Soehngenia Saccharolytica Gen. Nov., Sp. Nov. and Clostridium Amygdalinum Sp

Total Page:16

File Type:pdf, Size:1020Kb

Soehngenia Saccharolytica Gen. Nov., Sp. Nov. and Clostridium Amygdalinum Sp View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wageningen University & Research Publications International Journal of Systematic and Evolutionary Microbiology (2003), 53, 1791–1799 DOI 10.1099/ijs.0.02668-0 Soehngenia saccharolytica gen. nov., sp. nov. and Clostridium amygdalinum sp. nov., two novel anaerobic, benzaldehyde-converting bacteria Sofia N. Parshina,1,2,3 Robbert Kleerebezem,2 Jose Luis Sanz,3 Gatze Lettinga,2 Alla N. Nozhevnikova,1 Nadezhda A. Kostrikina,1 Anatoly M. Lysenko1 and Alfons J. M. Stams3 Correspondence 1Laboratory of Microbiology of Anthropogenic Environments, Institute of Microbiology, Russian Sofia N. Parshina Academy of Sciences, Moscow, Russia [email protected] 2,3Subdepartment of Environmental Technology2 and Laboratory of Microbiology3, Wageningen University, Wageningen, The Netherlands Two anaerobic, benzaldehyde-converting bacteria were isolated from an anaerobic upflow anaerobic sludge bed (UASB)-reactor treating potato starch waste water. Strain BOR-YT converted benzaldehyde to benzoate and benzylalcohol in approximately equimolar concentrations. Benzaldehyde conversion did not support growth. Strain BOR-YT was Gram-positive and rod-shaped, and its cells were slightly thickened in the middle. The strain was a mesophilic spore-former that grew between 15 and 40 6C, with optimum growth at 30–37 6C. The optimum pH for growth was pH 7?0. Strain BOR-YT grew on a wide range of carbohydrates and some other carbon sources including yeast extract, cysteine and serine. The G+C content of its DNA was 42 mol%. According to physiological characteristics and 16S rRNA gene sequence analysis, confirmed by DNA–DNA hybridization with its phylogenetic neighbours, strain BOR-YT belongs to a novel genus of cluster XII of the clostridia, namely Soehngenia; the name Soehngenia saccharolytica is proposed for the type species (type strain BOR-YT=DSM 12858T=ATCC BAA-502T). Strain BR-10T reduced benzaldehyde to benzylalcohol. This conversion was coupled to growth. In a medium containing yeast extract, the presence of benzaldehyde resulted in the accumulation of more than twofold more cells. Strain BR-10T was a Gram-positive organism that was characterized by oval- or rod-shaped cells with oval ends, which occurred singly, in pairs or sometimes in chains. The strain was moderately thermophilic and grew between 20 and 60 6C, with optimum growth at 45 6C. The optimum pH for growth was between pH 7?0 and 7?5. Strain BR-10T grew on a wide range of carbon sources including carbohydrates, yeast extract, casein and some amino acids. The G+C content of its DNA was 32 mol%. As determined by 16S rRNA gene sequence analysis, strain BR-10T represents a novel species of cluster XIVa of the clostridia; the name Clostridium amygdalinum is proposed for this novel species (type strain BR-10T=DSM 12857T=ATCC BAA-501T). INTRODUCTION the aldehyde group of vanillin to the carboxyl level (Lux et al., 1990). Ruminococcus productus (formerly Peptostrep- Many anaerobic bacterial strains are able to convert tococcus productus) reduced the aldehyde group of vanillin aromatic aldehydes to other compounds (Krumholz & when co-cultured with CO but was not capable of this reac- Bryant, 1985; Lux et al., 1990; Sembring & Winter, 1990; tion when vanillin was the sole substrate (Lux et al., 1990). Lux & Drake, 1992; Go¨ßner et al., 1994). Moorella thermo- acetica (formerly Clostridium thermaceticum) (Collins et al., Clostridium aceticum oxidized aromatic aldehydes (Lux 1994) and Clostridium formicaceticum were shown to