The Pennsylvania State University the Graduate School

Total Page:16

File Type:pdf, Size:1020Kb

The Pennsylvania State University the Graduate School The Pennsylvania State University The Graduate School Department of Crop and Soil Sciences DISTRIBUTION AND DIVERSITY OF SULFUR-REDUCING PROKARYOTES IN SULFUR-RICH PEAT SOILS A Thesis in Soil Science by Carolina Elvira María Yáñez Prieto © 2006 Carolina Elvira María Yáñez Prieto Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2006 The thesis of Carolina Elvira María Yáñez Prieto was reviewed and approved* by the following: Carmen Enid Martínez Assistant Professor of Soil Environmental Chemistry Thesis Advisor Chair of Committee Mary Ann Bruns Associate Professor of Soil Science and Microbial Ecology Peter J. Landschoot Professor of Turfgrass Science Katherine H. Freeman Professor of Geosciences and Associate Head of Graduate Programs and Research, Department of Geosciences John M. Regan Assistant Professor of Environmental Engineering David M. Sylvia Professor of Soil Microbiology Head of the Department of Crop and Soil Sciences *Signatures are on file in the Graduate School iii ABSTRACT Geochemical transfers between the Lockport Dolomite Formation and overlying wetlands near the town of Manning in Western New York have resulted in peat soils that contain high levels of sulfur, zinc, and cadmium. These peat soils are artificially drained for agricultural purposes and they have undergone drastic seasonal changes in redox for the last 60 years. Sulfur cycle reactions driven by prokaryotes potentially influence the availability, mobility and the biogeochemical control of Zn and Cd retention in the peats. The objectives of this research were to determine the presence of sulfate-reducing prokaryotes (SRP), to detect enzymatic pathways used for sulfur respiration, to evaluate the influence of temporal and spatial changes in sulfate-reducing populations and to determine the oxidation states of S present in peat soils from the Manning region. Surface peat samples were collected from the Manning peatland region of Western New York in July 2002 (dry season). The surface soils were collected from the edge of a field, along a Zn phytotoxicity gradient starting in an area where there was no plant growth and moving to a zone of typical plant growth. Additionally, intact soil vertical profiles (soil cores) were collected during dry (July 2002) and wet (March 2004) seasons. The soil cores were collected along a lateral transect where the center of the field had high enough levels of Zn (phytotoxic levels) to prevent plant growth and moving to areas of stunted, and then typical plant growth. The diversity of prokaryotes involved in sulfur reduction was studied in peat soils containing high natural levels of sulfur (4,200 to 40,500 mg kg-1), zinc (137.5 to 71175 mg kg-1) and cadmium (<1 to 310.7 mg kg-1). Diversity in microbial populations was iv analyzed using classical and molecular approaches and the microbiological data were coupled to the spectroscopic characterization (S-XANES) of the oxidation states of sulfur in the peats under investigation. Sulfur-XANES analyses reveal that sulfide/thiol groups (reduced forms of S) and sulfonate groups (oxidized forms of S) are the two dominant S species in surface peats. While the percentage of the total S present in oxidized forms is relatively constant (~10%) in vertical profiles, about 40% and 60% of the total S exist as sulfide/thiol groups (reduced forms of S) in surface and deep soils, respectively. The use of ribosomal intergenic spacer analyses (RISA) for the characterization of bacterial communities revealed the abundance and diversity of microorganisms. Dominant bacterial populations inhabiting surface soils were very similar, while those located in deep soils were dynamic, responding to changes induced by depth and season. Enumerations of sulfate-reducing prokaryotes (SRPs) in surface soils indicated that SRPs using acetate or lactate as electron donors represent only a small fraction (~103 g-1 dry soil) of total cell densities determined by microscopy (~109 g-1 dry soil). Enrichment for SRPs showed that typical sulfate reducing bacteria (delta subgroup of Proteobacteria, among others) do not seem to be present in surface soils although 40% of the total S is in reduced (thiol/sulfide) forms. Instead, sulfur cycling in these metalliferous surface soils is driven by Gram-positive bacteria related to Clostridium spp. and may involve the use of sulfonates as electron acceptors. Results of PCR-amplification of enzymes involved in the sulfur respiration pathway [adenosine-5’-phosphosulfate reductase (apsA) and dissimilatory sulfite reductase (dsrAB)] in DNA from surface soils supported these observations. No dsrAB genes were detected and phylogenetic association of cloned sequences showed that apsA sequences recovered from these soils had diverged from v apsA of known SRPs. Alternative pathways for sulfur dissimilation are proposed for these surface soils. The enzyme anaerobic sulfite reductase (asrA) was detected in the peats and phylogenetic analysis of asrA sequences revealed a wide distribution and diversity of this gene. By analysis of dsrAB genes in deep peat soils, we identified sulfate-reducing prokaryotes in soil profile samples deeper than 45 cm. Furthermore, the sequences of dsrAB genes present in peat soil samples from both dry and wet seasons have not been previously described in the literature. Thus, our results suggest that novel sulfur-reducing prokaryotes are present in these peat soils and that they might be specialized colonists in these metalliferous soil environments. vi TABLE OF CONTENTS LIST OF FIGURES .....................................................................................................viii