction,100mgammoniumiron(II)sulfatehexahydrate(Fe2(NH4)2(SO4)*

H2O, p.a. Fluka), 1 g DCM extracted CuO powder, and 8 ml of nitrogenpurged sodium hydroxide (p.a. grade, Merck) were added to the sediment under Natmosphere. The reactionwasconductedinasealedextractionvesselinMARSXat150°Cfor3h.Afterthe reaction was completed, an internal standard mixture (ethylvanillin, tcinnamic acid) was addedandthesedimentwassonicatedthreetimeswith15ml1Msodiumhydroxide.The solidandtheliquidphasewereseparatedbycentrifugationandthecombinedextractswere acidifiedwithhydrochloricacidtopH1.Phenolswereextractedfromtheaqueoussolution threetimes with distilled diethylether, which was treated with Fe2(NH4)2(SO4) * H2O in aqueous solution a priori. The extract was dried with sodium sulfate and the solvent was removed under a stream of nitrogen. Phenols were reacted prior to analysis to TMS derivativesusingBSTFAinpyridine.

3.2.9Gaschromatographycoupledtomassspectrometryorflameionizationdetection

AllfourlipidfractionsandthephenolextractwereanalyzedbyGCeithercoupledtoaMS orconnectedtoaflameionizationdetector(FID).TheGC(ThermoElectronTraceGC)was equipped with a 30m Rtx5MS fused silica capillary column (0.25 mm i.d., 0.25 m film thickness)andheliumwasusedascarriergas(flowrate1mlmin1).Thelipidextractswere injectedinhexaneusinganinjectiontemperatureof60°C,atemperaturerampof10°Cmin1 until150°C,atemperaturerampof4°Cmin1andafinaltemperatureof320°C(holdtime:

30min).Theligninphenolextractwasinjectedinpyridine:BSTFA(4:1v/v)inordertokeep all carboxylic groups as trimethylsilyl derivatives. The initial temperature of 100 °C was followed by a temperature ramp of 4 °C min1 and a final temperature of 310 °C (hold 12 min).Allcomponentswereidentifiedviatheirmassspectrumandquantifiedbytheirpeak areaintheFIDchromatogram.

88 CharacterizationofDOMinsedimentporewater

3.3RESULTSANDDISCUSSION

3.3.1Characterizationofsedimentaryorganicmatter

TheTOCconcentrationsinthesedimentindicatedanOMaccumulationinthemudbeltand atthecontinentalslope,whereastheoutershelfsedimentreceivedonlyminoramountsof

TOC, indicating a bypassing of material in this area (Table 3.1). Within the mudbelt, the southernmostsedimentsamplecontainedthehighestamountofTOCandahighTOC/TN ratioof13.3.TOC/TNiswidelyusedtodeterminetheproportionofOMfromterrestrialand marinesources.Theelementalcompositionofmarinephytoplanktonischaracterizedbythe

Redfieldratio(TOC:N:P106:16:1,Redfield,1934;Redfield,1958)withaTOC/TNvalueof6.7, whereas TOC/TN in vascular plants ranges between 20 and 400 (Hedges et al., 1986). An elevatedTOC/TNratioof13.3inthesouthernmudbeltimpliedthatthesesedimentsreceived thehighestinputofterrestrialplantmaterialandemphasizedtheimportanceoftheDouro

River, which has been identified as the major terrestrial OM source at the GaliciaMinho shelf(Diasetal.,2002).TheTOC/TNratiodecreasedinourstudyareainnortherndirection and offshore (Table 3.1), corresponding to a loss of terrestrial material along the main transport pathways at the shelf. TOC/TN ratios of ca. 7.5 suggested a TOC composition dominatedbymarinealgaeandsedimentarymicrobes.Asafractionofthebulksediment data,DOCSPEandTDNSPEweremeasuredsolelyintheextractsofthesedimentporewaters.

TheDOCSPE/TDNSPEratioreflectssimilartrendsastheTOC/TNdata,butincomparisonto the bulk sediment the pore water was always enriched in carbon. Similar results were observedinDOMandPOMofthemarinewatercolumn(Hopkinsonetal.,1998)andcanbe explained by a preferential remineralization of easily accessible, fresh DON by microorganisms.

Table3.1.Locationandwaterdepthofallmarinesamplingsitesinthisstudy.Contentoftotalorganiccarbon (TOC),totalnitrogen(TN)andtotalsulfur(TS)in%,andtheirratios(TOC/TN,TOC/TS)analyzedinthebulk sedimentfromtheGaliciaMinhoshelf. Station GeoB Depth Longitude (°N) Latitude (°W) TOC TN TOC/TN TS TOC/TS 11039 99 41°33’04 9°04’40 2.21 0.17 13.3 0.28 7.89 (mudbelt) 11002 112 42°09’60 8°59’24 0.91 0.11 8.2 0.14 6.50 (mudbelt) 11012 119 42°42’31 9°15’58 0.73 0.11 7.0 0.16 4.56 (mudbelt) 11006 235 42°10’00 9°20’01 0.26 0.03 7.6 0.09 2.89 (outer shelf) 11033 1873 42°10’11 9°33’50 1.10 0.15 7.2 0.20 5.50 (continental slope)

89 Chapter3

3.3.2Spatialdistributionofligninphenolsandlipidbiomarkersintheparticulateorganic matter

Ligninisamajorcompoundinvascularlandplantsanditsphenolmoietiescanbeusedto trace riverine input of terrestrial material in marine systems (e.g., Ertel and Hedges, 1984;

Prahletal.,1994;GoñiandHedges,1995;Goñietal.,2000).Thesumofalldetectedlignin phenols (vanillin, acetovanillone, vanillic acid, syringealdehyde, acetosyringone, syringic acid,pcoumaricacid,ferulicacid)inthesedimentaryOMisdenotedasLig(Table3.2)and resembled the TOC/TN ratio. Accordingly, high concentrations of lignin phenols in the southernmudbelt(Fig.3.3b)indicatedtheaccumulationofterrestrialOM.Theligninphenol concentrationof160g/gsedimentdryweight(dw)is40timeshigherthaninthesediment of the continental slope, reflecting a loss of vascular plant material along the transport pathwaystothenorthandoffshore.

Table3.2.Totalligninabundance(Lig)andrepresentativelipidbiomarkers(ing/gdw)inthesediment.The acidtoaldehyderatioofthevanillylphenols((Ad/Al)V)wascalculatedfromthetotalconcentrationofvanillic acidtovanillin.Theterr/sterratioindicatestherelativecontributionsofterrestrialbiomarkers(terrincluding nalkanes(oddnumberedC25C35),nalcohols(evennumberedC22C30)andnfattyacids(evennumberedC22C30)) andmarinesterolmarkers(sterincludingcholesterol,brassicasterol,anddinosterol)inthesediment.C14toC19 monoOalkyl glycerol ethers (MAGEs) as well as iso and anteiso C15fatty acids (i + aiC15FA) derive from autochthonoussulfatereducingbacteria.

Station GeoB Lig (Ad/Al)V n- n- n-fatty terr Chole- Brassica- Dino- ster terr/ MAGEs i- + ai- alkanes alcohols acids sterol sterol sterol ster C15FA 11039 159.9 0.34 2.6 4.8 3.9 11.3 2.5 2.7 2 7.2 1.6 3.4 0.6 (mudbelt)

11002 49.6 0.08 1.7 2.7 2.1 6.5 2.4 1.7 1.3 5.4 1.2 3.1 0.5 (mudbelt) 11012 33.6 0.41 1.8 3.5 2.4 7.7 2.4 1.8 1.3 5.5 1.4 3 0.3 (mudbelt) 11006 9.9 0.62 0.9 1.9 2.5 5.3 0.9 0.8 0.7 2.4 2.2 0.3 0.3 (outer shelf) 11033 4.2 0.93 1.4 1.9 1.4 4.7 0.8 0.6 0.4 1.9 2.5 0.4 0.3 (continental slope)

Therelativeproportionofspecificligninphenolsinthesedimentcanprovideinformationon thedegradationstateoflignin(ErtelandHedges,1985).Sidechainoxidation,demethylation and aromatic ring cleavage are the major processes during biodegradation of lignin (Tien and Kirk, 1983; Hedges et al., 1988). Propylside chain oxidation by whiterot fungi in terrestrial systems results in an increase in acidic CuO reaction products, whereas subaqueousmicrobialdegradationismainlyreflectedinadecreaseofsyringylandvanillyl phenols due to demethylation reactions (Opsahl and Benner, 1995). The acid to aldehyde ratio of vanillyl (i.e., vanillic acid to vanillin, (Ad/Al)V) indicates terrestrial lignin 90 CharacterizationofDOMinsedimentporewater

degradation,if(Ad/Al)Vvaluesaregreaterthan0.4(Goñietal.,1993).AttheGaliciaMinho shelf,the(Ad/Al)Vratioincreasedfromvaluesbelow0.4inthemudbeltsedimentsto0.62 and 0.93 in the sediments of the outer shelf and the continental slope, respectively. This increasecoincidedwiththedecreaseofthetotalligninphenolsinthesediments(Fig.3.3d) alongthemaintransporttrajectory,indicatingenhancedsubaqueousligninalterationandat thesametimeapreferentialtransportorpreservationofpredegradedterrestrialOM.

Figure3.3.Gaschromatograms(FID)ofthemaltene(a,c)andligninfractions(b,d)ofsamplesfromthesouthern mudbelt(GeoB11039;a,b)andthecontinentalslope(GeoB11033;c,d).FA–unsaturatedandsaturatedfatty acids,MAGE–monoOalkylglycerolethers(C14–C19),circle–nalkanes(C25–C35),triangle–nalcohols(C22– C30),blackstar–cholesterol,cross–brassicasterol,rhomb–dinosterol.IS–internalstandard,1–vanillin,2– acetovanillone,3–vanillicacid,4–syringaldehyd,5–acetosyringone,6–syringicacid,7–pcoumaricacid.

LipidbiomarkerscanalsobeusedtoidentifysourcesofOMinthesediment(e.g.Mccallister etal.,2006;MedeirosandSimoneit,2008;Volkmanetal.,2008;WatersonandCanuel,2008;

Yoshinaga et al., 2008). The lipid biomarker distribution, however, showed a slightly differentpicturethantheligninphenolandTOC/TNdataattheGaliciaMinhoshelf.Table

91 Chapter3

3.2 lists the absolute abundance of representative lipids at the GaliciaMinho shelf. Long chainnalkaneswithanoddoverevencarbonnumberpredominanceandevennumbered longchainnalcoholsandnfattyacidsarecommonlyusedasterrestrialbiomarkersdueto theirhighabundanceinleafwaxesofvascularplants(EglintonandHamilton,1967).Forall of these biomarkers, enhanced concentrationswere observed in the mudbelt sediments, in particularinthesouthernmudbelt,whichisconsistentwiththeligninphenolandTOC/TN data.Concentrationsofterrestrialmarkersdecreasedintheoutershelfandcontinentalslope sediments,buttheirrelativeproportionstomarinephytoplanktonderivedbiomarkerssuch as brassicasterol or dinosterol increased. Together with the low amounts of lignin found here, the lipid biomarker pattern indicates a different transport behavior of single OM fractions, i.e., transport of lignincontaining terrestrial material seems to be restricted in

SouthNorthdirection,whereasnalkanes,nalcoholsandnfattyacidsbypasstheoutershelf andarealsodepositedoffshore.

3.3.3Molecularvariationsindissolvedorganicmatter

3.3.1DissolvedorganicmattercharacterizationviamolarH/CandO/Cratios

ArepresentativeFTICRmassspectrumofmarinesedimentporewaterDOMisshownin

Fig.3.4a.Allspectrashowedasimilarpatternwithaslightshifttohigherm/zintheriver waterspectra(Table3.3).Weobservedtypicalmassspacingpatternssuchas14.0156Dafor

CH2groupsandanincreaseof36.4mDaforthereplacementofObyCH4,aswellasastrong predominanceofoddoverevenmassionsasdescribedelsewhereforvariousotherhumic rich DOM samples (Kujawinski et al., 2002a; Kujawinski et al., 2002b; Stenson et al., 2003;

Kramer et al., 2004; Koch et al., 2005). An exception was observed for the Ave River spectrum,whichwasverydistinctfromallothersamples(Fig.3.4c).Thespectrumwasless intenseandthepeakintensitiesweremoreevenlydistributedintherangebetween230and

580Da,whereasthepeaksinthemassspectraoftheporewaterandotherriverwaterswere normallydistributedwithamaximumintherangeof420to450Da.Anexpandedsectionat thenominalmass407oftheAveRiverDOMspectrumrevealedatrendtohigherrelative intensityoflowermassesateachnominalmass(relativeintensitymaximum:C19H29O10,Fig.

3.4d) compared to the pore water DOM (relative intensity maximum: C20H24O9; Fig 3.4b).

DouroandMinhoRiverspectrashowedevenhigherpeakintensitiesatlowermasses.This shiftisproducedbythehighermassdefectof1H(1.0078)thanof16O(15.9949)andtherefore,

92 CharacterizationofDOMinsedimentporewater it reflects a higher relative O content and/or a lower relative H content in the river DOM

(Koch et al., 2008). In total, we identified between 2146 and 2693 unequivocal molecular formulaspersampleinthethreeriverDOMsamples(Table3.3).Inthemarineporewaters thenumberofidentifiedmolecularformulaswassignificantlylowerandshowedthehighest numberof2020molecularformulasinDOMfromthesouthernmudbelt,thesamplemost strongly influenced by terrestrial input. The decrease in molecular complexity during the coastalexportisconsistentwithotherstudies(Kochetal.,2005).

Figure3.4.ESInegativeFTICRmassspectraandexpandedsectionsofmassspectraatnominalmass407of:a) andb)northernmudbeltderivedsedimentporewaterDOM(GeoB11012)andc)andd)AveRiverDOM.Open rhomb–C13H28O10S2,opensquare–C26H19O3N2;followingsymbolsrefertoseriesthatarecharacterizedbythe replacementofObyCH4:filledcircles–CHOseriesfromC17H12O12toC23H36O6,cross–nitrogenbearingseries fromC17H16O10N2toC19H24O8N2,opentriangle–sulfurbearingseriesfromC18H16O9StoC21H28O6S.(O/C)waand (H/C)warefertoCHOcompoundsinthepresentedmassrangeandreflectalowerrelativeOcontentandahigher relativeHcontentintheporewaterDOM.

AwidelyusedtoolforthevisualizationofcompositionalvariationsfromFTICRMSdatais thevanKrevelendiagram(e.g.,Kimetal.,2003;Kimetal.,2004;Kujawinskietal.,2004;Wu etal.,2004;Kochetal.,2005;Kimetal.,2006)inwhichindividualmolecularformulasare plotted on the basis of their molar H/C and O/C ratios. Thus, each dot in the diagram representsoneormoremolecularformulaswithaspecificO/CandH/Cratio.Thepatternin thevanKrevelendiagramcanreflectthesourcesofDOMbutalsoreactionpathways(Kimet al.,2003),e.g.,enzymatichydroxylationbymicrobesorphotodegradation.Fig.3.5compares changes of DOM along the main transport route from the Douro River across the shelf

93 Chapter3

system (central mudbelt – outer shelf – continental slope). Distinct features were revealed

amongthedifferentsamplessuchasspecificmolecularformulasatlowO/CandhighH/C

values in the marine sediment pore waters aswell as molecular formulas at low H/C and

intermediate O/C values, which were only present in the river DOM. In general, the

composition of sediment pore water DOM was gradually shifted in the van Krevelen

diagramtohigherH/CandlowerO/Cratiosalongthetransportpathwayand(O/C)waand

(H/C)wa ratios of pore water DOM were similar to those of DOM from the marine water

column(AtlanticdeepwaterasmarinereferencesampleinTable3.3).Similartrendswere

observedinearlierstudiesbycomparingmarineDOMsampleswithriverDOM(Sleighter

andHatcher,2008)ormangroveporewaterDOM(Kochetal.,2005).Thevariationsinthe

oxygenandhydrogencontentofDOMappeartobelinkedtochangesinOMsources.River

DOMismoreoxygenatedandcontainslesshydrogen,whichpointstoahigheraromaticity

in the terrestrial OM due to high contributions of lignins or tannins. The contribution of

aliphaticcompoundtypesfromalgaldetritusand/ormicrobialbiomassinmarinesediment

isreflectedinlower(O/C)waandhigher(H/C)waratios.

Table 3.3. Characteristic parameters of pore water and river DOM as well as the contents (in M) of SPE extracted dissolved organic carbon (DOCSPE) and total dissolved nitrogen (TDNSPE). Displayed are carbon to nitrogen ratios in the extract (DOCSPE/TDNSPE), numbers of identified molecular formulas (nIon), the intensity weightedaveragevaluesofthemolecularweight((m/z)wa),doublebondequivalents(DBEwa),molaroxygento carbon ((O/C)wa) and hydrogen to carbon ratios ((H/C)wa), number of carbon (Cwa), nitrogen (Nwa) and sulfur atoms(Swa).

Station GeoB DOCSPE TDNSPE DOCSPE/ nIon (m/z)wa DBEwa (O/C)wa (H/C)wa Cwa Nwa Swa TDNSPE 11039 153 10 15 2020 421.08 8.61 0.52 1.26 19.48 0.32 0.09 (mudbelt) 11002 94 4* 26* 1980 411.99 8.40 0.50 1.26 19.24 0.37 0.02 (mudbelt) 11012 189 15 13 1418 430.44 8.91 0.51 1.24 20.15 0.34 0.03 (mudbelt) 11006 270 12 23 1780 426.92 8.95 0.50 1.24 20.09 0.35 0.02 (outer shelf) 11033 189 16 12 1858 422.63 8.63 0.49 1.29 19.85 0.61 0.01 (continental slope) Douro River 150 8* 20* 2146 444.31 9.55 0.52 1.18 20.66 0.20 0.03 Minho River 107 6* 17* 2211 449.57 10.18 0.52 1.13 21.02 0.16 0.02 Ave River 209 22 11 2694 401.88 8.92 0.49 1.19 18.81 0.16 0.30 Atlantic deep - - - 624 453.03 9.14 0.50 1.24 21.34 0.11 - water ) * TDNSPE close to the limit of quantitation

Achangein(H/C)waand(O/C)waratiosmayalsobeexplainedbybiodegradationprocesses,

whichhavebeenshowntoselectivelyremoveoxygenrichmoleculesfromDOM(Kimetal.,

2006).ThisisprobablythecaseforAveRiverDOMwithatypicalterrestrial(H/C)waratioof

94 CharacterizationofDOMinsedimentporewater

1.19andalow(O/C)waratioof0.49,i.e.,thelatterbeingsimilartomarineAtlanticdeepwater

DOM.

Figure3.5.VanKrevelendiagramofCHOformulasinDOMfromtheGaliciaMinhoshelf.Ashiftindirectionof thearrowisobservedtohigherH/CandlowerO/CratiosfromtheDouroRiver(greenrhombs)tothecentral mudbelt(GeoB11002,lightbluetriangles)downtotheoutershelf(GeoB11006,bluecircles)andthecontinental slope(GeoB11033,blackdashes).Blackcirclescorrespondtogeneralcompoundclasses(adaptedfromKimetal., 2003;SleighterandHatcher,2008)andareindicatedforreference,notnecessarilyimplyingthepresenceofthese compoundsintheDOMsamples.