oxidize & Drake, 1992). A few Desulfovibrio strains oxidized the aldehyde group of vanillin and other aromatic aldehydes The GenBank/EMBL/DDBJ accession numbers for the 16S rDNA with sulfate as an electron acceptor (Zellner et al., 1990). sequences of Soehngenia saccharolytica BOR-YT and Clostridium A limited number of the strains were tested for their amygdalinum BR-10T are AY353956 and AY353957, respectively. ability to convert benzaldehyde. Clostridium acetobutylicum Electron micrographs of Soehngenia saccharolytica BOR-YT (Fig. I) and reduced benzaldehyde, but 10 mM benzaldehyde caused Clostridium amygdalinum BR-10T (Fig. II) are available in IJSEM Online. inhibition of growth. This bacterium required the presence 02668 G 2003 IUMS Printed in Great Britain 1791 S. N. Parshina and others of glucose and butyrate in the medium (Green et al., 1994). et al., 1991). Gram staining was done according to standard procedures Desulfovibrio desulfuricans both oxidized and reduced (Doetsch, 1981). benzaldehyde in the presence of nitrate (Parekh et al., 1996). Analytical methods. Aromatic compounds (benzaldehyde, benzo- ate and benzylalcohol) and volatile fatty acids were analysed as In a previous study (Parshina et al., 2000), the isolation of described previously (Parshina et al., 2000). Organic acids were two bacterial strains able to convert benzaldehyde in the analysed by HPLC (Merck) with an RI-detector. A Polyspher OAHY absence of inorganic electron acceptors was described. The column (300 by 6?5 mm) was used. Hydrogen and carbon dioxide bacteria were isolated from an anaerobic upflow anaerobic were analysed by using a Chrompack gas chromatograph (CP9001) sludge bed (UASB)-reactor treating potato starch waste equipped with a TCD-detector. The stainless steel column was filled water. One bacterium (strain BOR-YT) performs the with Molsieve 13X (60–80 mesh). The TCD-detector run was at 100 uC; argon was used as the carrier gas. Sulfide was analysed by dismutation of benzaldehyde to benzoate and benzylal- the method Tru¨per & Schlegel (1964). cohol. The other bacterium (strain BR-10T) uses benzalde- hyde as an electron acceptor resulting in the formation of Determination of temperature and pH optima. For the deter- mination of temperature optima, strain BOR-YT was cultivated in a benzylalcohol and obtains metabolic energy from this 21 21 21 medium containing 2 g yeast extract l plus 2 g glucose l , and reaction. In a medium containing 1 g yeast extract l , strain BR-10T was cultivated in a medium containing 2 g yeast the addition of 10 mM benzaldehyde resulted in a twofold extract l21 plus 10 mmol crotonate l21. Strain BOR-YT was incu- T higher number of strain BR-10 cells. The mechanisms of bated at 5–52 uC and strain BR-10T was incubated at 10–70 uC. pH benzaldehyde conversion by strains BOR-YT and BR-10T optima were determined by incubating strains BOR-YT and BR-10T have not been described. Therefore, it was expected that at 30 and 45 uC, respectively, at initial pH values ranging from the two strains represented novel micro-organisms. pH 5?0to9?0. The pH was adjusted by adding 6 M HCl or 6 M NaOH. In this report, we describe the phenotypic and phylogenetic Physiological tests. The following substrates were tested as characteristics of the mesophilic bacterium which converts carbon and energy sources (20 mmol l21 each, unless indicated): benzaldehyde to benzoate and benzylalcohol (strain BOR- yeast extract (2 g l21), formate, acetate, propionate, isobutyrate, YT) and of the moderately thermophilic bacterium able glucose, fructose, sucrose, xylose, arabinose, rhamnose, mannose, to reduce benzaldehyde to benzylalcohol (strain BR-10T). ribose, maltose, cellobiose, galactose, melibiose, lactose, cellulose, On