LIST OF TABLES.......................................................................................................xi ACKNOWLEDGEMENTS.........................................................................................xii Chapter 1 Introduction ................................................................................................1 SULFUR CYCLE.................................................................................................2 METALLIFEROUS SOILS OF THE MANNING REGION..............................6 OBJECTIVES.......................................................................................................8 REFERENCES .....................................................................................................10 Chapter 2 Sulfur-Reducing Prokaryotes in Surface Peats Subjected to Variable Redox Conditions .................................................................................................12 ABSTRACT .........................................................................................................13 INTRODUCTION ................................................................................................15 MATERIALS AND METHODS .........................................................................17 RESULTS.............................................................................................................23 DISCUSSION.......................................................................................................40 CONCLUSIONS ..................................................................................................44 REFERENCE .......................................................................................................46 Chapter 3 Novel Functional Genes and Enzymatic Pathways Involved in Dissimilatory Reduction of Sulfur Compounds in Agriculturally Drained Peats......................................................................................................................57 ABSTRACT .........................................................................................................58 INTRODUCTION ................................................................................................60 MATERIALS AND METHODS .........................................................................63 RESULTS AND DISCUSSION...........................................................................66 CONCLUSIONS ..................................................................................................78 REFERENCE .......................................................................................................79 Chapter 4 Sulfate-Reducing Bacteria Populations in Sulfur-Rich Peat Soils as a Function of Soil Depth and Moisture Content......................................................87 ABSTRACT .........................................................................................................88 INTRODUCTION ................................................................................................90 MATERIALS AND METHODS .........................................................................92 RESULTS.............................................................................................................97 DISCUSSION.......................................................................................................109 vii CONCLUSIONS ..................................................................................................113 REFERENCES .....................................................................................................114 Chapter 5 General Conclusions ..................................................................................121 viii LIST OF FIGURES Figure 1-1: Biological sulfur cycle. .............................................................................4
Recommended publications
  • Clostridium Aerotolerans Sp
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1987, p. 102-105 Vol. 37, No. 2 0020-7713/87/020102-04$02.OO/O Copyright 0 1987, International Union of Microbiological Societies Clostridium aerotolerans sp. nov. a Xylanolytic Bacterium from Corn Stover and from the Rumina of Sheep Fed Corn Stover N. 0. VAN GYLSWYK" AND J. J. T. K. VAN DER TOORN Anaerobic Microbiology Division, Laboratory for Molecular and Cell Biology, Onderstepoort 01 10, South Africa Two strains of sporeforming, xylan-digesting, rod-shaped bacteria were isolated from a lo-* dilution of rumen ingesta taken from two sheep fed a corn stover ration. To determine the source of these strains, we examined the corn stover and isolated two strains of similar bacteria from it. The four strains were remarkably tolerant to oxygen although they did not grow in liquid medium that was shaken while exposed to air. They fermented a wide variety of carbon sources and produced formic, acetic, and lactic acids, ethanol, carbon dioxide, and hydrogen from xylan. The deoxyribonucleic acid base composition was 40 mol% guanine plus cytosine. The name proposed for these strains is Clostridiurn aerotolerans; the type strain is strain XSA62 (ATCC 43524). Two strains of sporeforming bacteria were found among a in which glucose (5 g/liter) replaced xylan. Spores were large number of bacteria isolated from colonies that pro- stained with malachite green (10). Motility was determined duced clearing zones in xylan (3%) agar medium inoculated after cells were grown overnight on maintenance slants. with a loh8 dilution of rumen ingesta from sheep fed corn Growth in basal medium containing cellobiose (5 g/liter) stover diets (14) as briefly described by van der Toorn and from which reducing agent (cysteine and sulfide) had been vim Gylswyk (15).