Referringtothepeakheightsinthespectra,themostabundantcompoundsinallsamples werelocatedinthecenterofthevanKrevelendiagram(O/C0.50.8,H/C1.01.5),correlating withO/CandH/Cratiosofligninsandtannins(Fig.3.5).However,inarecentstudybyLam and coworkers (2007) no lignin methoxy groups were detected by NMR spectroscopy in

LakeOntarioDOM.8%ofthecarboninLakeOntarioDOMwasassociatedwitharomatics,

17%withcarbohydratesandtheremaining75%withterpenoidderivedmaterial(linearand alicyclic terpenoids). One particular compound group belonging to the latter fraction comprisescarboxylicrichalicyclicmolecules(CRAM,moleculeswithacyclicbackboneand a high degree of carboxylation), previously identified as major compounds in deep ocean

DOM(Hertkornetal.,2006).SeveralmolecularformulasthatareassignedtoCRAMwere presentinallDOMsamplesfromGalicia(e.g.C28H32O13,correspondingtoamassof576.546

Da). However, the samples contained also molecular formulas of degraded lignin (e.g.,

C27H28O12,seeStensonetal.,2003)andespeciallyinriverDOMandtheporewaterDOM from the southern mudbelt lignin contributions are very likely, since high lignin phenol concentrationsweredetectedinthesedimentaryOM.

95 Chapter3

Fig. 3.6 shows the molecular differences between the samples in a cluster diagram. The cluster analysis was carried out on the basis of all identified molecular formulas and the relative intensity of the referring ion in the spectrum. By this, weighted average element ratios, molecular weight distribution, etc. are directly reflected in the degree of similarity between the samples, e.g., theexceptional position of theAve River was supported in the lowestdegreeofsimilaritycomparedtoallothersamples.DouroandMinhoRivergrouped together(S=84),wellseparatedfromtheporewatersamples.Withinthemarinesamplesthe porewaterDOMfromthecontinentalslopedifferedwithS0.72.

Figure3.6.Clusteranalysis(BrayCurtisSimilarity)basedonallidentifiedmolecularformulashavingarelative intensity 2%. Cluster analyses visualize similarities/dissimilarities between samples based on a multidimensionaldataset.Thexaxisrepresentsthedegreeofsimilarity;theverticallinesofthebranchesindicate the similarity value. A similarity value of S = 100 would mean that all molecular formulas in the samples are identical.

3.3.3.2DissolvedorganicmattercharacterizationviamolecularmassandDBE

DOMfromthethreeenvironments,i.e.,sedimentporewater,river,andAtlanticdeepwater, differed significantly regarding their (m/z)wa and DBEwa (Table 3.3). The (m/z)wa in marine pore water DOM ranged from 411.99 to 430.34, which is much lower compared to the

Atlanticdeepwater((m/z)wa453.03)andtheriverDOM((m/z)wa444.27and449.57forDouro andMinhoRiver,respectively).

In the sediment pore water, lower (m/z)wa was correlated with lower DBEwa. The loss of aromatic molecules and molecules with high molecular weight (low DBEwa and (m/z)wa, respectively) was observed previously by Tremblay and coworkers (2007) who compared mangrove pore water and water column DOM in a Brazilian estuary. These authors

96 CharacterizationofDOMinsedimentporewater explainedthislosswithphotodegradationthattookplaceduringtransportofDOMinthe water column. At the GaliciaMinho shelf, a shift to lower DBEwa and (m/z)wa from river water to sediment pore water suggested that in situ transformation processes are taking place. Sediment pore water DOM is a heterogeneous mixture of organic compounds including large molecules, e.g., proteins, humic substances, and smaller molecules, e.g., aminoacidsandshortchainorganicacids(e.g.Henrichs,1992).TheDOCconcentrationin marine pore water is usually up to a magnitude higher than in the surrounding bottom water, implying net production of DOM in the sediment as a result of remineralization

(Burdige et al., 2002). Intermediates during remineralization processes such as hydrolysis andfermentationproducesmallermoleculesandLMWDOM,thusreducing(m/z)wa,which isconsistentwiththetrendsobservedinourstudy.Besides,thehighlydegradedDOMinthe

AveRiver(seealso3.3.5)hadbyfarthelowest(m/z)waandaDBEwavaluecloselysimilarto sedimentporewaterDOM.Furthermore,recentstudieswithFTICRMSreportedashiftto lower m/z in stream DOM (Kim et al., 2006)and fulvic acids (Einsiedl et al., 2007), which werebothexposedtomicrobialactivity.

3.3.3.3Sourcesandoccurrenceofaromaticringstructures

InordertoseparatearomaticcompoundsfromthebulkFTICRMSdataset,weappliedthe modified aromaticity index (AImod, Koch and Dittmar, 2006). This ratio emphasizes the proportionofdoublebondsinamoleculecomparedtothetotalnumberofcarbonatomsin consideration of the presence of heteroatoms such as sulfur and nitrogen. Based on the assumptionthatthecarboxylgroupisthedominantoxygencontainingfunctionalgroupin

DOM (Hertkorn et al., 2006; Sleighter and Hatcher, 2008), AImod considers that 50% of the oxygen is bound with bonds as carbonyl oxygen, which would artificially increase the number of DBE in a molecule. In our samples, we distinguished two groups of aromatic structures(Table3.4),onewithhighO/Cratios(O/C>0.4,DBEOfrom2to11)andonewith lowO/Cratios(O/C<0.2,DBEOfrom15to32).BothgroupscomprisedCHOcompounds aswellascompoundscontainingheteroatoms(S,N)andwillbeseparatelydiscussedinthe following.

97 Chapter3

Table3.4.Distributionalpatternandsourceassignmentsofidentifiedcompoundclassesinriverandsediment porewaterDOM.

Compound class Distribution Potential sources Previous Reference CHO-compounds Sediment pore Aliphatic molecules from Koch et al. (2005) O/C < 0.6 waters algal and microbial biomass Sleighter and Hatcher (2008) H/C > 1.7

CHO-compounds Rivers, S’mudbelt, Terrestrial OM, e.g., fulvic Kim et al. (2003) O/C > 0.5 central mudbelt acids Stenson et al. (2003) H/C < 0.8 Koch et al. (2005) Sleighter and Hatcher (2008)

CHO-compounds Non specific CRAM, lignins, tannins Kim et al. (2003) O/C 0.5 – 0.8 Hertkorn et al. (2006) H/C 1.0 – 1.5 Tremblay et al. (2007) Sleighter and Hatcher (2008)

Aromatic compounds Non specific Black carbon from soils and Kim et al. (2003) O/C 0.2 wild fires Kramer et al. (2004)

Aromatic compounds Rivers, S’mudbelt Humic acids from soils or Kim et al. (2004) O/C > 0.4 modified BC Kramer et al. (2004) Hockaday et al. (2006) Dittmar and Koch (2006)

Nitrogen-bearing compounds Continental slope Degraded proteins from Kujawinski et al. (2004) H/C > 1.5 fresh microbial and algal Sleighter and Hatcher (2008) biomass

Nitrogen-bearing compounds Rivers, S’mudbelt Terrestrial compounds O/C 0.4 – 0.8 H/C 0.6 – 0.8

Sulfur-bearing compounds Ave River, Early diagenetic sulfurization S’mudbelt of OM

3.3.3.3.1AromaticcompoundswithlowO/C(0.2)

Inrecentstudies,aromaticcompoundswithlowO/CvaluesinDOMsampleswereassigned to black carbon (BC) (Kim et al., 2004; Kramer et al., 2004). BC, a group of incomplete combustion productsoffossilfuels andbiomass,isveryheterogeneouswithrespecttoits size,age,andchemicalcomposition(SchmidtandNoack,2000).AttheGaliciaMinhoshelf,

BCwaspresentinallsamplesandshowednoobvioustrendinitsdistribution.Thepresence ofBCinriverwaterDOMcanbebestexplainedbythefrequentoccurrenceofwildfiresin northern Spain and Portugal. During the time of sampling in August 2006, large parts of

NorthWestIberiawereaffectedbythoseforestfires,whichprovideapossiblesourceofBC in the three rivers. Marine sediments can receive BC on several pathways. One is air transport and dryfall out of combustion products from wildfires or anthropogenic production,anotheroneisrivertransportwhichispromotedbythefairlyhighresistanceto biodegradation(Kimetal.,2004).However,theabsenceoftypicalcombustionproductsfrom

98 CharacterizationofDOMinsedimentporewater wildfiressuchas3methoxyfriedelane,nnonacosan10olormethoxyphenols(seeSimoneit,

2002) in the lipid fraction of our samples pointed to a different origin, potentially hydrocarbons from ship fuels. Alternatively, BClike compounds in the pore water could also have an older age and derive from wild fires in former times. Compared to solvent extractable combustion products in the sedimentary OM, it is most likely that BC compoundssurviveduringtransportfromthesoiltothesedimentsduetotheirveryhigh resistanceagainstdegradation.

3.3.3.3.2AromaticcompoundswithhighO/C(>0.4)

WedetectedahighnumberofaromaticstructureswithhighO/CvaluesintheriverDOMas well as in the sediment pore water DOM from the southern mudbelt (Fig. 3.7). These aromatic compounds were highly abundant in number in the river DOM and decreased graduallyinthemudbeltnorthwardalongthemaintransportrouteandwerenotdetectedin the pore water DOM from the northern mudbelt, outer shelf and continental slope. The significant correlation with lignin and nalkanes in the sedimentary OM (r = 0.9, for a confidence level = 0.05) suggests a terrestrial origin of those compounds. Aromatic compoundswithhighO/Cvaluescouldbederivedfrommicrobiallymediatedoxidationof

BC(DittmarandKoch,2006),whichtakesplaceinsoilsandsediments.Severalmicrobesare able to metabolize BC via enzymatic reactions and accordingly increase the number of carboxylic,hydroxylatedandmethoxylatedaliphaticgroups,whichthenincreasestheO/C ratioandgenerallythewatersolubility(Rudolphietal.,1991;WillmannandFakoussa,1997;

Decesarietal.,2002).Inrecentstudies,carboxylicaromaticringstructureswithhighoxygen content were detected as major constituents in humic acid leachates of soil charcoal

(Hockadayetal.,2006),involcanicashsoilhumicacids(Krameretal.,2004)andinbogand blackwaterDOM(Kimetal.,2004).Therefore,likelysourcesofthesecompoundsinriver

DOMarehumicacids,washedoutfromsoilormodifiedBCcompounds.Fortheoccurrence ofthosecompoundsintheporewater,twomajorpathwaysareconceivable:BCisoxidized insoils,subsequentlydissolved,transportedviariverstotheocean,andincorporatedinto theoceanicDOMpoolandultimatelyintosedimentporewaterduetoexchangeprocesses with the bottom water. Alternatively, particulate BC, which is transported in the POM fractionviariversorasaerosolsviatheatmosphere,canbeoxidizedbymicrobesinmarine sediments,wheretheproductsdissolveandaccumulateintheporewaterDOM.

99 Chapter3

Figure 3.7. Detailed van Krevelen diagram of aromatic compounds (modified aromaticity index AImod 0.67), includingNandSfor:a)theDouroRiver,b)thesouthern(GeoB11039)andc)thecentralmudbelt(GeoB11002). Thenonmodifiedaromaticityindex0.67(redline)assignsallcondensedaromaticswithlowoxygencontent. Circlesmarkhighlyoxygenatedaromaticsofterrestrialorigin.

3.3.3.4Spatialvariationsofnitrogenbearingcompounds

Compoundswithmolecularformulasincludingoneortwonitrogenatomswerepresentin allDOMsamplesinvaryingrelativeabundance.TheFTICRmassspectrarevealedachange fromlownumbersofnitrogenbearingcompoundsintheriverDOM(Nwa=0.16to0.20)to higheramountsinnorthwarddirectionalongthemudbelt(Nwa=0.32to0.37)andoffshoreat the continental slope (Nwa = 0.61). Similar results of an increase in nitrogenbearing compoundsoffshoreweredetectedinarecentstudyalongarivertooceantransectofthe

ChesapeakeBay(SleighterandHatcher,2008).

100 CharacterizationofDOMinsedimentporewater

The van Krevelen diagram in Fig. 3.8 reflects the high variety in nitrogenbearing compoundsintheporewaterDOMfromthecontinentalslopeincomparisontoDouroRiver

DOM.

Figure 3.8. Van Krevelen diagram of nitrogenbearing molecular formulas in DOM of: a) the Douro River (rectanglemarkscompoundsofterrestrialorigin)andb)thecontinentalslope(GeoB11033).Circlescorrespondto O/CandH/Cratiosofproteinsandaminosugars(Kimetal.2003).

StrikingfeaturesarethecontributionsfromcompoundswithtwoNatoms,plottingmainly in regions of the van Krevelen diagram where proteins, oligopeptides, amino sugars and highlyaromaticcompoundsareexpected.Thesecompoundswereexclusivelypresentinthe continentalslopeDOM.Ahighrelativeabundanceofnitrogenbearingcompounds,which were concentrated in the protein area of the van Krevelen diagram, was also detected by

Kujawinskiandcoworkers(2004)whoanalyzedDOMproducedbybacteriaandprotozoan cultures. Although proteins are not in our analytical window (200 < m/z < 600), the occurrence of degradation products and intermediates with lower molecular weight are expected constituents in pore water DOM. The lack of those molecules in the other pore watersamplesmayberelatedtovariationsintheexchangebetweenporewaterandbottom wateratthedifferentsamplinglocations.SedimentdepositsattheGaliciaMinhoshelfare subjected to sediment mixing due to strong currents and storm induced bottom waves in winter(Jouanneauetal.,2002;Vitorinoetal.,2002b)andtherefore,porewaterandbottom water are regularly exchanged on a seasonal basis. In contrast, calm sedimentation conditions at the continental slope result in a continuously accumulation of clayrich sediment.Additionally,diffusionratesofporewaterarereducedinclayrichdenselypacked

101 Chapter3 sediments (e.g., Tryon et al., 2001; Janssen et al., 2005), enhancing the preservation of nitrogen compounds in the pore water DOM at the continental slope. Alternatively, this distinct signal in the continental slope pore water DOM may also reflect a different OM quality,e.g.,similarlyshowninAmazonRiverPOM(e.g.,Hedgesetal.,1986).

AspecificcompoundgroupwithO/Cratiosof0.4to0.7andrelativelylowH/Cratiosof0.6 and0.8wasobservedintheriverDOM(rectangleinFig.3.8a).Molecularformulasrelatedto theseratios(e.g.C19H15O11N)werealsopresentinthesouthernmudbeltbutmissinginall other pore water samples, thus pointing to a terrestrial source of this compound group.

Nevertheless,atthispoint,theknowledgeoftheoccurrenceofdistinctnitrogencompounds inDOMisstilllimitedandthereforeneedsfurtherresearchtounderstandtheirdistribution andstructuraldiversity.

3.3.3.5Sulfurcompoundsasindicatorsforearlydiagenesis?

All DOM samples contained several compounds with one or two sulfur atoms in the formulas. Compounds with higher sulfur (and also nitrogen) content have been omitted, sinceitwasnecessarytorestrictthenumberandtypeofisotopesforthemolecularformula calculationinanaprioriassumption(Kochetal.,2007).

Ingeneral,therelativeabundanceofSwaintheFTICRMSdatawasaround0.02.Intriguing was the high number of sulfurbearing compounds in the Ave river (Swa 0.30) and in the sediment pore water DOM from the southern mudbelt (Swa 0.09). Exemplary FTICR mass spectraatthemass353areshowninFig.3.9a,c,e(outershelf,southernmudbeltandAve

River).TheoutershelfrepresentssampleswithaSwavalueof0.02andexhibitednosulfur compounds at the nominal mass 353, whereas the southern mudbelt and the Ave River showedseveralsulfurformulas,e.g.C16H34O6S.InthespectrumoftheAveRiver,thesulfur bearing compounds reached intensities of up to 2/3 relative to CHOcompounds, emphasizingtheimportanceofdissolvedorganicsulfurcompoundsinthissample.Thevan

KrevelendiagramofallsulfurformulasintheDOMattheoutershelfrevealedtwospecific compound groups.Onegroup locatedat0.4to0.8O/Cand1.1to1.6H/Cvaluesandthe otherat0.0to0.2O/Cand0.8to1.0H/Cvalues(Fig.3.9b).Bycontrast,theAveRiverandthe southernmudbeltsampleshowedawidespreadoccurrenceofsulfurbearingcompoundsin the van Krevelen diagram (Fig. 3.9d and f). Since none of the observed compounds (e.g.

C15H26O6S,C22H34O9S2)containednitrogen,arelationshiptodegradationproductsofproteins

102 CharacterizationofDOMinsedimentporewater

Figure3.9.FTICRmassspectraat353m/z(for:a)theoutershelf(GeoB11006),c)thesouthernmudbelt(GeoB 11039) and e) the Ave River) and van Krevelen diagram of all characterized Sbearing compounds (for: b) the outershelf(11006),d)thesouthernmudbelt(GeoB11039)andf)theAveRiver).Molecularformulasandexact massesrefertofilledcircles(a),toopencircles(b)andtoopentriangles(c).Cross–nitrogenseries,whereCH4 replacesOfromC14H14O9N2toC16H22O7N2,filledsquares–C12H18O12,C13H22O11 isunlikely.Wethereforesuggestthatearlydiageneticsulfurizationoforganicmatteristhe primarysourceofthedetectedsulfurcompoundsintheAveRiverandthesouthernmudbelt

DOM. Although total sulfur concentrations in the sediment from the GaliciaMinho shelf werelowandtheTOC/TSvaluesof2.89to7.89exceededthecommonlyassumedaverage values for modern shelves of 2.8 (Berner, 1982), the southern mudbelt showed an 3fold higherTSconcentrationthantheoutershelf.Sulfurizationreactionsareknowntoproceed

103 Chapter3 during the early stages of sedimentary diagenesis and have been detected even at the sedimentwaterinterface(SinningheDamsteandDeLeeuw,1990;Wakehametal.,1995).The southernmudbeltprobablyprovidesatleastseasonally(summer)anoxicconditions,which are prerequisite for the sulfurization reactions. Furthermore, a range of monoOalkyl glycerolethers(C14toC19)andiso/anteisoC15:0fattyacids,bothgroupsindicativeofsulfate reducing bacteria (Taylor and Parkes, 1983; Rütters et al., 2001), were detected in the sedimentary OM samples of the mudbelt with the highest amounts found at the southernmostsamplingsite(Table3.2andFig.3.3a).Theactivityofsulfatereducingbacteria inthesesedimentsprovideshydrogensulfideandotherreducedsulfurspecies,whichcould subsequentlyreactwiththeOM.

TheAveRiverDOM,however,representsprobablyolder,highlydegradedOM,enrichedin humicsubstances.OMatthissitehadrepeatedlypassedanoxicconditionsinsoilsoranoxic bottomwaters,inwhichsulfurizationprocessestookplace,thusexplainingtheoccurrence and diversity of sulfurbearing compounds. Further research is needed to elucidate the originandsignificanceofsulfurcontainingDOM.

3.4SUMMARYANDCONCLUSIONS

Although FTICRMS delivers extensive molecular data for humic material it must be consideredthatthismethodsofarisnotquantitative.Theionizationefficiencymightvary strongly between aromatic and more apolar aliphatic compounds. The isolation of single compounds by separation methods or in the ICR cell as well as structure elucidation in fragmentationexperimentswillbetheprerequisiteforanyquantitativeapproachandisone of the goals of our future research. Moreover, since the molecular structures of the compoundsinthisstudyarenotexactlydetermined,testswithartificialstandardscannotbe appliedsofar.Theconclusionswhichweredrawninthisstudyarebasedonrelativepeak abundancesandallowedafingerprintingapproachfororganicmattersources.Theobserved variations of the molecular DOM composition on the shelf are linked to both source variationsandbiogeochemicalprocessesinthesediment.CompositionalvariationsinDOM arealsoreflectedindistributionsofcompoundsinthesedimentaryOM,i.e.,ligninphenols, selectedlipidbiomarkers,andinelementalcompositionsofbulkOM.Table3.4summarizes the source assignments of major compound groups detected in pore water DOM and the resultinginterpretations.Themajorobservationsare:

104 CharacterizationofDOMinsedimentporewater

1. Highly oxygenated aromatic compounds and nitrogenbearing compounds

withH/C0.60.8areprobablyderivedfromterrestrialsourcesassuggestedby

their distributional pattern similar to the lignin phenol abundance and

TOC/TNratiosinconcurrentlycollectedsedimentsamples.