    [Show full text]
  • Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner
    microorganisms Article Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner Bokyoung Lee 1,2, Jieun Lee 1,2, Min-Yeong Woo 1,2, Mi Jin Lee 1, Ho-Joon Shin 1,2, Kyongmin Kim 1,2 and Sun Park 1,2,* 1 Department of Microbiology, Ajou University School of Medicine, Youngtongku Wonchondong San 5, Suwon 442-749, Korea; [email protected] (B.L.); [email protected] (J.L.); [email protected] (M.-Y.W.); [email protected] (M.J.L.); [email protected] (H.-J.S.); [email protected] (K.K.) 2 Department of Biomedical Sciences, The Graduate School, Ajou University, Youngtongku Wonchondong San 5, Suwon 442-749, Korea * Correspondence: [email protected]; Tel.: +82-31-219-5070 Received: 22 August 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: T cell immunoglobulin and mucin domain-containing protein-3 (Tim-3) is an immune checkpoint molecule and a target for anti-cancer therapy. In this study, we examined whether gut microbiota manipulation altered the anti-tumour efficacy of Tim-3 blockade. The gut microbiota of mice was manipulated through the administration of antibiotics and oral gavage of bacteria. Alterations in the gut microbiome were analysed by 16S rRNA gene sequencing. Gut dysbiosis triggered by antibiotics attenuated the anti-tumour efficacy of Tim-3 blockade in both C57BL/6 and BALB/c mice. Anti-tumour efficacy was restored following oral gavage of faecal bacteria even as antibiotic administration continued. In the case of oral gavage of Enterococcus hirae or Lactobacillus johnsonii, transferred bacterial species and host mouse strain were critical determinants of the anti-tumour efficacy of Tim-3 blockade.
    [Show full text]
  • Detoxification of Lignocellulose-Derived Microbial Inhibitory Compounds by Clostridium Beijerinckii NCIMB 8052 During Acetone-Butanol-Ethanol Fermentation
    Detoxification of Lignocellulose-derived Microbial Inhibitory Compounds by Clostridium beijerinckii NCIMB 8052 during Acetone-Butanol-Ethanol Fermentation DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yan Zhang Graduate Program in Animal Sciences The Ohio State University 2013 Dissertation Committee: Thaddeus C. Ezeji, Advisor Steven C. Loerch Sandra G. Velleman Zhongtang Yu Venkat Gopalan Copyrighted by Yan Zhang 2013 Abstract Pretreatment and hydrolysis of lignocellulosic biomass to fermentable sugars generate a complex mixture of microbial inhibitors such as furan aldehydes (e.g., furfural), which at sublethal concentration in the fermentation medium can be tolerated or detoxified by acetone butanol ethanol (ABE)-producing Clostridium beijerinckii NCIMB 8052. The response of C. beijerinckii to furfural at the molecular level, however, has not been directly studied. Therefore, this study was to elucidate mechanism employed by C. beijerinckii to detoxify lignocellulose-derived microbial inhibitors and use this information to develop inhibitor-tolerant C. beijerinckii. Towards the long-term goal of developing inhibitor-tolerant Clostridium strains, the first objective was to evaluate ABE fermentation by C. beijerinckii using different proportions of Miscanthus giganteus hydrolysates as carbon source. Compared to the growth of C. beijerinckii in control medium, C. beijerinckii experienced different degrees of inhibition. The degree of inhibition was dose-dependent, and C. beijerinckii did not grow in P2 medium with greater than 25% (v/v) Miscanthus giganteus hydrolysates. To improve tolerance of C. beijerinckii to inhibitors, supplementation of P2 medium with undiluted (100%) Miscanthus giganteus hydrolysates with 4 g/L CaCO3 resulted in successful growth of and ABE production by C.
    [Show full text]
  • Hygiene Aspects of the Biogas Process with Emphasis on Spore-Forming Bacteria
    Hygiene Aspects of the Biogas Process with Emphasis on Spore-Forming Bacteria Elisabeth Bagge Department of Bacteriology, National Veterinary Institute and Faculty of Veterinary Medicine and Animal Sciences Department of Biomedical Sciences and Veterinary Public Health Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2009 Acta Universitatis Agriculturae Sueciae 2009:28 Cover: Västerås biogas plant (photo: E. Bagge, November 2006) ISSN 1652-6880 ISBN 978-91-86195-75-5 © 2009 Elisabeth Bagge, Uppsala Print: SLU Service/Repro, Uppsala 2009 Hygiene Aspects of the Biogas Process with Emphasis on Spore-Forming Bacteria Abstract Biogas is a renewable source of energy which can be obtained from processing of biowaste. The digested residues can be used as fertiliser. Biowaste intended for biogas production contains pathogenic micro-organisms. A pre-pasteurisation step at 70°C for 60 min before anaerobic digestion reduces non spore-forming bacteria such as Salmonella spp. To maintain the standard of the digested residues it must be handled in a strictly hygienic manner to avoid recontamination and re-growth of bacteria. The risk of contamination is particularly high when digested residues are transported in the same vehicles as the raw material. However, heat treatment at 70°C for 60 min will not reduce spore-forming bacteria such as Bacillus spp. and Clostridium spp. Spore-forming bacteria, including those that cause serious diseases, can be present in substrate intended for biogas production. The number of species and the quantity of Bacillus spp. and Clostridium spp. in manure, slaughterhouse waste and in samples from different stages during the biogas process were investigated.
    [Show full text]
  • Phylogenetic Analysis of Butyrivibrio Strains Reveals Three Distinct Groups of Species Within the Clostvidium Subphylum of the Gram-Positive Bacteria
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1996, p. 195-199 Vol. 46, No. 1 0020-7713/96/$04.00+0 Copyright 0 1996, International Union of Microbiological Societies Phylogenetic Analysis of Butyrivibrio Strains Reveals Three Distinct Groups of Species within the Clostvidium Subphylum of the Gram-Positive Bacteria ANNE WILLEMS," MONICA AMAT-MARCO, AND MATTHEW D. COLLINS Department of Microbial Physiology, Institute of Food Research, Reading Laboratoy, Reading RG6 6BZ, United Kingdom The phylogenetic positions of 40 Butyrivibrio strains were determined by performing a comparative sequence analysis of the 165 rRNA genes of these organisms. We found that all of the strains which we studied belong to cluster XIVa (M. D. Collins, P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow, Int. J. Syst. Bacteriol. 442312-826, 1994) of the Clostridium subphylum of the gram-positive bacteria, which also includes several Clostridium, Coprococcus,Eubacterium, and Rumino- coccus species. We also found that the Butyrivibrio strains which we examined were genotypically heterogeneous and exhibited 12 distinct rRNA sequence types. The 12 rRNA sequence types formed three distinct lineages in cluster XIVa, which were separate from each other and from all other species belonging to this cluster. One lineage consisted of strains which exhibited a single rRNA type and corresponded to the species Butyrivibrio crossotus. The second lineage consisted of 12 strains designated Butyrivibrio Jibrisolvens which exhibited seven distinct rRNA sequence types. The type strain of B. Jibrisolvens was a member of this lineage, but its position was peripheral. The third lineage comprised 26 B.