2. Another nitrogenbearing compound group with high H/C ratios was

dominantlyfoundincontinentalslopeDOMandappearstobeindicativefor

microbial activity in the marine sediment, which was also reflected in the

lowernumberofDBEs.

3. Remarkably high concentrations of sulfur compounds in the southern

mudbeltandAveRiverDOMprobablyresultfromearlydiageneticalteration

ofOMandhavenotbeendocumentedinpreviousFTICRMSstudies.

Acknowledgements

WethankthecrewofRVPoseidon,TillHanebuthandthescientificshipboardpartyofthe

GALIOMARcruise.FurtherthanksgotoBritKockischforsupportduringsamplingandthe performance of TOC measurements. We also like to acknowledge Hella Buschoff for TN analysisandXavierPrietoforsupportinthelab.Fundingwasprovidedbythe“Deutsche

Forschungsgemeinschaft”throughDFGResearchCenter/ExcellenceCluster“TheOceanin the Earth System” and the Bremen International Graduate School for Marine Sciences

(GLOMAR).

105 Chapter3

REFERENCES(Hinrichsetal.,2000;Lametal.,2007)

AlvarezSalgado, X. A., Figueiras, F. G., Perez, F. F., Groom, S., Nogueira, E., Borges, A., Chou,L.,Castro,C.G.,Moncoiffe,G.,Rios,A.F.,Miller,A.E.J.,Frankignoulle,M., Savidge,G.,andWollast,R.,2003.ThePortugalcoastalcountercurrentoffNWSpain: newinsightsonitsbiogeochemicalvariability.ProgressinOceanography56,281321. Amon, R. M. W. and Benner, R., 1996. Bacterial utilization of different size classes of dissolvedorganicmatter.LimnologyandOceanography41,4151. Berner, R. A., 1982. Burial of organic carbon and pyrite sulfur in the modern ocean; its geochemicalandenvironmentalsignificance.AmericanJournalofScience282,451. Birgel, D., Stein, R., and Hefter, J., 2004. Aliphatic lipids in recent sediments of the Fram Strait/YermakPlateau(ArcticOcean):composition,sourcesandtransportprocesses. MarineChemistry88,127160. Burdige,D.J.,Berelson,W.M.,Coale,K.H.,McManus,J.,andJohnson,K.S.,1999.Fluxesof dissolvedorganiccarbonfromCaliforniacontinentalmarginsediments.Geochimicaet CosmochimicaActa63,15071515. Burdige,D.J.,Dennis,A.H.,andCraig,A.C.,2002.SedimentPoreWaters,Biogeochemistryof MarineDissolvedOrganicMatter.AcademicPress,SanDiego. Burdige,D.J.andGardner,K.G.,1998.Molecularweightdistributionofdissolvedorganic carboninmarinesedimentporewaters.MarineChemistry62,4564. Burdige,D.J.andZheng,S.,1998.Thebiogeochemicalcyclingofdissolvedorganicnitrogen inestuarinesediments.LimnologyandOceanography43,17961813. Canuel, E. A. and Martens, C. S., 1996. Reactivity of recently deposited organic matter: Degradation of lipid compounds near the sedimentwater interface. Geochimica et CosmochimicaActa60,17931806. Coelho,H.S.,Neves,R.J.J.,White,M.,Leitao,P.C.,andSantos,A.J.,2002.Amodelfor oceancirculationontheIberiancoast.JournalofMarineSystems32,153179. Decesari,S.,Facchini,M.C.,Matta,E.,Mircea,M.,Fuzzi,S.,Chughtai,A.R.,andSmith,D. M.,2002.Watersolubleorganiccompoundsformedbyoxidationofsoot.Atmospheric Environment36,18271832. Dias,J.M.A.,Jouanneau,J.M.,Gonzalez,R.,Araujo,M.F.,Drago,T.,Garcia,C.,Oliveira, A., Rodrigues, A., Vitorino, J., and Weber, O., 2002. Present day sedimentary processesonthenorthernIberianshelf.ProgressinOceanography52,249259. Dittmar,T.andKoch,B.P.,2006.Thermogenicorganicmatterdissolvedintheabyssalocean. MarineChemistry102,208217. Eglinton,G.andHamilton,R.J.,1967.Leafepicularwaxes.Science208. Einsiedl,F.,Hertkorn,N.,Wolf,M.,Frommberger,M.,SchmittKopplin,P.,andKoch,B.P., 2007. Rapid biotic molecular transformation of fulvic acids in a karst aquifer. GeochimicaetCosmochimicaActa71,54745482. Ertel,J.R.andHedges,J.I.,1984.Thelignincomponentofhumicsubstances:Distribution amongsoilandsedimentaryhumic,fulvic,andbaseinsolublefractions.Geochimicaet CosmochimicaActa48,20652074. Ertel,J.R.andHedges,J.I.,1985.Sourcesofsedimentaryhumicsubstances:vascularplant debris.GeochimicaetCosmochimicaActa49,20972107. Frouin, R., Fiúza, A. F. G., Ambar, I., and Boyd, T. J., 1990. Observations of a poleward surface current off the coasts of Portugal and Spain during winter. Journal of GeophysicalResearch95,679691.

106 CharacterizationofDOMinsedimentporewater

Goñi,M.A.andHedges,J.I.,1995.Sourcesandreactivitiesofmarinederivedorganicmatter in coastal sediments as determined by alkaline CuO oxidation. Geochimica et CosmochimicaActa59,29652981. Goñi, M. A., Nelson, B., Blanchette, R. A., and Hedges, J. I., 1993. Fungal degradation of wood lignins: Geochemical perspectives from CuOderived phenolic dimers and monomers.GeochimicaetCosmochimicaActa57,39854002. Goñi, M. A., Yunker, M. B., Macdonald, R. W., and Eglinton, T. I., 2000. Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and BeaufortShelf.MarineChemistry71,2351. Hedges, J. I., Blanchette, R. A., Weliky, K., and Devol, A. H., 1988. Effects of fungal degradationontheCuOoxidationproductsoflignin:Acontrolledlaboratorystudy. GeochimicaetCosmochimicaActa52,27172726. Hedges,J.I.,Clark,W.A.,Quay,P.D.,Richey,J.E.,andDevol,A.H.,1986.Compositions and fluxes of particulate organic material in the Amazon River. Limnology and Oceanography31,717738. Hedges,J.I.,Eglinton,G.,Hatcher,P.G.,Kirchman,D.L.,Arnosti,C.,Derenne,S.,Evershed, R. P., KögelKnabner, I., de Leeuw, J. W., and Littke, R., 2000. The molecularly uncharacterized component of nonliving organic matter in natural environments. OrganicGeochemistry31,945958. Hedges,J.I.andErtel,J.R.,1982.Characterizationofligninbygascapillarychromatography ofcupricoxideoxidationproducts.AnalyticalChemistry54,174178. Hedges, J. I., Hatcher, P. G., Ertel, J. R., and MeyersSchulte, K. J., 1992. A comparison of dissolvedhumicsubstancesfromseawaterwithAmazonRivercounterpartsby13C NMRspectrometry.GeochimicaetCosmochimicaActa56,17531757. Hedges,J.I.andKeil,R.G.,1995.Sedimentaryorganicmatterpreservation:anassessment andspeculativesynthesis.MarineChemistry49,81115. Henrichs,S.M.,1992.Earlydiagenesisoforganicmatterinmarinesediments:progressand perplexity.MarineChemistry39,119149. Hertkorn, N., Benner, R., Frommberger, M., SchmittKopplin, P., Witt, M., Kaiser, K., Kettrup,A.,andHedges,J.I.,2006.Characterizationofamajorrefractorycomponent ofmarinedissolvedorganicmatter.GeochimicaetCosmochimicaActa70,29903010. Hinrichs,K.U.,Summons,R.E.,Orphan,V.,Sylva,S.P.,andHayes,J.M.,2000.Molecular and isotopic analyses of anaerobic methaneoxidizing communities in marine sediments.OrganicGeochemistry31,16851701. Hockaday, W. C., Grannas, A. M., Kim, S., and Hatcher, P. G., 2006. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh resolution mass spectral analysis of dissolved organic matter from a fireimpacted forestsoil.OrganicGeochemistry37,501510. Hopkinson, C. S., Buffam, I., Hobbie, J., Vallino, J., Perdue, M., Eversmeyer, B., Prahl, F., Covert,J.,Hodson,R.,andMoran,M.A.,1998.Terrestrialinputsoforganicmatterto coastal ecosystems: An intercomparison of chemical characteristics and bioavailability.Biogeochemistry43,211234. Janssen, F., Huettel, M., and Witte, U., 2005. Porewater advection and solute fluxes in permeable marine sediments(II): Benthic respiration at three sandy sites with different permeabilities(German Bight, North Sea). Limnology and Oceanography 50, 779792.

107 Chapter3

Jouanneau,J.M.,Weber,O.,Drago,T.,Rodrigues,A.,Oliveira,A.,Dias,J.M.A.,Garcia,C., Schmidt,S.,andReyss,J.L.,2002.Recentsedimentationandsedimentarybudgetson thewesternIberianshelf.ProgressinOceanography52,261275. Kim,S.,Kaplan,L.A.,Benner,R.,andHatcher,P.G.,2004.Hydrogendeficientmoleculesin naturalriverinewatersamplesevidencefortheexistenceofblackcarboninDOM. MarineChemistry92,225234. Kim,S.,Kaplan,L.A.,andHatcher,P.G.,2006.Biodegradabledissolvedorganicmatterina temperate and a tropical stream determined from ultrahigh resolution mass spectrometry.LimnologyandOceanography51,10541063. Kim, S., Kramer, R. W., and Hatcher, P. G., 2003. Graphical Method for Analysis of UltrahighResolution Broadband Mass Spectra of Natural Organic Matter, the Van KrevelenDiagram.AnalyticalChemistry75,53365344. Koch, B. P. and Dittmar, T., 2006. From mass to structure: an aromaticity index for high resolution mass data of natural organic matter. Rapid Communications in Mass Spectrometry20,926. Koch, B. P., Ludwichowski, K. U., Kattner, G., Dittmar, T., and Witt, M., 2008. Advanced characterization of marine dissolved organic matter by combining reversedphase liquidchromatographyandFTICRMS.MarineChemistry111,233241. Koch,B.P.,Witt,M.,Engbrodt,R.,Dittmar,T.,andKattner,G.,2005.Molecularformulaeof marineandterrigenousdissolvedorganicmatterdetectedbyelectrosprayionization Fourier transform ion cyclotron resonance mass spectrometry. Geochimica et CosmochimicaActa69,32993308. Kramer, R. W., Kujawinski, E. B., and Hatcher, P. G., 2004. Identification of Black Carbon Derived Structures in a Volcanic Ash Soil Humic Acid by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Environmental Science and Technology 38, 33873395. Kujawinski, E. B., Del Vecchio, R., Blough, N. V., Klein, G. C., and Marshall, A. G., 2004. Probing molecularlevel transformations of dissolved organic matter: insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Marine Chemistry92,2337. Kujawinski,E.B.,Freitas,M.A.,Zang,X.,Hatcher,P.G.,GreenChurch,K.B.,andJones,R. B.,2002a.Theapplicationofelectrosprayionizationmassspectrometry(ESIMS)to thestructuralcharacterizationofnaturalorganicmatter.OrganicGeochemistry33,171 180. Kujawinski, E. B., Hatcher, P. G., and Freitas, M. A., 2002b. HighResolution Fourier TransformIonCyclotronResonanceMassSpectrometryofHumicandFulvicAcids: ImprovementsandComparisons.AnalyticalChemistry74,413419. Lam, B., Baer, A., Alaee, M., Lefebvre, B., Moser, A., Williams, A., Simpson, A., xe, and J, 2007. Major Structural Components in Freshwater Dissolved Organic Matter. EnvironmentalScienceandTechnology41,82408247. Ludwig,W.,Probst,J.L.,andKempe,S.,1996.Predictingtheoceanicinputoforganiccarbon bycontinentalerosion.GlobalBiogeochemicalCycles10,2341. McCallister,S.L.,Bauer,J.E.,Ducklow,H.W.,andCanuel,E.A.,2006.Sourcesofestuarine dissolved and particulate organic matter: A multitracer approach. Organic Geochemistry37,454468.

108 CharacterizationofDOMinsedimentporewater

Mead, R. N. and Goñi, M. A., 2008. Matrix protected organic matter in a river dominated margin:Apossiblemechanismtosequesterterrestrialorganicmatter?Geochimicaet CosmochimicaActa72,26732686. Medeiros, P. M. and Simoneit, B. R. T., 2008. Multibiomarker characterization of sedimentaryorganiccarboninsmallriversdrainingtheNorthwesternUnitedStates. OrganicGeochemistry39,5274. Oliveira, A., Rocha, F., Rodrigues, A., Jouanneau, J., Dias, A., Weber, O., and Gomes, C., 2002. Clay minerals from the sedimentary cover from the Northwest Iberian shelf. ProgressinOceanography52,233247. Opsahl,S.andBenner,R.,1995.Earlydiagenesisofvascularplanttissues:Ligninandcutin decompositionandbiogeochemicalimplications.GeochimicaetCosmochimicaActa59, 48894904. Prahl,F.G.,Ertel,J.R.,Goñi,M.A.,Sparrow,M.A.,andEversmeyer,B.,1994.Terrestrial organiccarboncontributionstosedimentsontheWashingtonmargin.Geochimicaet CosmochimicaActa58,30353048. Redfield,A.C.,1934.Ontheproportionsoforganicderivativesinseawatertheirrelationto thecompositionoftheplankton,176192.JamesJohnstoneMemorialVolume.Liverpool. Univ.Press,Liverpool. Redfield,A.C.,1958.Thebiologicalcontrolofchemicalfactorsintheenvironment.Am.Sci 46,205–221. Rudolphi, A., Tschech, A., and Fuchs, G., 1991. Anaerobic degradation of cresols by denitrifyingbacteria.ArchivesofMicrobiology155,238248. Rütters,H.,Sass,H.,Cypionka,H.,andRullkötter,J.,2001.Monoalkyletherphospholipidsin the sulfatereducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus.ArchivesofMicrobiology176,43542. Schmidt, M. W. I. and Noack, A. G., 2000. Black carbon in soils and sediments: Analysis, distribution,implications,andcurrentchallenges.GlobalBiogeochemicalCycles14,777– 793. Simoneit, B. R. T., 2002. Biomass burning a review of organic tracers for smoke from incompletecombustion.AppliedGeochemistry17,129162. Sinninghe Damste, J. S. and De Leeuw, J. W., 1990. Analysis, structure and geochemical significanceoforganicallyboundsulphurinthegeosphere:Stateoftheartandfuture research.OrganicGeochemistry16,10771101. Sleighter, R. L. and Hatcher, P. G., 2008. Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonancemassspectrometry.MarineChemistry110,140152. Stenson, A. C., Marshall, A. G., and Cooper, W. T., 2003. Exact Masses and Chemical Formulas of Individual Suwannee River Fulvic Acids from Ultrahigh Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectra. AnalyticalChemistry75,12751284. Taylor,J.andParkes,R.J.,1983.Thecellularfattyacidsofthesulphatereducingbacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. Journal of generalmicrobiology129,33033309. Tien, M. and Kirk, T. K., 1983. LigninDegrading Enzyme from the Hymenomycete PhanerochaetechrysosporiumBurds.Science221,661663. Tremblay, L. B., Dittmar, T., Marshall, A. G., Cooper, W. J., and Cooper, W. T., 2007. MolecularcharacterizationofdissolvedorganicmatterinaNorthBrazilianmangrove

109 Chapter3

porewater and mangrovefringed estuaries by ultrahigh resolution Fourier TransformIon Cyclotron Resonance mass spectrometry and excitation/emission spectroscopy.MarineChemistry105,1529. Tryon,M.,Brown,K.,Dorman,L.,andSauter,A.,2001.Anewbenthicaqueousfluxmeter for very low to moderate discharge rates. Deep Sea Research Part I: Oceanographic ResearchPapers48,21212146. Verdugo,P.,Alldredge,A.L., Azam,F.,Kirchman,D.L.,Passow,U.,andSantschi,P.H., 2004.Theoceanicgelphase:abridgeintheDOMPOMcontinuum.MarineChemistry 92,6785. Vitorino, J., Oliveira, A., Jouanneau, J. M., and Drago, T., 2002a. Winter dynamics on the northern Portuguese shelf. Part 1: physical processes. Progress In Oceanography 52, 129153. Vitorino, J., Oliveira, A., Jouanneau, J. M., and Drago, T., 2002b. Winter dynamics on the northern Portuguese shelf. Part 2: bottom boundary layers and sediment dispersal. ProgressInOceanography52,155170. Volkman, J. K., Revill, A. T., Holdsworth, D. G., and Fredericks, D., 2008. Organic matter sources in an enclosed coastal inlet assessed using lipid biomarkers and stable isotopes.OrganicGeochemistry39,689710. Wakeham, S. G., Sinninghe Damsté, J. S., Kohnen, M. E. L., and De Leeuw, J. W., 1995. Organic sulfur compounds formed during early diagenesis in Black Sea sediments. GeochimicaetCosmochimicaActa59,521533. Waterson, E. J. and Canuel, E. A., 2008. Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and 13CTOCanalyses.OrganicGeochemistry39,422439. White,H.K.,Reddy,C.M.,andEglinton,T.I.,2007.Relationshipsbetweencarbonisotopic composition and mode of binding of natural organic matter in selected marine sediments.OrganicGeochemistry38,18241837. Willmann, G. and Fakoussa, R. M., 1997. Biological bleaching of watersoluble coal macromoleculesbyabasidiomycetestrain.AppliedMicrobiologyandBiotechnology47, 95101. Wu,Z.,Rodgers,R.P.,andMarshall,A.G.,2004.TwoandThreeDimensionalvanKrevelen Diagrams: A Graphical Analysis Complementary to the Kendrick Mass Plot for SortingElementalCompositionsofComplexOrganicMixturesBasedonUltrahigh Resolution Broadband Fourier Transform Ion Cyclotron Resonance Mass Measurements.Anal.Chem.76,25112516. Yoshinaga,M.Y.,Sumida,P.Y.G.,andWakeham,S.G.,2008.Lipidbiomarkersinsurface sediments from an unusual coastal upwelling area from the SW Atlantic Ocean. OrganicGeochemistry39,13851399.

110

Chapter4

Diagenetictransformationofdissolvedorganicmatterundercontrasting

sedimentaryredoxconditionsintheBlackSea

FraukeSchmidta,BorisP.Kochb,MarcusElverta,MatthiasWittc,KaiUweHinrichsa

Draft,inpreparationforsubmissiontoEnvironmentalScienceandTechnology

aMARUM – Center for Marine Environmental Sciences, Leobener Straße, D28359 Bremen,

Germany bAlfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D27570

Bremerhaven,Germany cBrukerDaltonikGmbH,Fahrenheitstraße4,28359Bremen,Germany Chapter4

ABSTRACT

Dissolved organic matter (DOM) in sedimentary environments is produced during remineralizationofparticulateorganicmatter.Foracomprehensiveunderstandingofearly diagenesisofDOM,samplesfromsedimentporewatersandbottomwaterfromcontrasting redox conditions in the northern Black Sea were analyzed by highresolution Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) and compared to the associatedbulksedimentaryorganicmatterandthetotalhydrolysabledissolvedaminoacids

(THDAA).ThediversityandnumberofmoleculesinDOMinbottomandporewaterwere stronglyelevatedcomparedtothewatercolumn.Theintensityweightedaveragemolecular weight ((m/z)wa) and double bond equivalents (DBEwa) showed the lowest values in the bottomwaterandwereprobablytheresultofincreasedDOMproductionduetotheelevated microbial activity at the sedimentwater interface. At the oxic sampling site, DOM was mainly derived from the oxidation of algal organic matter and characterized by relatively high elemental oxygen to carbon ratios (O/C). In contrast, bulk sedimentary OM at the anoxic site consisted of refractory organic matter with higher contributions from bacterial biomasswhichwasreflectedintheexclusivepresenceofseveralcompoundswithlowO/C ratios. Distinct compounds with one or two nitrogen atoms were identified in all samples and were more abundant in pore waters than in bottom waters coinciding with higher concentrations of THDAA. These compounds were possibly products from protein and peptide degradation via hydrolysis and deamination and from early diagenetic reactions between pore water ammonium and functional groups of DOM. A set of Nbearing compounds exclusively present in the oxic bottom water was interpreted to result from oxidativedeaminationofpeptides,whereasseveralcompoundsintheanoxicDOMsamples wereattributedtoreductivedeaminationoracoupledoxidativeandreductivedeamination reaction.