    [Show full text]
  • Mapping the Diversity of Microbial Lignin Catabolism: Experiences from the Elignin Database
    Applied Microbiology and Biotechnology (2019) 103:3979–4002 https://doi.org/10.1007/s00253-019-09692-4 MINI-REVIEW Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database Daniel P. Brink1 & Krithika Ravi2 & Gunnar Lidén2 & Marie F Gorwa-Grauslund1 Received: 22 December 2018 /Revised: 6 February 2019 /Accepted: 9 February 2019 /Published online: 8 April 2019 # The Author(s) 2019 Abstract Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database (www.elignindatabase.com), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings. Keywords Lignin . Database . Aromatic metabolism . Catabolic pathways
    [Show full text]
  • Detecting Dipicolinic Acid Production and Biosynthesis Pathways in Bacilli and Clostridia
    bioRxiv preprint doi: https://doi.org/10.1101/803486; this version posted October 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. INVESTIGATIONS Detecting dipicolinic acid production and biosynthesis pathways in Bacilli and Clostridia Benjamin Gordon∗,1, Paul Duellman∗, Anthony Salvucci∗ and Marthah De Lorme∗ ∗Agrinos Global Research & Development Center, Davis, CA 95618 1 2 ABSTRACT Bacterial endospores are highly resistant structures and dipicolinic acid is a key component of KEYWORDS 3 their resilience and stability. Due to the difficulty in controlling endospore contaminants, they are of interest Bacilli 4 in clean rooms, food processing, and production industries, while benefical endospore-formers are sought Clostridia 5 for potential utility. Dipicolinic acid production has traditionally been recognized in Bacilli, Clostridia, and Dipicolinic Acid 6 Paenibacilli. Here, sixty-seven strains of aerobic and anaerobic endospore-forming bacteria belonging to the Endospore 7 genera Bacillus, Brevibacillus, Clostridium, Fontibacillus, Lysinibacillus, Paenibacillus, Rummeliibacillus, and Iron-sulfur flavo- 8 Terribacillus were grown axenically and sporulated biomasses were assayed for dipicolinic acid production protein 9 using fluorimetric detection. Strains testing positive were sequenced and the genomes analyzed to identify 10 dipicolinic acid biosynthesis genes. The well-characterized biosynthesis pathway was conserved in 59 strains 11 of Bacilli and Paenibacilli as well as two strains of Clostridia; six strains of Clostridia lacked homologs to genes 12 recognized as involved in dipicolinic acid biosynthesis.
    [Show full text]
  • Thi Na Utaliblat in Un Minune Talk
    THI NA UTALIBLATUS010064900B2 IN UN MINUNE TALK (12 ) United States Patent ( 10 ) Patent No. : US 10 , 064 ,900 B2 Von Maltzahn et al . ( 45 ) Date of Patent: * Sep . 4 , 2018 ( 54 ) METHODS OF POPULATING A (51 ) Int. CI. GASTROINTESTINAL TRACT A61K 35 / 741 (2015 . 01 ) A61K 9 / 00 ( 2006 .01 ) (71 ) Applicant: Seres Therapeutics, Inc. , Cambridge , (Continued ) MA (US ) (52 ) U . S . CI. CPC .. A61K 35 / 741 ( 2013 .01 ) ; A61K 9 /0053 ( 72 ) Inventors : Geoffrey Von Maltzahn , Boston , MA ( 2013. 01 ); A61K 9 /48 ( 2013 . 01 ) ; (US ) ; Matthew R . Henn , Somerville , (Continued ) MA (US ) ; David N . Cook , Brooklyn , (58 ) Field of Classification Search NY (US ) ; David Arthur Berry , None Brookline, MA (US ) ; Noubar B . See application file for complete search history . Afeyan , Lexington , MA (US ) ; Brian Goodman , Boston , MA (US ) ; ( 56 ) References Cited Mary - Jane Lombardo McKenzie , Arlington , MA (US ); Marin Vulic , U . S . PATENT DOCUMENTS Boston , MA (US ) 3 ,009 ,864 A 11/ 1961 Gordon - Aldterton et al. 3 ,228 ,838 A 1 / 1966 Rinfret (73 ) Assignee : Seres Therapeutics , Inc ., Cambridge , ( Continued ) MA (US ) FOREIGN PATENT DOCUMENTS ( * ) Notice : Subject to any disclaimer , the term of this patent is extended or adjusted under 35 CN 102131928 A 7 /2011 EA 006847 B1 4 / 2006 U .S . C . 154 (b ) by 0 days. (Continued ) This patent is subject to a terminal dis claimer. OTHER PUBLICATIONS ( 21) Appl . No. : 14 / 765 , 810 Aas, J ., Gessert, C . E ., and Bakken , J. S . ( 2003) . Recurrent Clostridium difficile colitis : case series involving 18 patients treated ( 22 ) PCT Filed : Feb . 4 , 2014 with donor stool administered via a nasogastric tube .
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0239706A1 Backhed Et Al
    US 2005O2397O6A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0239706A1 Backhed et al. (43) Pub. Date: Oct. 27, 2005 (54) MODULATION OF FIAF AND THE Related U.S. Application Data GASTRONTESTINAL MICROBOTAASA MEANS TO CONTROL ENERGY STORAGE (63) Continuation-in-part of application No. 10/432,819, INA SUBJECT filed on Oct. 31, 2003. (75) Inventors: Fredrik Backhed, St. Louis, MO (US); (60) Provisional application No. 60/591.313, filed on Jul. John Rawls, St. Louis, MO (US); 27, 2004. Justin Sonnenburg, St. Louis, MO (US); Lora V. Hooper, Coppell, TX Publication Classification (US); Jeffrey I. Gordon, St. Louis, MO (US) (51) Int. Cl. ................................................. A61K 38/17 (52) U.S. Cl. ................................................................ 514/12 Correspondence Address: POLSINELL SHALTON WELTE (57) ABSTRACT SUELTHAUS PC. 700 W. 47TH STREET The invention provides compositions and methods to modu SUTE 1000 late fat Storage and weight loSS in a Subject. In certain KANSAS CITY, MO 64112-1802 (US) aspects of the invention, fat storage (adiposity) and weight (73) Assignee: Washington University in St. Louis loSS is modulated by altering the Subject's gastrointestinal microbiota population. In other aspects of the invention, fat (21) Appl. No.: 11/080,755 Storage and weight loSS is modulated by altering the amount of or the activity of the protein, fasting-induced adipocyte (22) Filed: Mar. 15, 2005 factor, in the Subject. B 1 2 5 10 2 5 a 4 WAT Heart 2 ? g3 52 5 al - O &sCS ésO C G D 2 F. 80 g5 150 3560in see a C- t sq 100 o 40 5 so 3 as).