112 DiagenetictransformationofDOM

4.1INTRODUCTION

Dissolvedorganicmatter(DOM)inmarinesedimentporewatersisaheterogeneousmixture of organic compounds with wide spectra of both reactivities and molecular sizes (Burdige andMartens,1988;ArnostiandHolmer,2003).Itderivesprimarilyfromthedissolutionof particulate organic matter (POM) in the sediment through hydrolysis, oxidative cleavage, leaching, cell autolysis, and remineralization by sedimentary organisms (Henrichs, 1992).

The widely accepted model for DOM production in sediment pore waters starts with an initial production of highmolecularweight (HMW)DOM through depolymerization of

POM, followed by a subsequent remineralization of the HMWDOM to monomeric low molecularweight (LMW)DOM (Amon and Benner, 1996; Burdige and Gardner, 1998;

Komadaetal.,2004).AfractionoftheHMWDOMisconvertedintopolymeric,apparently recalcitrant LMWDOM, which survives further transformation processes (Santschi et al.,

1995;AmonandBenner,1996).ThedecreaseinreactivityandremineralizationratesofPOM withsedimentdepth(Middelburg,1989;Burdige,1991),coincidingwithanincreaseofthe dissolvedorganiccarbon(DOC)content(e.g.,ShawandMcIntosh,1990;Baueretal.,1995;

Holcombe et al., 2001), suggests accumulation and increasing recalcitrance of pore water

DOM with time and advancing POM remineralization. DOM in sediment pore waters is important as nutrient pool for benthic organisms through the diffusional exchange with bottomwater(e.g.,BurdigeandZheng,1998)andfurthermore,itisprobablyacontrolling factorfororganicmatterpreservationinmarinesediments(Henrichs,1992;HedgesandKeil,

1995). However, up to now most of the pore water studies focused on concentrations and cycling of LMWDOM compounds or on the HMWDOM pool and only few studies investigatedthemolecularcompositionofporewaterDOMonacompoundclasslevel(see

Burdige, 2002, and references therein) leaving a large fraction of the pore water DOM uncharacterized. The lack of compositional data on a molecular level is mainly due to analytical limitations in resolving the complex DOM mixture which hinders a comprehensiveunderstandingofthefactorscontrollingpreservationandremineralizationof organicmatterinmarinesediments.

Inordertoobtaininsightsintoearlydiageneticprocessesonamolecularlevel,weanalyzed

DOMinbottomandporewatersfromtheBlackSeabyhighresolutionFouriertransformion cyclotronresonancemassspectrometry(FTICRMS).FTICRMSresolvescomplexorganic mixtures by providing the exact masses of single molecules. This technique has been

113 Chapter4 successfullyappliedtocharacterizeafractionofthemarineDOMpool(e.g.,Kochetal.,2005;

Hertkornetal.,2006;Kochetal.,2008;Reemtsmaetal.,2008;SleighterandHatcher,2008).

Althoughithasnotbeenpossibletoassignmolecularstructurestoeachofthethousandsof compoundsdetectedasmolecularformulainatypicalmarinesample,FTICRMSprovides an substantial amount of new information on the molecular composition of DOM. In a previousstudy,wehaveforthefirsttimeappliedFTICRMStomarinesedimentarypore waterandidentifiedsourcesandearlydiageneticprocessesinthepolymericLMWDOMin surface sediments (Schmidt et al., 2009). Now, we aim at constraining the initial steps of organicmatterremineralizationanditsdependenceofcontrastingredoxconditionsinaset of DOM samples from the water column, bottom water, and sediment pore water of the

BlackSea.ThemodernBlackSeaispermanentlystratifiedwithanoxicconditionsbelow150 to 200 m water depth (Glenn and Arthur, 1985) and is therefore suited for systematic comparisonoforganicmatterremineralizationundercontrastingredoxconditions.Twoof thesamplingsitesarelocatedonthenortherncontinentalshelfwheretheeffectofdifferent redox conditions on the DOM pool was investigated (oxic versus anoxic remineralization).

Thethirdsamplingsiteat2000mwaterdepthinthecentralbasinisinfluencedbytheolder ageoftheoverlyingwatermasses(Leeetal.,2002),whereastheporewatersamplederives fromawellpreservedturbiditelayer(20MUC15cm,Table4.2).

In this study, we focused particularly on Nbearing compounds in DOM in order to understandthefactorsinfluencingremineralizationandremobilizationofnutrientNduring earlydiagenesis.Theabundanceofnitrogeninlabilebiomoleculessuchasproteins,amino acids,RNA,DNA,etc.linksthenitrogencyclecloselytoearlydiagenetictransformationsof organicmatteratthesedimentwaterinterface(e.g.,ValKlumpandMartens,1983;Boynton and Kemp, 1985; Klump and Martens, 1987; Kemp et al., 1990; Mayer and Rice, 1992;

DellannoandCorinaldesi,2004).

4.2MATERIALANDMETHODS

4.2.1Sampling

TheanoxicwatercolumnofthenorthernBlackSeawassampledusingaPumpCTD(Table

4.2)duringacruisewithRVMeteorinMay2007.Bottomwatersandsedimentporewaters weretakenfrommulticorers(MUC).Bottomwaterinavolumeof50mlwassampledfrom the sediment water interface of each MUC and filtered through GF/F filters (Whatman,

114 DiagenetictransformationofDOM

0.7m pore size). Sediment pore water (50 ml) was obtained by rhizon sampling

(Eijkelkamp, pore size 0.1 m) in 15 – 17 cm sediment depth. All water samples were acidifiedtopH2withhydrochloricacid(HCl,p.a.grade,Merck)andstoredinsealed,pre combustedvialsat+4°Cinthedarkuntilfurtherpreparation.Additionallytothebottom andporewater,theassociatedsediment(0–1cmand15–17cm)wassampledforanalysis of total organic carbon (TOC), total nitrogen (TN) and stable carbon isotopic composition

(13CTOC)ofbulkorganicmatter.Sedimentsampleswerestoredinprecombustedglassvials at20°Cinthedark.

4.2.2Dissolvedorganicmatterextraction

Watersamples(50ml)wereconcentratedbyafactorof50withsolidphaseextractiononpre cleanedSPEcartridges(PPLbondelut,200mgsorbent,Varian;extractionefficiencyamounts to43–65%ofthepelagicDOC(Dittmaretal.,2008)).AfterDOMadsorptionontothePPL cartridgessaltwasremovedfromthesamplesbyrinsingwith6ml0.1MHClsolution.After elution with 1 ml methanol (LiChrosolv, Merck) into precombusted glass ampoules the

DOMextractswerestoredundernitrogenatmosphereat20°Cinthedarkuntilanalysis.

4.2.3Fouriertransformioncyclotronresonancemassspectrometry

PriortoFTICRMSanalysesDOMextractsweredilutedinaratioofmethanol:water50:50

(v/v).Allsampleswereanalyzedfromavolumeof400lwithelectrosprayionization(ESI,

ApolloIIelectrospraysource)innegativeionmode(capillaryvoltage:+4kV)ataninfusion flow rate of 2 l min1 on an Apex Qe mass spectrometer (Bruker Daltonics Inc. Billerica,

USA) equipped with a 9.4 T superconducting magnet (Bruker Biospin, Wissembourg,

France). Spectra were calibrated with arginine clusters and 300 scans were added to one spectrum.Internalcalibrationwithcompounds,whichwererepeatedlyidentifiedinmarine

DOMsamples(m/z:339.10854,369.11911,411.12967,469.13515,541.15628,595.20323)yielded amassaccuracybelow0.3ppm.Molecularformulaewerecalculatedinamassrangeof200–

600m/zforpeakswithasignaltonoiseratio(S/N)of>3andwererestrictedtoamolecular element ratio of O/C 1.2 and to integer double bond equivalent (DBE) values. DBE was calculatedfromthenumberofatoms(Ni)andthevalence(Vi)ofeachelement(i)afterEq.

(4.1)anddefinesthenumberofdoublebondsand/orringsinamolecule.

115 Chapter4

i max  B N i (Vi 2) DBE=1 i (4.1) 2

Aformulatoleranceof±0.5ppmwasconsideredasvalidformulaandforthefinaldataset wefocusedonionswitharelativeabundanceI4%(themostabundantsamplecompound ineachspectrumwassetto100%),usingfollowingrestrictionswithrespecttothemolecular composition: 1H0120, 12C050, 16O035, 14N02. This approach provided unequivocal molecular formulaeinthemassrange200–500m/zandmultipleformulaeinthemassrange500–600 m/z were filtered with the homologous series/building block approach (e.g., Koch et al.,

2007).

Duetothelackofstandardsubstancesandpossiblevariationsintheionizationefficiencyof differentsubstanceclassesduringESIionization,FTICRMSisnotaquantitativemethodfor

DOM. However, the relative intensity approach permits semiquantitative statements for samples analyzed under similar conditions. Weighted average values were calculated for severalparameters(m/z,DBE,NandmolecularelementratiossuchasO/C,H/CandC/N)in eachsamplefromtheintensity(Int)oftheassignedpeak(x)inthespectrumusingEq.(4.2):  B(O / C) x Int x ) (O / C)  (4.2) wa B Int

4.2.4Dissolvedorganiccarbonandtotaldissolvednitrogen

DOCandtotaldissolvednitrogen(TDN)concentrationintheSPEextractwereanalyzedby hightemperaturecatalyticoxidationusingaShimadzuTOC/TNanalyzerequippedwithan infraredandachemiluminescencedetector(gasflowoxygen:0.6lmin1).Priortoanalysisan aliquot of the solid phase extract was dried with nitrogen, gentle heated (40 °C) and re dissolvedinultrapurewater.6mlofsamplevolumewereacidifiedwith0.12mlHCl(2M) intheautosamplerandpurgedwithoxygentoremoveinorganiccarbon.Afterwards,50l ofthesamplewasdirectlyinjectedonthecatalyst(heatedto680°C).Detectionlimit(5of the blank) was 7 M C with an accuracy of ±2 M C and final DOC concentrations were averagevaluesoftriplicatemeasurements.

116 DiagenetictransformationofDOM

4.2.5Totalhydrolyzabledissolvedaminoacids

Totalhydrolysabledissolvedaminoacids(THDAA)wereanalyzedusingamodifiedmethod after Fitznar et al. (1999). Aliquots of the DOM methanol extract (100l) were hydrolyzed with2mlof32%HClinglassampoules.Theampouleswereflushedwithnitrogen,melted downandkeptfor24hat110°C.Thesolutionwasneutralizedwith1.780mlboratebuffer, andthepHwasadjustedto8.5with32%sodiumhydroxide.Sampleswereanalyzedona high performance liquid chromatography (HPLC) system equipped with a C18 column

(Phenomenex Hyperclone 5, BDS C18; 250 x4mm;precolumn:2x4mm)anda fluorescencedetector.Abinarygradientofsodiumacetatebuffer(eluentA;25mmolsodium acetateinultrapurewater+20mlacetonitrileadjustedtopH6.00withdilutedHClandfilled upto1lwithultrapurewater)andacetonitril(eluentB,LiChroSolv,MERCK)wereusedfor the injection volume of 20 l. Compared to Fitznar et al. (1999) the gradient waschanged accordingtoTable4.1.

Table 4.1. Binary gradient (eluent A: sodium acetate buffer, eluent B: acetonitrile)for HPLC separation for TDHAA.

T (min) Solvent B (%) Flow: (ml/min) 0 3 0.850 3 3 0.850 80 19 0.850 90 21 0.850 100 35 0.850 105 100 0.850 110 100 0.850 115 3 0.850

D/L ratio was calculated from alanine, arginine, aspartic acid, asparagine, glutamic acid, glutamine, histidine, methionine, serine, threonine, tryptophan, tyrosine, and valine.

THDAAincludeadditionallyglycine,Lisoleucine,Lleucine,Dphenylalanine,LandD aminobutyricacid,andaminobutyricacid.

4.2.6Totalorganiccarbonandtotalnitrogen

TheTOCcontentinthefreezedriedhomogenizedsedimentwasanalyzedusingaLecoCS

200. Prior to analyses, 50 mg of each sample were treated with 12.5% HCl to remove carbonates.For TN measurements,25 mg of the freezedried homogenized sediment were weighted into tin boats and analyses were carried out using a Vario EL III Elemental

Analyzer.

117 Chapter4

4.2.7Stableorganiccarbonisotopes

13CTOCwasmeasuredonanHeraeusElementalanalyzerconnectedtoaFinniganMATDelta

Plus. Prior to analysis, the freezedried samples were decalcified with 12.5% HCl, homogenized and packed into tin boats. Standard deviation was determined from routine and replicate measurements of a reference sample and always below 0.1‰. Values are quoted in the 13C notation in per mil relative to the Vienna Pee Dee Belemnite (VPDB) standard.

4.3RESULTSANDDISCUSSION

4.3.1Characterizationofsedimentaryorganicmatter

The three sediment sampling sites differed considerably regarding the sediment type and

TOC content (Table 4.2). The upper 2 cm of sediment at the oxic sampling site (16MUC) consistedofgreentogreyshellymudwithaTOCcontentof1.19%.TheTOCdecreasedwith depthandthesedimentconsistedofpuregreentogreymudbelow2cm.ThelowTOC/TN andenriched13CTOCsignaturesinthesurfacesediment(16MUC0cm)indicatedamarine originoftheorganicmatter(Redfield,1958).Thesedimentsoftheanoxicshelfsite(14MUC) andtheanoxiccentralbasinsite(20MUC)representtypicalanoxicBlackSeasediments,i.e., darkgreytoblackmudwithafluffyorganicrichlayerontopandlaminationformedfrom diatomoozebelow5cm.TheTOCcontentwasmuchhigheratbothsiteswithamaximumof

2.60%(14MUC0cm)and6.16%(20MUC0cm)inthesurfacesediment.Thecomparably highTOC/TNratiosof8.50and8.89aswellasthelow13CTOCvaluesof24.1and25.0in sedimentsfromtheanoxicshelfandtheanoxiccentralbasin,respectively,mayindicatethe preferentialremineralizationoflabilemarineorganicmatterandhencetheaccumulationof morerecalcitrant,possiblyterrestrialderivedorganicmatter.TheTHDAApoolattheanoxic sitescontainsahigherproportionofaminoacidsfrombacterialpeptidoglycan(bacterialAA in Table 4.3), i.e., Dalanine, Dasparagine, Daspartic acid, Dserine, Dglutamine, and D glutamic acid (e.g., Pedersen and Thomsen, 2001; Lomstein et al., 2006) which is more recalcitrant(McCarthyetal.,1998;Gruttersetal.,2002).Suchrecalcitrantorganicmatteris preferentiallypreservedintheanoxicsediments,whereasunderoxicconditionsofsampling site 16MUC 0 cm degradation is less selective (Cowie et al., 1995; Kristensen et al., 1995;

Hultheetal.,1998).LowLhistidine(LHis)andelevatedglycine(Gly)concentrationsinthe pore waters from the oxic (16MUC 15 cm) and the anoxic (14MUC 15 cm) shelf reflect

118 DiagenetictransformationofDOM increaseddiagenesiscomparedtothebottomwater.InthecentralbasinoftheBlackSea(20

MUC),thistrendwasreversed,i.e.,LHiswasrelativeenrichedandGlyrelativedepletedin the pore water compared to the bottom water, indicating a better preservation of the

THDAA pool in the turbidite layer (20MUC 15 cm), possibly due to the rapid burial of organicmatter.

Table4.2.Waterdepths,sedimentandorganicmatterproperties(TOCandTNin%,13CTOCin‰)ofthe samplinglocationsinthenorthernBlackSea.

13 Sampling site Longitude (°N) Latitude (°E) Depth (m) Sediment TOC TN TOC/TN CTOC 16-MUC 0 cm 44°42'98 36°24'86 71 Green to grey shelly mud 1.19 0.21 6.46 -22.9 (oxic) 16-MUC 15 cm Grey mud 0.89 0.13 8.04 -23.5 14-MUC 0 cm Dark grey to black mud, 44°35'80 36°21'28 268 2.60 0.31 9.92 -24.1 (anoxic) fluffy layer Laminated dark grey to 14-MUC 15 cm 1.68 0.20 10.01 -24.3 black mud 20-MUC 0 cm Dark grey to black mud, 43°57'26 35°36'46 2046 6.16 0.69 10.37 -25.0 (anoxic) fluffy layer 20-MUC 15 cm Dark grey to black mud 4.72 0.46 11.85 -25.0 13-PCTD 44°33'01 36°20'00 150 (Water sample, 2l) - - - -

Table 4.3. Characteristic parameters of water column, bottom water and pore water DOM analyzed from the solidphaseextractincludingDOCSPEandTDNSPE(inM/l),totalhydrolysabledissolvedaminoacid(THDAAin nM/l)andtheirD/Lratio.BacterialAA(inmol%THDAA)compriseDalanine,Dasparagine,Dasparticacid,D glutamine, Dglutamic acid and Dserine. Glycine (Gly in mol% THDAA) and Lhistidine (LHis in mol% THDAA)reflectdiagenesis. Gly L-His Sampling site DOC TDN THDAA D/L bacterial AA SPE SPE THDAA (%THDAA) (%THDAA) 16-MUC 0 cm 151 102.7 298 0.21 9.2 13.5 24.7 16-MUC 15 cm 380 19.5 1541 0.26 11.4 14.7 8.1 14-MUC 0 cm 70 6.5* 156 0.31 12.3 15.9 26.3 14-MUC 15 cm 278 14.3 794 0.26 11.0 16.6 13.7 20-MUC 0 cm 122 2.4* 146 0.36 11.3 19.4 12.7 20-MUC 15 cm 263 5.3* 775 0.26 11.4 14.9 19.3 13-PCTD 68 3.0 98 0.33 11.8 19.0 14.0

) * TDNSPE close to the limit of quantitation

WhileTOCdecreasedwithsedimentdepth,theporewaterDOCconcentrationwasafactor of2.54higherthaninthebottomwater(Table4.3)reflectingremineralizationofPOMand accumulationofdegradationproductsandintermediatesintheporewater.TheDOCand therelativeTDNcontentinthewatercolumnsample(13PCTD)werelowerthanindeep bottomwater.TheTDNdepletionismostlikelycausedbythehighconsumptionoflabile and semilabile DOM (i.e., DOM with low DOC/TDN ratios) above the suboxicanoxic interface(Ducklowetal.,2007)andthesubsequentrelativeenrichmentofnitrogendepleted

DOMintheanoxicwaterlayerbelow.Thesedimentsontheotherhandstorelargeramounts

119 Chapter4 of organic matter providing therefore an extensive organic matter pool for the initial diagenesis,asitisalsoreflectedintheincreasednumberoftotalidentifiedmolecules(nIon,

Table4.4).

Table4.4.Characteristicparametersofwatercolumn,bottomwaterandporewaterDOMderivedfromFTICR MSanalysis.Displayedarenumbersofidentifiedmolecularformulae(nIon),theintensityweightedaveragevalues ofthemolecularweight((m/z)wa),doublebondequivalents(DBEwa),molaroxygentocarbon((O/C)wa)and hydrogentocarbonratios((H/C)wa),thenumberofnitrogenatomspermolecule(Nwa)andtheratioofthetotal intensityofCHOformulasversusCHNOformulas((CHO/CHNO)wa).

Sampling site nion (m/z)wa DBEwa (O/C)wa (H/C)wa (N)wa (CHO/CHNO)wa 16-MUC 0 cm* 1081 379.77 7.63 0.54 1.25 0.19 6.2 16-MUC 15 cm* 1147 384.13 7.68 0.51 1.27 0.22 5.14 14-MUC 0 cm 995 368.35 7.35 0.51 1.27 0.19 6.7 14-MUC 15 cm 1346 380.71 7.87 0.51 1.24 0.25 4.7 20-MUC 0 cm 942 385.25 7.93 0.53 1.23 0.18 7.6 20-MUC 15 cm 1137 388.00 7.99 0.53 1.23 0.21 5.6 13-PCTD 564 385.52 7.73 0.51 1.26 0.06 26.97

4.3.2Theeffectofearlydiagenesisonmoleculesizeandmoleculesaturation

Upto1346molecularformulaewereassignedineachDOMsample(Table4.4).Ingeneral, the number of compounds increased from the bottom water to the pore water in 15 cm sediment depth corresponding to the observed DOC increase. The intensity weighted averagemolecularweight(m/z)waandDBEwadecreasedbothfromtheanoxicwatercolumn in 150 m water depth (13PCTD) to the bottom water. Similar variations were previously observedinDOMfromriverwatercomparedtoDOMfromsurficialsedimentporewatersat the NW Iberian margin (Schmidt et al., 2009). The accumulation of smaller and more saturated molecules in the sediment pore water was interpreted as increased DOM productionduetoahighermicrobialactivityinthesurfacesediments.IntheBlackSea,the bottom waters had the lowest (m/z)wa and DBEwa and both values were again relatively increasedinporewaters,especiallyattheanoxicsamplingsites.Thissuggeststhat(m/z)wa and DBEwa are linked to the microbial activity in the sediment. The impact of microbial activityontheDOMpoolisexpectedtobethehighestatthesedimentwaterinterface.The concentrationsofaminoacidsfrombacterialbiomassshowedindeedadecreasewithdepth attheanoxicshelfsite(14MUC,Table4.3).Consistentwiththistrend,theD/Lratioatboth anoxicsamplingsitesshowedmuchhighervaluesinthebottomwatercomparedtothepore water (Table 4.3). High D/L ratios can be a product of high contributions from bacterial

120 DiagenetictransformationofDOM biomassoroftheconversionofLaminoacidstoDaminoacidsduringdiagenesis(Badaet al., 1970; Kvenvolden et al., 1970). The high D/L ratio for 13PCTD may indicate contributions from bacteria to the DOM pool which graze on sinking POM in the anoxic watercolumnoftheBlackSea(e.g.,Wakeham,1995).Thelargermoleculesizesinthepore watercouldindicateanaccumulationofrefractorymoleculesor,alternatively,theycouldbe a product of specific reactions in the pore water such as molecule rearrangements and condensationinthecourseofdiagenesis.

4.3.3VariationsinCHOmolecules

Fig. 4.1 shows the composition of the DOM samples in van Krevelen diagrams. Each plot compares compositional variations between two samples. Van Krevelen diagrams are convenient for an overall comparison between different samples regarding their elemental

CHOcomposition.MolecularformulaeofallpureCHOcompoundsarearrangedinFig.4.1 accordingtotheirelementaloxygentocarbon(O/C)andhydrogentocarbon(H/C)ratios.

Figure4.1.VanKrevelendiagramofCHOmoleculesina)watercolumnsample(13PCTD)andthebottomwater fromtheanoxicshelf(14MUC0cm),b)oxicbottomwater(16MUC0cm)andanoxicbottomwaterfromthe shelf(14MUC0cm),andc)oxicbottomwater(16MUC0cm)andporewaterfromthesamelocation(16MUC 15cm).GreydashesindicateCHOformulaspresentineachofthetwocomparedsamples.

Thefirstplot(Fig.4.1a)isacomparisonofthewatercolumnandbottomwateroftheanoxic shelf. The number of identified compounds is much larger in the bottom water (see also

Table4.4)andthecompoundsaredistributedoverawiderO/CandH/Crange.Thewater column DOM lacks compounds with either high or low H/C and O/C ratios, but showed several exclusive compounds with moderate O/C and H/C ratios at high molecule masses

(m/z=526–598)andlowrelativeintensities(I=4–7%).Incomparison,theoxicandthe

121 Chapter4 anoxicbottomwatersamplessharemorecompoundswithsimilarmolecularformulae(Fig.

4.1b).However,theoxicbottomwaterischaracterizedbyexclusiveformulaewithhighO/C ratios,mostofthemintheO/Crangeof0.35to0.90,butwithlowrelativeintensities(I=4–

9%),whereasthemajorityofexclusiveformulaeintheanoxicbottomwaterDOMrangeat

O/Cratios of0.10to0.60withawiderangeofrelativeintensitiesup to99%.Thispattern reflects most likely variations in the degradation mechanisms and in the source material under the contrasting redox conditions. The higher oxidation rate for POM in the oxic surface sediment (e.g., Hulthe et al., 1998; Komada et al., 2004) produces more strongly oxidizedporewaterDOMwithlowrelativeintensitiesduetoarapidDOMturnover.Under the oxygen limited conditions of sampling site 14MUC, the sedimentary organic matter consists of more recalcitrant compounds with lower oxygen content as also indicated by

13CTOC,TOC/TNandbacterialaminoacidswhichisreflectedintheDOM.Theincreasein the number of molecular formulae in the pore water resulted probably from the accumulation of refractory DOM with sedimentdepthand progressive diagenesis and the comparably lower O/C ratios of these compounds in the pore water reflect then the increasingrecalcitranceofthesourcematerial.

Aclusteranalysisrevealedacloserelationofthebottomwaterfromthecentralbasin(20

MUC0cm)andfromtheoxicshelf(16MUC0cm)(Fig.4.2a).Thesimilaritybasedonahigh numberofcommonCHOcompoundsinbothsamples(seealso(O/C)waand(H/C)wainTable

4.4). This is surprising, since the predominating degradation reactions and the source materialatbothsitesdifferconsiderably(Table4.2).

Figure4.2.Clusteranalysis(BrayCurtisSimilarity)basedona)allCHOmoleculesandb)allnitrogenbearing molecules. 122 DiagenetictransformationofDOM

4.3.4VariationsofNbearingcompoundsinDOM

Weidentifiedupto352and75compoundswithonetwonitrogenatoms,respectively(14

MUC15cm).CompoundswiththreeorfournitrogenatomswerenotdetectedintheFT

ICRMSdataset,probablyduetotheirlowabundance(seealsoKochetal.,2007).TheN bearingcompoundsweredistributedoveramassrangefrom250to550Daandwerehigher abundant in the pore waters at all sampling sites corresponding to higher values of nIon,

DOC, THDAA and their weighted average molecular weight (N(m/z)wa). Nbearing compoundswereleastabundantinthewatercolumn(13PCTD)withonly60compounds withN=1andnonedetectedwithN=2(Fig.4.3).Generally,Nbearingcompoundswith high relative intensities (I = 10 –24%) were present inall bottom and pore water samples regardless of the prevailing redox conditions. Interestingly, the molecule with the highest relativeintensityisinallsamples,exceptforthewatercolumn,C15H19N1O9.

Figure4.3.Molecularmassdistributionofnitrogenbearingcompoundsinallsamples.Blackbarindicates compoundswithN=1,greybarreferstocompoundswithN=2,andreddashedarrowsindicatethemaximum moleculesizeofdiandtripeptides,respectively.

Compositional differences between individual samples are evident among molecules with relativeintensitiesbelow10%.ThecomparisonofthewatercolumnDOM(13PCTD)andthe bottom water DOM from the anoxic shelf (14MUC 0 cm) (Fig. 4.4a) reflect not only the strong increase in the number of molecules but also a wider H/C and O/C range in the 123 Chapter4 bottomwaterDOMasreportedaboveforthepureCHOcompounds.MostoftheNbearing molecularformulaeintheanoxicbottomwaterrangedbetweenO/C=0.35–0.80andH/C=

0.90–1.70,whereasthewatercolumnDOMisrestrictedtoO/C=0.44–0.69andH/C=1.06–

1.53. The bottom water DOM from the anoxic and the oxic shelf (Fig. 4.4b) as well as the bottom water and thepore water at each sampling site (Fig. 4.4c) share a high number of molecularformulaeintherangeofO/C=0.40–0.90andH/C=0.39–1.65.Similartothe pure CHO compounds, the oxic bottom water contained exclusively a set of Nbearing compoundswithmolecularformulaeathigherO/Cratios(O/C=0.40–0.90),whereasaset ofmolecularformulaewithlowerO/Cratios(O/C=0.15–0.75)wasexclusivelypresentin anoxicbottomwaterandporewaterwiththehighestdiversityinthelatter.

Figure4.4.SamplecomparisonofnitrogenbearingcompoundsinvanKrevelendiagramsfora)watercolumn sample(13PCTD)andthebottomwaterfromtheanoxicshelf(14MUC0cm),b)oxicbottomwater(16MUC0 cm)andanoxicbottomwaterfromtheshelf(14MUC0cm),andc)oxicbottomwater(16MUC0cm)andpore waterfromthesamelocation(16MUC15cm).Greydashesindicatecompoundswithonenitrogencommonin bothsamples,blackdashesassigncompoundswithtwonitrogencommoninbothsamples.Filledsymbols/cross refertocompoundswithonenitrogeninindividualsamples,opensymbolsindicatecompoundswithtwo nitrogenatomsinindividualsamples.

4.3.5Nbearingcompoundsasproductsofproteindegradation

Mostofthenitrogeninbiomassisboundinproteins,whereasaminosugars(e.g.,inchitin), nucleic acids in DNA and RNA and tetrapyrroles in pigments form a minor fraction

(StankiewiczandVanBergen,1998).DONinthewatercolumnpredominantlyoccursinthe amideform(McCarthyetal.,1997)withastrongrelativeincreaseinproteinderivedamides from the surface to the deep water (Aluwihare et al., 2005). Although the contribution of amideN to the DOM pool in sediment pore waters has not yet been exactly determined, there are clear indications that a fraction of the DOM derives from protein degradation.

124 DiagenetictransformationofDOM

Lomstein and coworkers (1998), for example, were able to identify 40% of the DON

(corresponding to 10% of the DOC) in coastal sediment pore waters as dissolved free and combinedaminoacids,probablyproductsofproteindegradation.IntheDOMextractsfrom theBlackSea,theincreaseinTHDAAfromthebottomtotheporewatercorrespondedtothe increaseinNbearingcompoundsintheFTICRMSdata.

Theoretically,theN=1compoundsofupto343DaandtheN=2compoundsofupto507

Dacouldrepresentproteinderiveddiandtripeptides(themassescorrespondtopeptides formed from two and three tyrosine molecules, respectively). Protein degradation starts rapidlyaftercelldeath,initiallyandmostimportantlybyhydrolysisofthepeptidebonds, which successively breaks down the macromolecular protein structure into smaller oligopeptides, dipeptides and amino acids (e.g., Hollibaugh and Azam, 1983; Mayer and

Rice, 1992; Pantoja et al., 1997). In addition to abiotic mechanisms, protein hydrolysis proceeds via enzymatic reaction, performed intracellularly by macroorganisms or extracellularlybybacteriathatarenotabletotransportmoleculeslargerthan600Daacross their cell membranes (Nikaido and Vaara, 1985). The extracellular hydrolysis results in an accumulation of dipeptides in DOM due to slower hydrolysis compared to peptides with morethantwoaminoacids,possiblyresultingfromalackofspecificexoenzymes(Pantoja andLee,1999).TheaccumulationofdipeptidesinDOMcouldbeanexplanationwhyonly molecules with one or two nitrogen atoms in the mass window of 200 – 600 Da were detected.InthevanKrevelendiagram,proteins,peptides,andaminoacidswouldplotinthe upperleftcorner(Fig.4.4b).MolecularformulaeintheO/CandH/Crangeofproteinswere previouslydetectedbyFTICRMSinDOMfromprotozoacultures(Kujawinskietal.,2004) and in pore water in continental slope sediment (Schmidt et al., 2009); in both studies proteinshavebeensuggestedassourcesforsuchcompounds.However,thesamplesfrom theBlackSeashowedonlyasmallnumberofmolecularformulaewithH/CandO/Cratios similartoproteins(Fig4.4).

Assuming that the Nbearing compounds detected by FTICRMS are actually protein degradationproducts,wewouldneedtoconcludethatprocessesinadditiontohydrolysis alter the proteins structurally and in their elemental composition. Additional processes related to protein, peptide, and amino acid degradation involve deamination and decarboxylation(Gale,1940;MorrisandFillingame,1974).Theidentifiedmolecularformulae inoursamplescouldderivefrompeptidedeamination,whichwouldalsoexplainthelackof

125 Chapter4 molecular formulae with more than two nitrogen atoms. Under the oxic conditions of sampling site 16MUC, the predominating deamination process is probably microbially catalyzedoxidativedeamination.Duringthisreaction,theterminalaminogroupisoxidized toformacarbonylgroupasillustratedinEq.(4.3)forglutamicacid.

COOHCHNH2(CH2)2COOH+NADP++H2O

COOHCHO(CH2)2COOH+NADPH+H++NH3 (4.3)

ThisreactionresultsinashifttohigherO/CandlowerH/Cratios(Fig.4.4b).ExclusiveN bearing compounds in the bottom water from the oxic shelf site could be formed via the reactioninFig.4.5a.Twoaminogroupsaresubstitutedbyoxygeninthepeptideformedby valine,glutamicacidandasparagine,yieldingthemolecularformulaC14H18N2O9.Oxidative deamination also is not restricted to oxic environments; it has been reported for methanogens, sulfate reducers and acetogens (Stams and Hansen, 1984; Örlygsson et al.,

1994).Thepresenceofoxidativedeaminationcouldexplaintherelativelyhighsimilarityof

Nbearingcompoundsfromoxicandanoxicsamplesintheclusteranalysis(Fig.4.2b).

Reductive deamination, on the other hand, is probably more important under the anoxic conditions of the sampling locations 14MUC and 20MUC. This process lowers the H/C ratios of the altered peptide (Fig. 4.4b) due to the loss of two hydrogen atoms. Several molecularformulaewithratherlowO/Cratioswereexclusivelyfoundintheanoxicsamples; wesuggestthatthesecompoundsaretheproductsofreductivedeaminationofpeptidesasit isdemonstratedinFig.4.5b.

Anotherpossibledeaminationreactionperformedbyanaerobicbacteria(e.g.,Clostridia)isa coupledoxidationandreductionofaminoacidsintheSticklandreaction(Seto,1980).During this reaction, the electron is intramolecularly transferred from the oxidized to thereduced amino group site. Fig. 4.5c shows an example how the molecular formula C18H22N2O8, exclusively found in the anoxic samples, could be formed via Sticklandtype reaction by reductivedeaminationoftyrosineandoxidativedeaminationofglutamine.

126 DiagenetictransformationofDOM

Figure4.5.PossibleprecursorpeptidesanddeaminationreactionsforexemplarysumformulasfromtheFTICR MSdataset:a)oxidativedeaminationofapeptidebuiltfromvaline(Val),glutamicacid(Glu)andasparagine (Asn)resultinthesubstitutionoftwoammoniumgroupsbyoxygen(yellowcircle)andinthesumformula C14H18N2O9whichwasexclusivelyfoundintheoxicbottomwater(16MUC0cm),b)reductivedeamination substitutestheammoniumgroupbyhydrogeninthepeptidebuiltfromtyrosine(Tyr)andthreonine(Thr),andc) intheSticklandreactionofthepeptidebuildfromTyr,glutamine(Gln)andThr,Tyrisdeaminatedreductively, whereasGlnisdeaminatedoxidatively.Sumformulaeoftheproductsfromreactionb)andc)wereonlydetected intheanoxicbottomwatersandtheporewatersamples.

4.3.6OthersourcesforNbearingcompoundsinDOM

ThefactthatasignificantfractionofthecompoundswithasingleNatomexceedthemassof potential dipeptides (Fig. 4.3;maximum molecular weight of dipeptide TyrTyr is 343 Da) indicates that alternative sources and processes needto be considered. A possibility is the formationthroughreactionsofammoniumwithreactivefunctionalgroupsofNfreeDOM in the pore water. Such reactions followed by cyclyzation were proposed to start already during early diagenesis at the sediment water interface and could explain the change In structure and functionality from the amideN predominating in living biomass and water columnDONtoheterocyclicnitrogenpreservedincoalandpetroleum(Patienceetal.,1992;

Vairavamurthy and Wang, 2002). The exact mechanisms of the rearrangement reactions

127 Chapter4 remain elusive, however, Burdige (2002) suggested that the reactions occur via DON intermediates.Generally,themolecularformulaeinallsampleshadrelativelyhighoxygen contents ((O/C)wa, Table 4.4). A fraction of this oxygen must be bound in carboxyl and hydroxylgroups which eventually react with abundant ammonium, typically observed in anoxicsediments(e.g.,KlumpandMartens,1987).Thenewappearanceofahighnumberof

Nbearing compounds with low O/C ratios in the sediment pore water (Fig. 4.4c) could intermediates of the rearrangement reactions which shift the molecular composition to higherH/CandlowerO/Cratiosthroughtheexchangeofoxygenbytwohydrogenandone nitrogenatom(Eq.(4.4)).

C21H31O11COOH+NH3C22H31O11CONH2+H2O(4.4)

4.4SUMMARYANDCONCLUSIONS

ThemolecularcompositionofpolymericLMWDOMfromcontrastingredoxconditionsin thewatercolumn,bottomwatersandsedimentporewatersoftheBlackSeawereanalyzed with FTICRMS. Variations in the molecular composition reflected different remineralizationprocessesassociatedwiththeprevailingenvironmentalconditions:

DOMintheanoxicwatercolumnoftheBlackSeaisrecalcitrant,hasalownitrogen

content and a less diverse molecular composition compared to bottom water and

sedimentporewater;NIonandthenumberofexclusivemolecularformulaeincrease

successivelyintheorderwatercolumn–bottomwater–porewater.

At the oxic shelf, TOC is lower than in anoxic sediments and TOC/TN and 13CTOC

indicatemarinealgaeasmainorganicmattersource.Exclusivemolecularformulae

with high O/C ratios reflect the increased oxidation of POM at the sedimentwater

interface. Nbearing compounds with one or two nitrogen atoms are present in all

samplesandincreaseinnumberwithsedimentdepthcorrespondingtotheincrease

inTHDAA.ThemajorityofNbearingcompoundsintheoxicbottomwaterprobably

derivefromproteindegradationviaoxidativedeaminationofpeptides.

The anoxic conditions at sampling site 14MUC on the shelf and 20MUC in the

centralbasinoftheBlackSearesultedinhighTOCconcentrationsinthesediment.

TOC/TNand13CTOCsuggestpreferentialdegradationoflabilealgalmaterialunder

anoxicconditionsandanaccumulationandpreservationofmorerefractoryorganic

matter,i.e.,terrestrialorganicmatterandpeptidoglycanfrombacterialcellwalls,the

128 DiagenetictransformationofDOM

latterisindicatedbyelevatedD/Lratioandbacterialderivedaminoacids.Theanoxic

conditionsarereflectedinasetofexclusivelypresentmolecularformulaeatlowO/C

ratios.SuchcompoundsareeitherformedbyhydrolysisofrelativelyreducedPOM

orbyreductionofhighO/CDOM.ThediversityofNbearingcompoundssuggests

that protein and peptide degradation is controlled by oxidative, reductive, and

coupledoxidativeandreductivedeaminationbyanaerobicmicrobes.

Furthermore,theaveragemoleculesize(m/z)waandDBEwaappeartobecloselylinkedto

microbialactivityatthesedimentwaterinterfacemediatingtheDOMreleasefromthe

sediment POM. Both values are low in the bottom water DOM at all sampling sites

correspondingtoincreasedconcentrationsofbacterialaminoacidsintheDOMextracts.