    [Show full text]
  • Automated Analysis of Genomic Sequences Facilitates High- Throughput and Comprehensive Description of Bacteria ✉ ✉ Thomas C
    www.nature.com/ismecomms ARTICLE OPEN Automated analysis of genomic sequences facilitates high- throughput and comprehensive description of bacteria ✉ ✉ Thomas C. A. Hitch 1 , Thomas Riedel2,3, Aharon Oren4, Jörg Overmann2,3,5, Trevor D. Lawley6 and Thomas Clavel 1 © The Author(s) 2021 The study of microbial communities is hampered by the large fraction of still unknown bacteria. However, many of these species have been isolated, yet lack a validly published name or description. The validation of names for novel bacteria requires that the uniqueness of those taxa is demonstrated and their properties are described. The accepted format for this is the protologue, which can be time-consuming to create. Hence, many research fields in microbiology and biotechnology will greatly benefit from new approaches that reduce the workload and harmonise the generation of protologues. We have developed Protologger, a bioinformatic tool that automatically generates all the necessary readouts for writing a detailed protologue. By producing multiple taxonomic outputs, functional features and ecological analysis using the 16S rRNA gene and genome sequences from a single species, the time needed to gather the information for describing novel taxa is substantially reduced. The usefulness of Protologger was demonstrated by using three published isolate collections to describe 34 novel taxa, encompassing 17 novel species and 17 novel genera, including the automatic generation of ecologically and functionally relevant names. We also highlight the need to utilise
    [Show full text]
  • Expansion of and Reclassification Within the Family Lachnospiraceae
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses November 2016 Expansion of and reclassification within the family Lachnospiraceae Kelly N. Haas University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Biodiversity Commons, Bioinformatics Commons, Environmental Microbiology and Microbial Ecology Commons, Evolution Commons, Genomics Commons, Microbial Physiology Commons, Organismal Biological Physiology Commons, Other Ecology and Evolutionary Biology Commons, Other Microbiology Commons, and the Systems Biology Commons Recommended Citation Haas, Kelly N., "Expansion of and reclassification within the family Lachnospiraceae" (2016). Doctoral Dissertations. 843. https://doi.org/10.7275/9055799.0 https://scholarworks.umass.edu/dissertations_2/843 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. EXPANSION OF AND RECLASSIFICATION WITHIN THE FAMILY LACHNOSPIRACEAE A dissertation presented by KELLY NICOLE HAAS Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2016 Microbiology Department © Copyright by Kelly Nicole Haas 2016
    [Show full text]
  • Chapter 9 Final.Pages
    Chapter 9 Antibiotic Use in DDGS Production Introduction One of the ongoing challenges in fuel ethanol production facilities is to control bacterial contamination during fermentation. Lactic acid producing bacteria (Lactobacillus, Pediococcus, Leuconostoc, and Weissella) are the most common contaminants (Bischoff et al., 2009; Leja and Broda, 2009; Muthaiyan and Ricke, 2010; Skinner and Leathers, 2004). Other bacterial contaminants including Bacteroides forsythus, Fusobacterium nucleatum, Propionicbacterium granulosum, and Clostridium aerotolerans also have detrimental effects on ethanol production (Leja and Broda, 2009; Skinner and Leathers, 2004). Lactic acid bacteria are of concern because they compete with yeast (which produce starch) for essential growth factors, and they produce organic acids, including lactic and acetic acid, which inhibit yeast growth (Skinner and Leathers, 2004). In fact, lactic acid concentrations as low as 1 to 4% inhibit yeast growth, while a 0.3% acetic acid concentration stops fermentation (Hynes et al., 1997; Weigel et al., 1996). Lactic acid bacteria are especially problematic because they can tolerate high temperatures, low pH, and high ethanol concentrations encountered in the fuel ethanol production process. Furthermore, lactic acid bacteria grow rapidly and reach high numbers of viable cells prior to the completion of yeast fermentation (Bischoff et al., 2009; Hynes et al., 1997; Leja and Broda, 2009). Failure to identify and control bacterial contamination can lead to a stalled fermentation, in which all of the starch has not been converted to alcohol. Stalled fermentation results in a shutdown of the fermentors and loss of production time while the system is cleaned of contaminants and re-inoculated (Bischoff et al., 2009; Muthaiyan and Ricke, 2010).
    [Show full text]