Ingeneral,elevatednumbersofcompoundsintheporewaterDOMcorrespondtohigher

DOC contents and larger numbers of exclusive Nbearing and CHOcompounds with

lowO/Cratios.Bothcompoundgroupsaresuggestiveoftheaccumulationofrecalcitrant

DOM. Furthermore, a fraction of the Nbearing compounds is possibly a product of

reactionsfromammoniumwithfunctionalgroupsintheDOM.

Acknowledgements

Wethankthecrew,ChristianBorowskiandthescientificshipboardpartyoftheRVMeteor cruiseM725.WearegratefultoBritKockischforTOCmeasurements,HellaBuschoffforTN and TC analysis, Monika Segl for 13CTOC, and KaiUwe Ludwichowski for amino acid measurements.Furthermore,wethankXavierPrietoandKevinBeckerforsupportinthelab.

Fundingwasprovided bythe“DeutscheForschungsgemeinschaft”throughDFGResearch

Center/ExcellenceCluster“TheOceanintheEarthSystem”andtheBremenInternational

GraduateSchoolforMarineSciences(GLOMAR).

129 Chapter4

REFERENCES(FITZNARETAL.,1999;BURDIGE,2002)

Aluwihare,L.I.,Repeta,D.J.,Pantoja,S.,andJohnson,C.G.,2005.TwoChemicallyDistinct PoolsofOrganicNitrogenAccumulateintheOcean.Science308,10071010. Amon,R.M.W.andBenner,R.,1996.Photochemicalandmicrobialconsumptionof dissolvedorganiccarbonanddissolvedoxygenintheAmazonRiversystem. GeochimicaetCosmochimicaActa60,17831792. Arnosti,C.andHolmer,M.,2003.Carboncyclinginacontinentalmarginsediment:contrasts betweenorganicmattercharacteristicsandremineralizationratesandpathways. Estuarine,CoastalandShelfScience58,197208. Bada,J.L.,Luyendyk,B.P.,andMaynard,J.B.,1970.Marinesediments:datingbythe racemizationofaminoacids.Science170,730732. Bauer,J.E.,Reimers,C.E.,Druffel,E.R.M.,andWilliams,P.M.,1995.Isotopicconstraints oncarbonexchangebetweendeepoceansedimentsandseawater.Nature373,686 689. Boynton,W.R.andKemp,W.M.,1985.Nutrientregenerationandoxygenconsumptionby sedimentsalonganestuarinesalinitygradient.MarineEcologyProgressSeries23,45 55. Burdige,D.J.,1991.Thekineticsoforganicmattermineralizationinanoxicmarine sediments.JournalofMarineResearch49,727761. Burdige,D.J.,2002.SedimentPoreWaters.In:Hansell,D.,A.andCarlson,C.,A.Eds.), BiogeochemistryofMarineDissolvedOrganicMatter.AcademicPress,SanDiego. Burdige,D.J.andMartens,C.S.,1988.Biogeochemicalcyclinginanorganicrichcoastal marinebasin:10.Theroleofaminoacidsinsedimentarycarbonandnitrogencycling. GeochimicaetCosmochimicaActa52,15711584. Burdige,D.J.andZheng,S.,1998.Thebiogeochemicalcyclingofdissolvedorganicnitrogen inestuarinesediments.LimnologyandOceanography43,17961813. Cowie,G.L.,Hedges,J.I.,Prahl,F.G.,anddeLance,G.J.,1995.Elementalandmajor biochemicalchangesacrossanoxidationfrontinarelictturbidite:Anoxygeneffect. GeochimicaetCosmochimicaActa59,3346. DellAnno,A.andCorinaldesi,C.,2004.DegradationandturnoverofextracellularDNAin marinesediments:ecologicalandmethodologicalconsiderations.AmericanSocietyfor Microbiology70,43844386. Dittmar,T.,Koch,B.,Hertkorn,N.,andKattner,G.,2008.Asimpleandefficientmethodfor thesolidphaseextractionofdissolvedorganicmatter(SPEDOM)fromseawater. LimnologyandOceanography:Methods6,230235. Ducklow,H.W.,Hansell,D.A.,andMorgan,J.A.,2007.Dissolvedorganiccarbonand nitrogenintheWesternBlackSea.MarineChemistry105,140150. Fitznar,H.P.,Lobbes,J.M.,andKattner,G.,1999.Determinationofenantiomericamino acidswithhighperformanceliquidchromatographyandprecolumnderivatisation withophthaldialdehydeandNisobutyrylcysteineinseawaterandfossilsamples (mollusks).JournalofChromatographyA832,123132. Gale,E.F.,1940.Theproductionofaminesbybacteria:Thedecarboxylationofaminoacids bystrainsofBacteriumcoli.BiochemicalJournal34,392. Glenn,C.R.andArthur,M.A.,1985.Sedimentaryandgeochemicalindicatorsof productivityandoxygencontentsinmodernandancientbasins:TheHoloceneBlack Seaasthetypeanoxicbasin.ChemicalGeology48,325354.

130 DiagenetictransformationofDOM

Grutters,M.,vanRaaphorst,W.,Epping,E.,Helder,W.,deLeeuw,J.W.,Glavin,D.P.,and Bada,J.,2002.Preservationofaminoacidsfrominsituproducedbacterialcellwall peptidoglycansinnortheasternAtlanticcontinentalmarginsediments.Limnologyand Oceanography47,15211524. Hedges,J.I.andKeil,R.G.,1995.Sedimentaryorganicmatterpreservation:anassessment andspeculativesynthesis.MarineChemistry49,81115. Henrichs,S.M.,1992.Earlydiagenesisoforganicmatterinmarinesediments:progressand perplexity.MarineChemistry39,119149. Hertkorn,N.,Benner,R.,Frommberger,M.,SchmittKopplin,P.,Witt,M.,Kaiser,K., Kettrup,A.,andHedges,J.I.,2006.Characterizationofamajorrefractorycomponent ofmarinedissolvedorganicmatter.GeochimicaetCosmochimicaActa70,29903010. Holcombe,B.L.,Keil,R.G.,andDevol,A.H.,2001.Determinationofporewaterdissolved organiccarbonfluxesfromMexicanmarginsediments.LimnologyandOceanography 46,298308. Hollibaugh,J.T.andAzam,F.,1983.Microbialdegradationofdissolvedproteinsin seawater.LimnologyandOceanography28,11041116. Hulthe,G.,Hulth,S.,andHall,P.O.J.,1998.Effectofoxygenondegradationrateof refractoryandlabileorganicmatterincontinentalmarginsediments.Geochimicaet CosmochimicaActa62,13191328. Kemp,W.M.,Sampou,P.,Caffrey,J.,Mayer,M.,Henriksen,K.,andBoynton,W.R.,1990. AmmoniumrecyclingversusdenitrificationinChesapeakeBaysediments.Limnology andOceanography35,15451563. Klump,J.V.andMartens,C.S.,1987.Biogeochemicalcyclinginanorganicrichcoastal marinebasin.5.Sedimentarynitrogenandphosphorusbudgetsbaseduponkinetic models,massbalances,andthestoichiometryofnutrientregeneration.Geochimicaet CosmochimicaActa51,11611173. Koch,B.P.,Dittmar,T.,Witt,M.,andKattner,G.,2007.FundamentalsofMolecularFormula AssignmenttoUltrahighResolutionMassDataofNaturalOrganicMatter.Analytical Chemistry79,17581763. Koch,B.P.,Ludwichowski,K.U.,Kattner,G.,Dittmar,T.,andWitt,M.,2008.Advanced characterizationofmarinedissolvedorganicmatterbycombiningreversedphase liquidchromatographyandFTICRMS.MarineChemistry. Koch,B.P.,Witt,M.,Engbrodt,R.,Dittmar,T.,andKattner,G.,2005.Molecularformulaeof marineandterrigenousdissolvedorganicmatterdetectedbyelectrosprayionization Fouriertransformioncyclotronresonancemassspectrometry.Geochimicaet CosmochimicaActa69,32993308. Komada,T.,Reimers,C.E.,Luther,G.W.,andBurdige,D.J.,2004.Factorsaffecting dissolvedorganicmatterdynamicsinmixedredoxtoanoxiccoastalsediments. GeochimicaetCosmochimicaActa68,40994111. Kristensen,E.,Ahmed,S.I.,andDevol,A.H.,1995.Aerobicandanaerobicdecompositionof organicmatterinmarinesediment:whichisfastest?LimnologyandOceanography40, 14301437. Kujawinski,E.B.,DelVecchio,R.,Blough,N.V.,Klein,G.C.,andMarshall,A.G.,2004. Probingmolecularleveltransformationsofdissolvedorganicmatter:insightson photochemicaldegradationandprotozoanmodificationofDOMfromelectrospray ionizationFouriertransformioncyclotronresonancemassspectrometry.Marine Chemistry92,2337.

131 Chapter4

Kvenvolden,K.A.,Peterson,E.,andBrown,F.S.,1970.RacemizationofAminoAcidsin SedimentsfromSaanichInlet,BritishColumbia.Science169,10791082. Lee,B.S.,Bullister,J.L.,Murray,J.W.,andSonnerup,R.E.,2002.Anthropogenic chlorofluorocarbonsintheBlackSeaandtheSeaofMarmara.DeepSeaResearchPartI 49,895913. Lomstein,B.A.,Jørgensen,B.B.,Schubert,C.J.,andNiggemann,J.,2006.Aminoacid biogeoandstereochemistryincoastalChileansediments.GeochimicaetCosmochimica Acta70,29702989. Mayer,L.M.andRice,D.L.,1992.Earlydiagenesisofprotein:Aseasonalstudy.Limnology andOceanography37,280295. McCarthy,M.,Pratum,T.,Hedges,J.,andBenner,R.,1997.Chemicalcompositionof dissolvedorganicnitrogenintheocean.Nature390,150154. McCarthy,M.D.,Hedges,J.I.,andBenner,R.,1998.Majorbacterialcontributiontomarine dissolvedorganicnitrogen.Science281,231. Middelburg,J.J.,1989.Asimpleratemodelfororganicmatterdecompositioninmarine sediments.GeochimicaetCosmochimicaActa53,1577. Morris,D.R.andFillingame,R.H.,1974.Regulationofaminoaciddecarboxylation.Annual ReviewofBiochemistry43,303321. Nikaido,H.andVaara,M.,1985.Molecularbasisofbacterialoutermembranepermeability. MicrobiologicalReviews49,1. Örlygsson,J.,Houwen,F.P.,andSvensson,B.H.,1994.Influenceofhydrogenothrophic methaneformationonthethermophilicanaerobicdegradationofproteinandamino acids.FEMSMicrobiologyEcology13,327334. Pantoja,S.andLee,C.,1999.Peptidedecompositionbyextracellularhydrolysisincoastal seawaterandsaltmarshsediment.MarineChemistry63,273291. Pantoja,S.,Lee,C.,andMarecek,J.F.,1997.Hydrolysisofpeptidesinseawaterand sediment.MarineChemistry57,2540. Patience,R.L.,Baxby,M.,Bartle,K.D.,Perry,D.L.,Rees,A.G.W.,andRowland,S.J.,1992. ThefunctionalityoforganicnitrogeninsomerecentsedimentsfromthePeru upwellingregion.OrganicGeochemistry18,161169. Pedersen,A.G.U.andThomsen,T.R.,2001.Bacterialinfluenceonaminoacid enantiomerizationinacoastalmarinesediment.LimnologyandOceanography46,1358 1369. Redfield,A.C.,1958.Thebiologicalcontrolofchemicalfactorsintheenvironment.American Scientist46,205–221. Reemtsma,T.,These,A.,Linscheid,M.,Leenheer,J.,andSpitzy,A.,2008.Molecularand StructuralCharacterizationofDissolvedOrganicMatterfromtheDeepOceanby FTICRMS,IncludingHydrophilicNitrogenousOrganicMolecules.Environmental ScienceandTechnology42,14301437. Santschi,P.H.,Guo,L.,Baskaran,M.,Trumbore,S.,Southon,J.,Bianchi,T.S.,Honeyman,B., andCifuentes,L.,1995.Isotopicevidenceforthecontemporaryoriginofhigh molecularweightorganicmatterinoceanicenvironments.GeochimicaetCosmochimica Acta59,625631. Schmidt,F.,Elvert,M.,Koch,B.P.,Witt,M.,andHinrichs,K.U.,2009.Molecular characterizationofdissolvedorganicmatterinporewaterofcontinentalshelf sediments.GeochimicaetCosmochimicaActa73,33373358. Seto,B.,1980.Thesticklandreaction.In:Knowles,C.J.(Ed.),Diversityofbacterialrespiratory systems. 132 DiagenetictransformationofDOM

Shaw,D.G.andMcIntosh,D.J.,1990.Acetateinrecentanoxicsediments:directandindirect measurementsofconcentrationandturnoverrates.Estuarine,CoastalandShelfScience 31,775788. Sleighter,R.L.andHatcher,P.G.,2008.Molecularcharacterizationofdissolvedorganic matter(DOM)alongarivertooceantransectofthelowerChesapeakeBayby ultrahighresolutionelectrosprayionizationFouriertransformioncyclotron resonancemassspectrometry.MarineChemistry110,140152. Stams,A.J.M.andHansen,T.A.,1984.Fermentationofglutamateandothercompoundsby Acidaminobacterhydrogenoformansgen.nov.sp.nov.,anobligateanaerobeisolated fromblackmud.Studieswithpureculturesandmixedcultureswithsulfatereducing andmethanogenicbacteria.ArchivesofMicrobiology137,329337. Stankiewicz,B.A.andVanBergen,P.F.,1998.Nitrogencontainingmacromoleculesinthebio andgeosphere.AmericanChemicalSociety. Vairavamurthy,A.andWang,S.,2002.Organicnitrogeningeomacromolecules:Insightson speciationandtransformationwithKedgeXANESspectroscopy.Environmental ScienceandTechnolology36,30503056. ValKlump,J.andMartens,C.S.,1983.Benthicnitrogenregeneration.In:Carpenter,E.J.and Capone,D.G.Eds.),Nitrogeninthemarineenvironment.AcademicPress,NewYork, USA. Wakeham,S.G.,1995.Lipidbiomarkersforheterotrophicalterationofsuspendedparticulate organicmatterinoxygenatedandanoxicwatercolumnsoftheocean.DeepSea ResearchPartI:OceanographicResearchPapers42,17491771.

133 134

Chapter5

Concludingremarksandperspectives

Chapter5

Mechanisms of OM preservation and remineralization are highly complex, particularly at continentalmargins,whereOMsourcesandsedimentationprocessesvarysignificantly.The performedstudiesinthisthesisprovidedmolecularinsightsintothecompositionofOMthat aimed for a better understanding of OM distribution and early diagenetic changes at continental margins. The complex interplay of hydrodynamic, sedimentological and biogeochemicalprocessesrequiredanextendedscopeofinvestigationwhichwasrealizedby thecombinationofwellestablishedgeochemicalanalyses(bulkTOCcharacterization,lipid biomarkers,ligninphenols,aminoacids)withthenoveltechniqueofFTICRMS.Thelatter targetedthecomplexmolecularinformationencodedinthedissolvedpoolofOM.

In the following sections I will summarize the major findings of this thesis and elucidate theirimplicationsforfutureinvestigationsonOMcomposition,distributionanddiagenesis.

Lipidbiomarkersandligninphenolsasindicatorsforsources,transportanddistribution ofOMatcontinentalmargins

OMinthesedimentsattheGaliciaMinhoshelfderivesfromvariousterrestrialandmarine sources which are reflected in a rich lipid biomarker inventory. The comprehensive biomarker data set (see Table A3 for the complete data set and Table A4 for the internal relationshipofthebiomarkersintheelectronicappendix)providesimportantinsightsinto the applicability of lipid biomarkers and lignin phenols as indicators for OM sources, transport,anddeposition.ThemultiplesourcesandtransportmechanismsattheNWIberian margin needed an analytical approach that considered each individual factor. The application of single lipid biomarkers or a bulk TOC characterization is not sufficient for constraining all processes in a complex continental margin setting. The approach in this thesisenabledaclassificationoftheNWIberianmarginintothreeprovinceswithdifferent

OMtypesandinputpathways.Thisresultisthekeyfortheunderstandingoftheeffectsof hydrodynamicandsedimentologicalprocessesonOMpreservation.Moreover,thestudyin

Chapter2providesasolidbaseforreconstructingthepaleoenvironmentalconditionsofthe

NWIberianmargin.

Multiplealgalblooms,fuelledbytheintrusionofwatersfromtheNWIberianupwellingcell intheNorthandnutrientsupplyfromtheIberianPeninsula,contributetothemarineOM andarereflectedinhighconcentrationsofsterolsandSCFAs.Thedistributionalpatternof moststerolsandfattyacidsissimilarandcontainnospecificinformationonalgalgroupsor

136 Concludingremarksandperspectives

environmentalconditions.Incontrast,HBIs,dinosterolandC37alkenonesprovideimportant insightsintotheseasonalandspatialvariationsinthealgalcommunityofthethreemajor marineproducers(diatoms,dinoflagellatesandhaptophytealgae).Thedistributionoftheir biomass in the sediment is closely related to the nutrient conditions on the shelf. By transferringthespatialpatternofthealgalderivedOMtothepast,valuableinsightsmight be gained regarding the development of the NW Iberian upwelling cell and the oceanographiccurrentsystem.

The modern continental shelf system evolved after the last glacial maximum due to the global sea level rise (Dias, 2000) implying major changes in the currents, climate, and vegetation that are most likely preserved in the composition and distribution of OM.

TerrestriallipidbiomarkersandligninphenolsinthesedimentaryOMpreserveinformation onthesourcematerial andthetransportmechanism.Ligninphenolswereingeneralvery sensitivefortheidentificationofterrestrialOM.Duetotheassociationofindividuallignin phenol groups with different types of plant tissue they can ideally serve to differentiate between angiosperm (high S/V ratios) and gymnosperm vegetation (low S/V ratios), and betweenwoody(lowC/Vratios)andnonwoodyplanttissue(highC/Vratios)(Hedgesand

Mann,1979).Forpaleoenvironmentalreconstructions,theseratiosmayrevealinsightsinthe postglacial vegetation changes of the Iberian Peninsula. Furthermore, variations in the distributionandconcentrationofterrestrialOMmayreflectchangesintheresponseofriver runoffduetoclimatewarmingandpostglacialsealevelrise.

The comparison of sedimentary lipid biomarker and lignin phenol distribution with sediment grain sizes revealed different transport mechanisms within the terrestrial OM fraction;i.e.,longchainnalkanesaresuppliedbyriversandwind,whereasligninphenols andplantderivedtriterpenoidsareverywellsuitedtoidentifyriverineinput(Chapter2).

TheriversuppliedterrestrialOMisassociatedwiththeinorganicriverloadanddistributed with the fine inorganic sediment fraction on the shelf (see Table A2 in the appendix).

Therefore, the conceptual shelf model by Dias et al. (2002) (Fig. 1.4.b, Chapter 1) can be adoptedtoexplainthefateofthisOMfractionattheNWIberianmargin.

Hydrodynamicsortingisingeneralanimportantprocesscontrollingsedimentpartitioning oncontinentalshelves(e.g.,Keiletal.,1994;GordonandGoñi,2004;WatersonandCanuel,

2008)andisresponsiblefortheinternalseparationoftheterrestrialOMattheNWIberian margin.Ligninphenolanalysesprovedtobeverysuitedfortracingsortingprocessesdueto

137 Chapter5 the association of individual lignin phenols with different types of plant tissue. Leaf and grassfragments(elevatedC/Vratios)arepreferentiallytransportedanddepositedoffshore, whereaswoodymaterial(lowC/Vratiosandplantderivedtriterpenoids)isaccumulatedin theGalicianmudbelt.

SoilderivedOMaccountsforanimportantproportionoftheterrestrialOMdeliveredtothe oceans (Hedges et al., 1986; Prahl et al., 1994; Goñi et al., 1998). However, studies on OM distributioninmarinesedimentsoftenunderestimatesoilOMduetothelackofappropriate soil indicators resulting from a strong decrease in recognizable compounds during degradationprocessesandhumificationonthecontinents.Previously,theratio3,5Bd/Vhas beenappliedfortracingsoilderivedOMinmarinesediments(Prahletal.,1994;Louchouarn et al., 1999; Goñi et al., 2000). At the NW Iberian margin, the 3,5Bd/V ratio indicates a deposition of soilderived OM offshore, in areas with marine bulk TOC signatures. Such masking of soilderived OM on a global base can be a reason why a large part of the terrestrialOMintheglobalriverloadremainsundetectedinmarinesediments(seeChapter

1.6andGordonandGoñi,2003).

Molecular characterization of DOM by FTICRMS and its implications for an understandingofearlydiagenesisonamolecularcompoundlevel

The production of DOM in sediments is closely coupled to the overall remineralization of sedimentary OM and pore water DOM reflects the molecular signature of the biogeochemicalprocessesduringearlydiagenesis(Henrichs,1992;Alperinetal., 1994).At present,porewaterDOMisnotwellcharacterizedonamolecularlevelduetotheanalytical challengeofresolvingsuchcomplexorganicmixtures.TheapplicationofESIFTICRMSfor the characterization of DOM provides information on the composition of thousands of individual compounds in the polar fraction of DOM and their reactivity within biogeochemical processes (Kim et al., 2003; Stenson et al., 2003). FTICRMS has been successfully applied for the characterization of DOM from limnic, marine, and coastal environments (e.g., Kim et al., 2004; Koch et al., 2005; Tremblay et al., 2007; Sleighter and

Hatcher,2008).Variationsinthedetectedmassesbetweendifferentsamplescanbeusedto identify the molecularlevel impact of different biogeochemical processes, e.g., microbial modifications(Kujawinskietal.,2004;Kimetal.,2006)orphotochemicaltransformationsof

DOM(Kujawinskietal.,2004;Tremblayetal.,2007).

138 Concludingremarksandperspectives

Inthisthesis,FTICRMSwasforthefirsttimeappliedfortheanalysisofmarineporewater

DOM (Chapter 3). The approach gave new and important insights into the relationship betweentheparticulateanddissolvedfractionofOMincontinentalmarginsediments,thus specifically investigating early diagenetic processes. Since no structural information and source indications are provided by DOM analyses using FTICRMS the comparison with data from the associated particulate OM fraction (e.g., bulk TOC, lipid biomarkers, and ligninphenols)greatlyhelpedtoexplaintheobservedpatternsofmolecularformulaeand provided evidence for the close relationship between both pools. For example, the source materialforDOMismirroredintheelementalcomposition;sedimentOMcontaininglarge amountsofterrestrialOMproducesDOMwithhighelementaloxygentocarbon(O/C)and low hydrogen to carbon (H/C) ratios, i.e., higher oxidized molecules with a higher aromaticity due to contributions from lignins, cellulose etc.. In contrast, hydrolysis of aliphatic algalderived OM is reflected in molecular formulae with lower O/C and higher

H/C ratios. The lower reactivity of refractory OM (e.g., OM deposited on the outer shelf,

Chapter 2) results in lower numbers of identified DOM molecules and a much smaller variationintheirelementalratios(O/CandH/C)comparedtothefreshOMdepositedinthe

Galician mudbelt. Sulfurbearing compounds in the pore water DOM, if coinciding with elevatedconcentrationsofspecificsedimentarybiomarkersforsulfatereducingbacteria(i.e., i and aiC15 and C17fatty acids, and C14to C19monoalkylglycerolethers), are very likely relatedtoearlydiageneticsulfurizationofOM.

The redox conditions of the water column and sediment are a key factor during early diagenesis(Wakeham,1990;Cowieetal.,1995).InordertoevaluatethiseffectontheDOM pool a dedicated study was performed under varying oxygen contents in the Black Sea

(Chapter 4). The overall molecular DOM composition directly corresponded to the redox conditions with a more oxidized DOM pool (high number of molecular formulae with elevatedO/Cratios)attheoxicsamplingsiteandachemicallymorereducedDOMpoolin theanoxicenvironment(molecularformulaeexclusivelyatlowO/Cratios).Aspecificsetof nitrogenbearingDOMcompoundswasobservedandanalysesoftheTHDAApoolfromthe sameextractgaveindicationsforthepresenceofproteindegradationproductsinthepore water. The variations of the molecular formulae which possibly result from protein degradation depended on the oxygen content of the samples suggesting distinct reaction pathways. Oxidative deamination appears to predominate under oxic conditions, whereas

139 Chapter5 thisprocessispartlysubstitutedbyreductivedeaminationassolereactionorcoupledwith the oxidative pathway in form of the Stickland reaction (Seto, 1980) at lower oxygen contents.However,analternativeoriginofthenitrogenbearingDOMcompoundshastobe consideredsincethereactionbetweenporewaterammoniumandfunctionalgroupsinthe

DOMpool(e.g.,carboxylandhydroxylgroups)canleadtoasimilarsetofcompounds.It hasbeenproposedthatsuchcompoundsactasintermediatesinthetransformationreaction frombiologicalnitrogenbearingmolecules,e.g.,proteins,toheterocyclicnitrogenpreserved in coals and petroleum via ammonification and cyclyzation reactions (e.g., Patience et al.,

1992).However,itisstillanopenquestionwhetherthisdiageneticpathwayexistsinnature which needs to be considered in future research. Investigations are envisioned combining structural analyses either by isolation of fractions or even single compounds as well as fractionation experiments in the ICR cell. Structural analyses can be also strengthened by focussing on functional groups via nuclear magnetic resonance (NMR) spectroscopy. Such combinationswillbetheultimatestepforasuccessfuldatainterpretationandwillguidetoa fullexplanationoftheobservedpatternsintheFTICRMSdata.

Thestudiesinthisthesisprovidednewanddetailedinsightsonmolecularreactionsduring earlydiagenesiswhichwerenotdetectedonthatlevelbeforeduetoanalyticallimitations.

The technique of ESIFTICRMS opens new perspectives for investigations on OM remineralizationinvariousenvironments(soils,lakesediments,seeps,deepbiosphere,etc.).

Controlled studies under defined conditions and defined microbial cultures would offer further insights into the diagenetic processes and may provide molecular fingerprints for specificorganismsorreactions.

140 Concludingremarksandperspectives

REFERENCES(Dias,2000)

Alperin,M.J.,Albert,D.B.,andMartens,C.S.,1994.Seasonalvariationsinproductionand consumption rates of dissolved organic carbon in an organicrich coastal sediment. GeochimicaetCosmochimicaActa58,49094930. Cowie, G. L., Hedges, J. I., Prahl, F. G., and de Lance, G. J., 1995. Elemental and major biochemicalchangesacrossanoxidationfrontinarelictturbidite:Anoxygeneffect. GeochimicaetCosmochimicaActa59,3346. Dias, J. A., Boski, T., Rodrigues, A., Magalhaes, F., 2000. Coast line evolution in Portugal sincetheLastGlacialMaximumuntilpresentasynthesis.MarineGeology170,177 186. Goñi,M.A.,Ruttenberg,K.C.,andEglinton,T.I.,1998.Areassessmentofthesourcesand importance of landderived organic matter in surface sediments from the Gulf of Mexico.GeochimicaetCosmochimicaActa62,30553075. Goñi, M. A., Yunker, M. B., Macdonald, R. W., and Eglinton, T. I., 2000. Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and BeaufortShelf.MarineChemistry71,2351. Gordon,E.S.andGoñi,M.A.,2003.Sourcesanddistributionofterrigenousorganicmatter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico. GeochimicaetCosmochimicaActa67,23592375. Gordon, E. S. and Goñi, M. A., 2004. Controls on the distribution and accumulation of terrigenousorganicmatterinsedimentsfromtheMississippiandAtchafalayariver margin.MarineChemistry92,331352. Hedges,J.I.,Clark,W.A.,Quay,P.D.,Richey,J.E.,andDevol,A.H.,1986.Compositions and fluxes of particulate organic material in the Amazon River. Limnology and Oceanography31,717738. Hedges, J. I. and Mann, D. C., 1979. The characterization of plant tissues by their lignin oxidationproducts.GeochimicaetCosmochimicaActa43,18031807. Henrichs,S.M.,1992.Earlydiagenesisoforganicmatterinmarinesediments:progressand perplexity.MarineChemistry39,119149. Keil,R.G.,Tsamakis,E.,Fuh,C.B.,Giddings,J.C.,andHedges,J.I.,1994.Mineralogicaland textural controls on the organic composition of coastal marine sediments: Hydrodynamic separation using SPLITTfractionation. Geochimica et Cosmochimica Acta58,879893. Kim,S.,Kaplan,L.A.,Benner,R.,andHatcher,P.G.,2004.Hydrogendeficientmoleculesin naturalriverinewatersamplesevidencefortheexistenceofblackcarboninDOM. MarineChemistry92,225234. Kim,S.,Kaplan,L.A.,andHatcher,P.G.,2006.Biodegradabledissolvedorganicmatterina temperate and a tropical stream determined from ultrahigh resolution mass spectrometry.LimnologyandOceanography51,10541063. Kim, S., Kramer, R. W., and Hatcher, P. G., 2003. Graphical Method for Analysis of UltrahighResolution Broadband Mass Spectra of Natural Organic Matter, the Van KrevelenDiagram.AnalyticalChemistry75,53365344. Koch, B. P., Harder, J., Lara, R. J., and Kattner, G., 2005. The effect of selective microbial degradation on the composition of mangrove derived pentacyclic triterpenols in surfacesediments.OrganicGeochemistry36,273285. Kujawinski, E. B., Del Vecchio, R., Blough, N. V., Klein, G. C., and Marshall, A. G., 2004. Probing molecularlevel transformations of dissolved organic matter: insights on

141 Chapter5

photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Marine Chemistry92,2337. Louchouarn,P.,Lucotte,M.,andFarella,N.,1999.Historicalandgeographicalvariationsof sources and transport of terrigenous organic matter within a largescale coastal environment.OrganicGeochemistry30,675699. Patience,R.L.,Baxby,M.,Bartle,K.D.,Perry,D.L.,Rees,A.G.W.,andRowland,S.J.,1992. The functionality of organic nitrogen in some recent sediments from the Peru upwellingregion.OrganicGeochemistry18,161169. Prahl,F.G.,Ertel,J.R.,Goni,M.A.,Sparrow,M.A.,andEversmeyer,B.,1994.Terrestrial organiccarboncontributionstosedimentsontheWashingtonmargin.Geochimicaet CosmochimicaActa58,30353048. Seto,B.,1980.Thesticklandreaction.In:Knowles,C.J.(Ed.),Diversityofbacterialrespiratory systems. Sleighter, R. L. and Hatcher, P. G., 2008. Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonancemassspectrometry.MarineChemistry110,140152. Stenson, A. C., Marshall, A. G., and Cooper, W. T., 2003. Exact Masses and Chemical Formulas of Individual Suwannee River Fulvic Acids from Ultrahigh Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectra. AnalyticalChemistry75,12751284. Tremblay, L. B., Dittmar, T., Marshall, A. G., Cooper, W. J., and Cooper, W. T., 2007. Molecular characterization of dissolved organic matter in a North Brazilian mangroveporewaterandmangrovefringedestuariesbyultrahighresolutionFourier TransformIon Cyclotron Resonance mass spectrometry and excitation/emission spectroscopy.MarineChemistry105,1529. Wakeham,S.G.,1990.Algalandbacterialhydrocarbonsinparticulatematterandinterfacial sedimentoftheCariacoTrench.GeochimicaetCosmochimicaActa54,13251336. Waterson, E. J. and Canuel, E. A., 2008. Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and 13CTOCanalyses.OrganicGeochemistry39,422439.

142

AppendixA1

Molecularlevelstudiesonthedistributionandfateoforganicmatteratcontinentalmargins. DissertationamFachbereichGeowissenschaftenderUniversitätBremen,Mai2009 FraukeSchmidt AppendixA1

ACETOGENESISINDEEPSUBSEAFLOORSEDIMENTSOFTHE

JUANDEFUCARIDGEFLANK:ASYNTHESISOFGEOCHEMICAL,

THERMODYNAMIC,ANDGENEBASEDEVIDENCE.

MarkA.Lever*,VerenaHeuer‡,YukiMorono§,NoriakiMasui§,FraukeSchmidt‡,MarcJ.

Alperin*,FumioInagaki§,KaiUweHinrichs‡¶,andAndreasTeske*

Accepted for publication pending minor revisions in Geomicrobiology Journal

*DepartmentofMarineSciences,340ChapmanHallCB#3300,UniversityofNorthCarolinaat

ChapelHill,ChapelHill,NC27599,USA

‡OrganicGeochemistryGroup,DepartmentofGeosciences&MARUMCenterforMarine

EnvironmentalSciences,UniversityofBremen,D28334Bremen,Germany

§KochiInstituteforCoreSampleResearch,JapanAgencyforMarineEarthScienceand

Technology,Kochi,Japan

144 AppendixA1

ABSTRACT

IndeepsubsurfacesedimentsoftheJuandeFucaRidgeFlank,porewateracetatethatis depletedin13Crelativetosedimentaryorganicmatterindicatesanacetogeniccomponentto totalacetateproduction.Thermodynamiccalculationsindicatecommonfermentationproducts orligninmonomersaspotentialsubstratesforacetogenesis.Autotrophicacetogenesismay contributeaswellprovidedthatdihydrogen(H2)concentrationsarenotdrawndowntothe thermodynamicthresholdsofthecompetingprocessesofsulfatereductionandmethanogenesis.

Ahighdiversityofnovelformyltetrahydrofolatesynthetase(fhs)genesthroughouttheupper halfofthesedimentcolumnindicatesthegeneticpotentialforacetogenesis.Ourresultssuggest thatasubstantialfractionoftheacetateproducedinmarinesedimentporewatersmayderive fromacetogenesis,inadditiontotheconventionallyinvokedsourcesfermentationandsulfate reduction.

145 146

AppendixA2

Molecularlevelstudiesonthedistributionandfateoforganicmatteratcontinentalmargins. DissertationamFachbereichGeowissenschaftenderUniversitätBremen,Mai2009 FraukeSchmidt AppendixA2

Table A2. Correlation analysis of sample parameters, individual or groups of biomarker and biomarker ratios (for abbreviation see Chapter 2). Significant correlation in grey for level of confidence = 0.01. 13 Latitude Longitude Water TOC [%] TIC [%] CTOC TOC/TN Silt Mean grain n-C25-35 n-C36-40 C37:2 (N) (W) depth (m) (‰) [%] size [μm] alkene Latitude (N)

Longitude (W) -0,809 Water depth (m) 0,522 -0,802 TOC [%] -0,145 0,263 -0,322 TIC [%] 0,040 -0,255 0,057 0,029 13C (‰) TOC 0,312 -0,455 0,506 -0,835 0,077 TOC/TN -0,347 0,348 -0,272 0,817 -0,094 -0,757 Silt [%] 0,016 0,111 -0,187 0,953 -0,009 -0,743 0,717 Mean grain size [μm] -0,007 -0,077 0,096 -0,918 -0,093 0,691 -0,719 -0,935 LCalk -0,172 0,289 -0,395 0,732 -0,065 -0,568 0,569 0,716 -0,625 n-C36-40 0,281 -0,283 0,120 0,397 0,055 -0,085 0,091 0,515 -0,446 0,683 C alkene 37:2 -0,308 0,267 -0,335 0,076 -0,025 -0,089 0,072 0,028 -0,026 0,523 0,323 HBIs 0,166 0,157 -0,407 0,348 -0,055 -0,268 0,149 0,420 -0,286 0,656 0,523 0,378 Alkenone -0,156 0,189 -0,205 0,097 -0,060 -0,031 0,092 0,051 -0,060 0,419 0,327 0,591 SCOH -0,141 0,334 -0,349 0,658 -0,269 -0,461 0,418 0,694 -0,599 0,610 0,403 0,172 LCOH -0,267 0,397 -0,490 0,565 -0,037 -0,514 0,384 0,513 -0,426 0,728 0,498 0,623 Phytol 0,185 -0,356 0,213 0,149 0,092 -0,018 0,062 0,187 -0,268 0,266 0,443 0,287 Sterols -0,419 0,567 -0,650 0,392 -0,105 -0,432 0,294 0,322 -0,253 0,582 0,212 0,627 Dinosterol -0,298 0,418 -0,489 0,337 -0,109 -0,365 0,169 0,304 -0,153 0,506 0,313 0,547 24-Methylene- cholestadienol -0,289 0,475 -0,492 0,347 -0,099 -0,345 0,136 0,320 -0,245 0,393 0,200 0,377 Diols -0,314 0,513 -0,573 0,223 -0,136 -0,295 0,014 0,203 -0,105 0,418 0,209 0,547 Plant-derived Triterpenoids -0,367 0,504 -0,561 0,453 -0,161 -0,487 0,277 0,406 -0,278 0,607 0,346 0,572 Friedelin -0,301 0,479 -0,503 0,514 -0,208 -0,627 0,461 0,474 -0,404 0,494 0,059 0,302 LCFA -0,349 0,496 -0,557 0,421 -0,105 -0,434 0,312 0,332 -0,254 0,548 0,208 0,473 SCFA -0,524 0,654 -0,747 0,108 -0,095 -0,239 0,099 -0,013 0,035 0,223 -0,079 0,437 sat. SCFA -0,497 0,636 -0,693 0,066 -0,193 -0,196 0,078 -0,039 0,068 0,174 -0,096 0,386 MUFA -0,515 0,657 -0,768 0,160 0,010 -0,267 0,113 0,035 -0,028 0,244 -0,056 0,435 PUFA -0,449 0,575 -0,620 0,293 -0,017 -0,315 0,219 0,196 -0,115 0,451 0,184 0,507 C -FA 18 -0,277 0,419 -0,574 0,480 0,107 -0,475 0,342 0,397 -0,396 0,395 0,064 0,204 C -FA 18:19 -0,446 0,604 -0,740 0,155 0,076 -0,274 0,124 0,030 -0,057 0,227 -0,064 0,419 C -FA 18:17 -0,481 0,626 -0,749 0,181 0,071 -0,244 0,135 0,047 -0,059 0,317 0,008 0,492 BrFA -0,463 0,575 -0,606 -0,066 -0,148 -0,070 -0,039 -0,165 0,180 0,086 -0,121 0,402 C -MAGE 16:0 -0,397 0,599 -0,631 0,460 -0,104 -0,534 0,342 0,387 -0,353 0,615 0,183 0,441 Diploptene -0,117 0,105 -0,170 0,265 0,025 -0,273 0,365 0,225 -0,232 0,571 0,274 0,505 C -HOH 32 -0,163 0,246 -0,354 0,352 0,054 -0,283 0,145 0,342 -0,215 0,517 0,425 0,543 C --HA 32 -0,331 0,464 -0,457 0,200 0,006 -0,176 0,165 0,136 -0,082 0,269 0,031 0,420 BHP -0,053 0,293 -0,285 0,238 -0,268 -0,245 0,219 0,153 -0,129 0,452 0,248 0,393 3.5-Bd 0,259 -0,130 0,038 -0,074 -0,091 0,156 -0,093 -0,027 0,094 0,045 0,178 0,184 Lignin -0,050 0,273 -0,330 0,576 -0,082 -0,570 0,499 0,521 -0,464 0,370 0,106 0,071 Vanillyl phenols -0,120 0,361 -0,386 0,628 -0,159 -0,633 0,567 0,566 -0,481 0,422 0,066 0,070 Syringyl phenols -0,038 0,229 -0,257 0,573 -0,094 -0,537 0,490 0,535 -0,478 0,369 0,151 0,098 Cinnamyl phenols -0,034 0,097 -0,099 0,384 -0,068 -0,358 0,406 0,337 -0,243 0,230 0,095 -0,090 p-Hydroxyl phenols 0,037 0,175 -0,328 0,406 0,046 -0,426 0,276 0,371 -0,317 0,325 0,163 0,166 ACL -0,506 0,320 -0,339 0,194 0,155 -0,259 0,219 0,075 -0,143 -0,056 -0,242 -0,065 SCFA/LCFA -0,308 0,373 -0,441 -0,095 -0,022 -0,064 -0,034 -0,159 0,129 -0,071 -0,228 0,105 C/V 0,228 -0,427 0,374 -0,271 0,109 0,395 -0,246 -0,231 0,240 -0,237 0,161 -0,309 S/V 0,241 -0,473 0,504 -0,259 0,182 0,374 -0,263 -0,219 0,136 -0,311 0,126 -0,168 3,5-Bd/V 0,357 -0,418 0,395 -0,612 -0,036 0,654 -0,578 -0,529 0,543 -0,398 0,041 -0,022 BIT -0,163 0,283 -0,321 0,531 -0,215 -0,638 0,584 0,492 -0,481 0,327 -0,138 0,056 CPI -0,133 0,073 -0,030 0,065 -0,282 -0,070 0,207 0,025 0,018 0,207 0,141 0,292 HPA 0,023 -0,046 0,002 -0,305 0,199 0,154 -0,331 -0,318 0,331 -0,487 -0,316 -0,079 0/5 -0,027 -0,052 0,088 -0,317 0,094 0,391 -0,326 -0,284 0,318 -0,001 0,265 0,280 alkene/ alkenone -0,234 0,183 -0,213 0,188 0,013 -0,220 0,128 0,198 -0,165 0,346 0,220 0,501

(Ad/Al)V 0,344 -0,503 0,494 -0,579 -0,035 0,625 -0,592 -0,531 0,548 -0,451 -0,010 -0,233 P/(S+V) 0,167 -0,222 0,125 -0,601 0,177 0,557 -0,656 -0,570 0,523 -0,315 0,009 0,049

148 AppendixA2

Table A2. Continued. HBIs Alkenone SCOH LCOH Phytol Sterols Dinosterol 24-Methylene- Diols Plant-derived Friedelin cholestadienol Triterpenoids Latitude (N)

Longitude (W)

Water depth (m)

TOC [%]

TIC [%]

13C (‰) TOC TOC/TN

Silt [%]

Mean grain size [μm]

LCalk n-C 36-40 C alkene 37:2 HBIs

Alkenone 0,283 SCOH 0,438 0,105 LCOH 0,512 0,531 0,552 Phytol 0,020 0,229 0,104 0,211 Sterols 0,447 0,421 0,546 0,755 0,131 Dinosterol 0,464 0,309 0,451 0,762 -0,019 0,774 24-Methylene- cholestadienol 0,434 0,255 0,551 0,665 -0,032 0,754 0,833 Diols 0,457 0,401 0,537 0,725 0,032 0,824 0,832 0,860 Plant-derived Triterpenoids 0,488 0,291 0,523 0,815 0,041 0,801 0,959 0,830 0,836 Friedelin 0,494 0,345 0,527 0,531 0,054 0,446 0,304 0,353 0,384 0,412 LCFA 0,302 0,349 0,399 0,610 0,015 0,532 0,382 0,284 0,506 0,479 0,415 SCFA 0,173 0,215 0,226 0,407 0,063 0,671 0,486 0,545 0,618 0,559 0,284 sat. SCFA 0,117 0,188 0,225 0,365 0,076 0,645 0,451 0,479 0,586 0,516 0,221 MUFA 0,208 0,261 0,248 0,454 0,041 0,709 0,532 0,631 0,674 0,589 0,278 PUFA 0,321 0,356 0,332 0,590 -0,051 0,615 0,531 0,475 0,646 0,599 0,251 C -FA 18 0,243 -0,047 0,348 0,274 -0,027 0,417 0,210 0,336 0,273 0,309 0,227 C -FA 18:19 0,247 0,264 0,165 0,412 0,014 0,656 0,440 0,575 0,602 0,508 0,254 C -FA 18:17 0,267 0,348 0,205 0,489 0,044 0,729 0,505 0,607 0,644 0,567 0,253 BrFA 0,120 0,273 0,104 0,339 0,097 0,574 0,449 0,485 0,562 0,490 0,230 C -MAGE 16:0 0,427 0,405 0,537 0,580 0,179 0,761 0,495 0,617 0,622 0,592 0,595 Diploptene 0,532 0,336 0,143 0,412 0,172 0,322 0,218 0,202 0,202 0,274 0,374 C -HOH 32 0,524 0,303 0,425 0,761 0,049 0,703 0,936 0,812 0,747 0,898 0,253 C --HA 32 0,341 0,130 0,325 0,344 -0,153 0,437 0,344 0,377 0,432 0,385 0,288 BHP 0,386 0,375 0,142 0,480 0,022 0,366 0,393 0,337 0,319 0,427 0,249 3.5-Bd 0,229 0,350 0,051 0,293 -0,088 0,135 0,262 0,269 0,255 0,213 0,080 Lignin 0,326 0,147 0,349 0,521 -0,104 0,387 0,483 0,536 0,402 0,549 0,422 Vanillyl phenols 0,350 0,151 0,419 0,527 -0,152 0,407 0,496 0,518 0,393 0,566 0,514 Syringyl phenols 0,299 0,121 0,389 0,561 -0,087 0,396 0,521 0,564 0,444 0,582 0,383 Cinnamyl phenols 0,109 0,029 0,170 0,295 -0,023 0,188 0,361 0,335 0,177 0,398 0,215 p-Hydroxyl phenols 0,350 0,217 0,229 0,503 -0,054 0,409 0,480 0,538 0,441 0,505 0,304 ACL -0,283 0,065 0,145 0,051 0,159 0,168 -0,033 0,097 0,133 0,001 0,126 SCFA/LCFA 0,061 0,028 0,000 0,015 0,013 0,406 0,303 0,474 0,361 0,288 0,050 C/V -0,287 -0,137 -0,215 -0,286 0,253 -0,294 -0,270 -0,251 -0,317 -0,305 -0,374 S/V -0,352 -0,151 -0,226 -0,168 0,179 -0,281 -0,179 -0,128 -0,152 -0,200 -0,431 3,5-Bd/V -0,134 0,170 -0,339 -0,192 0,036 -0,223 -0,101 -0,092 -0,070 -0,216 -0,348 BIT 0,229 -0,018 0,399 0,291 0,048 0,373 0,259 0,319 0,220 0,346 0,530 CPI 0,057 0,352 0,049 0,272 0,043 0,058 0,173 -0,122 0,063 0,238 0,215 HPA -0,299 0,046 -0,160 0,150 -0,075 0,057 0,101 0,138 0,183 -0,013 -0,016 0/5 0,237 0,173 -0,189 0,170 -0,075 -0,064 0,296 0,116 0,181 0,219 -0,215 alkene/ alkenone 0,272 -0,305 0,305 0,279 0,078 0,370 0,420 0,314 0,309 0,471 0,085

(Ad/Al)V -0,351 -0,075 -0,400 -0,400 0,135 -0,355 -0,241 -0,235 -0,266 -0,332 -0,468 P/(S+V) -0,141 0,040 -0,426 -0,303 0,062 -0,145 -0,242 -0,198 -0,115 -0,325 -0,490

149 AppendixA2

Table A2. Continued. LCFA SCFA sat. SCFA MUFA PUFA C18-FA C18:19-FA C18:17-FA BrFA C16:0- Diploptene MAGE Latitude (N)

Longitude (W)

Water depth (m)

TOC [%]

TIC [%]

13C (‰) TOC TOC/TN

Silt [%]

Mean grain size [μm]

LCalk

n-C 36-40 C alkene 37:2 HBIs

Alkenone

SCOH

LCOH

Phytol

Sterols

Dinosterol

24-Methylene- cholestadienol Diols

Plant-derived Triterpenoids Friedelin

LCFA

SCFA 0,608 sat. SCFA 0,611 0,973 MUFA 0,563 0,966 0,910 PUFA 0,815 0,679 0,664 0,706 C -FA 18 0,343 0,455 0,386 0,535 0,441 C -FA 18:19 0,435 0,848 0,776 0,921 0,657 0,675 C -FA 18:17 0,548 0,911 0,846 0,962 0,705 0,601 0,956 BrFA 0,505 0,931 0,942 0,876 0,548 0,236 0,732 0,808 C -MAGE 16:0 0,379 0,544 0,489 0,586 0,485 0,523 0,593 0,628 0,418 Diploptene 0,219 0,040 -0,048 0,102 0,166 0,161 0,184 0,198 -0,002 0,253 C -HOH 32 0,283 0,372 0,312 0,452 0,462 0,238 0,399 0,462 0,341 0,455 0,295 C --HA 32 0,546 0,536 0,479 0,569 0,663 0,496 0,550 0,552 0,426 0,302 0,280 BHP 0,343 0,284 0,266 0,296 0,339 0,057 0,257 0,370 0,225 0,422 0,328 3.5-Bd 0,127 0,075 0,016 0,110 0,178 -0,189 0,142 0,139 0,091 -0,029 0,113 Lignin 0,346 0,277 0,200 0,346 0,344 0,289 0,349 0,347 0,178 0,336 0,225 Vanillyl phenols 0,383 0,268 0,203 0,314 0,342 0,300 0,288 0,305 0,170 0,386 0,213 Syringyl phenols 0,382 0,262 0,197 0,321 0,375 0,207 0,283 0,304 0,169 0,299 0,191 Cinnamyl phenols 0,153 0,175 0,134 0,171 0,120 -0,021 0,061 0,164 0,168 0,215 0,096 p-Hydroxyl phenols 0,340 0,318 0,235 0,401 0,377 0,295 0,436 0,413 0,230 0,321 0,255 ACL 0,116 0,292 0,264 0,367 0,157 0,316 0,332 0,316 0,186 0,146 0,031 SCFA/LCFA -0,171 0,578 0,545 0,631 0,075 0,384 0,692 0,616 0,577 0,405 0,057 C/V -0,282 -0,100 -0,057 -0,162 -0,312 -0,337 -0,252 -0,159 0,002 -0,239 -0,240 S/V -0,153 -0,159 -0,134 -0,167 -0,083 -0,356 -0,171 -0,177 -0,099 -0,340 -0,313 3,5-Bd/V -0,290 -0,129 -0,101 -0,148 -0,158 -0,474 -0,101 -0,124 0,024 -0,292 -0,230 BIT 0,070 0,110 0,061 0,140 -0,015 0,205 0,155 0,125 0,007 0,402 0,310 CPI 0,305 0,019 0,065 -0,060 0,279 -0,214 -0,101 -0,020 0,045 0,007 0,117 HPA -0,108 0,038 0,055 0,086 -0,048 -0,201 0,059 0,040 0,147 -0,095 -0,342 0/5 0,016 0,001 0,012 0,004 0,191 -0,253 0,017 0,035 0,134 -0,235 0,020 alkene/ alkenone 0,257 0,304 0,287 0,253 0,287 0,307 0,227 0,232 0,183 0,191 0,273

(Ad/Al)V -0,411 -0,205 -0,155 -0,250 -0,388 -0,427 -0,286 -0,238 -0,021 -0,306 -0,266 P/(S+V) -0,226 -0,010 0,005 0,019 -0,069 -0,036 0,142 0,069 0,054 -0,181 -0,109

150 AppendixA2

Table A2. Continued. C32-HOH C32--HA BHP 3.5-Bd Lignin Vanillyl Syringyl Cinnamyl p-Hydroxy-benzene phenols phenols phenols phenols ACL Latitude (N)

Longitude (W)

Water depth (m)

TOC [%]

TIC [%]

13C (‰) TOC TOC/TN

Silt [%]

Mean grain size [μm]

LCalk

n-C 36-40 C alkene 37:2 HBIs

Alkenone

SCOH

LCOH

Phytol

Sterols

Dinosterol

24-Methylene- cholestadienol Diols

Plant-derived Triterpenoids Friedelin

LCFA

SCFA

sat. SCFA

MUFA

PUFA

C -FA 18 C -FA 18:19 C -FA 18:17 BrFA

C -MAGE 16:0 Diploptene

C -HOH 32 C --HA 32 0,382 BHP 0,393 0,202 3.5-Bd 0,304 0,093 0,147 Lignin 0,520 0,275 0,270 0,514 Vanillyl phenols 0,505 0,300 0,288 0,417 0,971 Syringyl phenols 0,553 0,261 0,277 0,530 0,972 0,937 Cinnamyl phenols 0,396 0,097 0,278 0,216 0,681 0,695 0,693 p-Hydroxyl phenols 0,531 0,240 0,209 0,631 0,907 0,826 0,862 0,497 ACL -0,093 0,118 -0,158 -0,359 -0,022 -0,014 -0,058 -0,076 -0,068 SCFA/LCFA 0,256 0,126 0,047 -0,016 0,120 0,057 0,037 -0,005 0,218 0,293 C/V -0,208 -0,264 -0,079 -0,188 -0,363 -0,416 -0,312 0,278 -0,385 -0,002 S/V -0,121 -0,344 -0,173 0,250 -0,103 -0,257 0,034 0,035 -0,027 -0,147 3,5-Bd/V -0,067 -0,291 -0,045 0,631 -0,210 -0,319 -0,176 -0,223 0,018 -0,386 BIT 0,229 0,028 0,202 0,085 0,493 0,562 0,459 0,234 0,331 0,170 CPI 0,121 -0,033 0,250 0,270 0,207 0,259 0,232 0,277 0,092 -0,079 HPA 0,108 -0,106 -0,130 0,197 -0,035 -0,084 0,021 -0,023 0,034 0,142 0/5 0,316 -0,070 0,129 0,299 -0,115 -0,177 -0,053 -0,167 -0,019 -0,302 alkene/ alkenone 0,388 0,351 0,148 -0,142 -0,005 -0,004 0,060 -0,073 0,013 -0,134

(Ad/Al)V -0,179 -0,345 -0,170 0,041 -0,351 -0,427 -0,327 0,124 -0,237 -0,190 P/(S+V) -0,209 -0,133 -0,173 0,052 -0,519 -0,635 -0,577 -0,634 -0,166 -0,086

151 AppendixA2

Table A2. Continued. alkene/ 0 5 SCFA/LCFA C/V S/V 3,5-Bd/V BIT CPI HPA / alkenone (Ad/Al)V Latitude (N)

Longitude (W)

Water depth (m)

TOC [%]

TIC [%]

13C (‰) TOC TOC/TN

Silt [%]

Mean grain size [μm]

LCalk

n-C 36-40 C alkene 37:2 HBIs

Alkenone

SCOH

LCOH

Phytol

Sterols

Dinosterol

24- Methylenecholestadienol Diols

Plant-derived Triterpenoids Friedelin

LCFA

SCFA

sat. SCFA

MUFA

PUFA

C -FA 18 C -FA 18:19 C -FA 18:17 BrFA

C -MAGE 16:0 Diploptene

C -HOH 32 C --HA 32 BHP

3.5-Bd

Lignin

Vanillyl phenols

Syringyl phenols

Cinnamyl phenols

p-Hydroxyl phenols

ACL SCFA/LCFA C/V -0,022 S/V -0,146 0,486 3,5-Bd/V 0,061 0,217 0,548 BIT 0,178 -0,475 -0,386 -0,326 CPI -0,341 -0,073 0,026 0,081 0,065 HPA 0,064 0,113 0,237 0,333 -0,141 -0,091 0/5 -0,034 -0,038 0,361 0,482 -0,388 0,282 0,099 alkene/ alkenone 0,132 -0,185 -0,040 -0,242 0,085 -0,015 -0,244 0,181

(Ad/Al)V 0,035 0,753 0,496 0,531 -0,529 -0,066 0,217 0,090 -0,303 P/(S+V) 0,246 0,107 0,210 0,565 -0,482 -0,365 0,111 0,255 -0,092 0,401

152 153 Danksagung

DANKSAGUNG

Ich danke Prof. Dr. KaiUwe Hinrichs, dass er mir die Möglichkeit gegeben hat, meine

DissertationunterseinerhervorragendenwissenschaftlichenBetreuungdurchzuführen,für seineFörderungunddasmirentgegengebrachteVertrauenwährendderletztenJahre.

Für die Übernahme des Zweitgutachtens und für die ausgezeichnete wissenschaftliche

ZusammenarbeitwährendderletztendreiJahredankeichProf.Dr.BorisKoch.Besonders möchteichmichfürdiegeduldigeEinführunginFTICRMSunddiedarausresultierende

Datenflutbedanken.

Dr. Marcus Elvert danke ich besonders für die Einführung in die Welt der Organischen

Geochemie, für seine exzellente wissenschaftliche Betreuung, seine uneingeschränkte

UnterstützungunddasVertrauen,dasermirentgegengebrachthat.

DasWeiterendankeichdenfolgendenPersonen,dieaufdemeinenoderanderemWegzu demEntstehendieserDissertationbeigetragenhaben:

Dr.DanielBirgelfürseineHilfebeiwissenschaftlichenProblemenundFragen

XavierPrietoMollardafür,dasserdenLaborbetriebunddieGeräteamLaufenhält

BirgitSchminckefürihreHilfeinallenadministrativenSachen

EnnoSchefußfürseineIdeenundAnregungenwährendderTreffendesThesis

Committees

ArneLeider,JuliusLipp,LarsHoffmann,StefanieTille,VerenaHeuer,Marcos

Yoshinaga,JulioSepulveda,fürwertvolleKommentarezurLaboranalytikund

DatenbewertungundManuskripten

LauraGarciaPardoundKevinBeckerfürdieUnterstützungbeiLaborarbeiten

DenKollegenausC6undProjektleiterTillHanebuthfüranregendewissenschaftliche

Diskussionen

BrukerDaltonikGmbHundMatthiasWittfürdieMessungmeineProbenaufihrem

FTICRMassenspektrometer

154 Danksagung

demwissenschaftlichenTeamderP342GaliomarExpeditionundderBesatzungder

FSPoseidon;TillHanebuthfürdiehervorragendeFahrtleitung;insbesonderdanke

ichMichelleundBrit

denFahrtteilnehmernundderSchiffsbesatzungderMeteorAusfahrtM72/5im

SchwarzenMeer;ChristianBorowskifürseinehumorvolleFahrtleitung;Olga,Olaf,

Bert,BarnieundHelgefürdenSpaßbeiderArbeitundinderSchiffsbar

allenaktuellenundehemaligenMitgliedernderAGOrganischeGeochemie,Prof.Dr.

JörnPeckmannundderAGGeobiologiefürdiewunderbareArbeitsatmosphäre,

entspannteKaffeerunden,Grillparties…Ganzbesondersmöchteichmichbeimeinen

liebenOfficeMatesArne,JulioundSimonebedanken.

derdeutschenForschungsgemeinschaftfürdieFinanzierungmeinerArbeitim

RahmendesDFGExcellenceCluster“DerOzeanimSystemErde”

BremenInternationalGraduateSchoolforMarineSciences(GLOMAR)fürdie

FinanzierungvonKonferenzteilnahmen

MeinenFreundenimNorden:Kate(imKampfgegenjedeWidrigkeit),Benny(im

Kampfgegend.Z.d.Z.),Esther,Francois,Michelle,Brit,Steph,Lars,Robynund

meinenMädelsinTübingen:Silke,Steffi,Ulli,NelliundClaudi.FürGraptas

HammerundvielesmehrdankeichEllenundHenning

meinemBruderGunnar,meinerSchwesterAnkeundihrerFamilieundganz

besondersmeinenElternfürihrefortwährendeUnterstützungunddenRückhalt,den

siemirgeben.

155 156 N a m e : ...... Datum ......

Anschrift : ......

E r k l ä r u n g

Hiermit versichere ich, dass ich

1. die Arbeit ohne unerlaubte fremde Hilfe angefertigt habe,

2. keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe und

3. die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

______, den ......

------(Unterschrift)

157