the basis of their phenotypic and phylogenetic charac- xylan, mannitol, casitone, inositol, methanol, ethanol, ethylene glycol, ethylamine, lactate, succinate, fumarate, crotonate, pyruvate, teristics, it is proposed that these two bacteria be named malate, starch (2 g l21), glycerol, cysteine, serine, arginine, leucine, Soehngenia saccharolytica and Clostridium amygdalinum, glycine, alanine, glutamate, methionine, casein (2 g l21), casein 21 21 respectively. hydrolysate (2 g l ), peptone (2 g l ), gelatin, betaine, H2/CO2 [80 % : 20 % (v/v) in the gas phase], creatine and creatinine. To investigate the utilization of electron acceptors, strains were culti- METHODS vated in a medium containing 2 g yeast extract l21. The following electron acceptors were tested: Na2SO4 (10 mM), Na2SO3 (2 mM), Organisms and isolation of the strains. An enrichment culture 0 Na2S2O3 (10 mM), Na2S2O4 (10 mM), Na2S2O5 (10 mM), S was obtained from a mesophilic laboratory-scale UASB-reactor treat- (2 g l21) and NaNO (2 g l21). To test the ability of molecular ing potato starch waste water. The isolation of strains BOR-YT and 3 T nitrogen fixation, the medium described by Skinner (1971) was BR-10 from this enrichment has been described previously 21 T T used. Standard medium supplemented with 2 g yeast extract l (Parshina et al., 2000). Clostridium ultunense BS (DSM 10521 ) was plus 10 mM pyruvate flushed with N served as a control. The ¨ 2 kindly provided by Dr Anna Schnurer (Department of Micro- aerotolerance of the strains was determined as described for biology, Swedish University of Agricultural Sciences, P.O. Box 7025, T Clostridium aerotolerans (van Gylswyk & van der Toorn, 1987) in SE-750 07 Uppsala, Sweden); Tissierella creatinini DSM 9508 was the medium supplied with 20 mM glucose. The air was injected into obtained from the DSMZ (Deutsche Sammlung von Mikroorganismen the closed bottles through a membrane filter. The volume of the und Zellkulturen, Braunschweig, Germany). air was 0?5–100 % (v/v). Media and cultivation. Different media were used for cultivation Biochemical tests. Several physiological and biochemical charac- of the isolates and the culture collection strains. A bicarbonate- teristics of the cultures were analysed using API 20 E biochemical phosphate-buffered medium was used. Medium preparation and kits (Identification system for Enterobacteriaceae and other Gram- cultivation of the isolates has been described previously (Parshina negative rods; bioMe´rieux). To test for the presence of catalase, cell et al., 2000). Strain BOR-YT was grown at 30 uC and strain BR-10T material was exposed to 10 % H2O2. was grown at 45 uC. The bacteria were cultivated routinely in 120 ml serum bottles containing 50 ml medium. The amount of inoculum Isolation of genomic DNA. Wet biomass was washed with a solu- used was 1–2 %.
Recommended publications
  • Clostridium Aerotolerans Sp
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1987, p. 102-105 Vol. 37, No. 2 0020-7713/87/020102-04$02.OO/O Copyright 0 1987, International Union of Microbiological Societies Clostridium aerotolerans sp. nov. a Xylanolytic Bacterium from Corn Stover and from the Rumina of Sheep Fed Corn Stover N. 0. VAN GYLSWYK" AND J. J. T. K. VAN DER TOORN Anaerobic Microbiology Division, Laboratory for Molecular and Cell Biology, Onderstepoort 01 10, South Africa Two strains of sporeforming, xylan-digesting, rod-shaped bacteria were isolated from a lo-* dilution of rumen ingesta taken from two sheep fed a corn stover ration. To determine the source of these strains, we examined the corn stover and isolated two strains of similar bacteria from it. The four strains were remarkably tolerant to oxygen although they did not grow in liquid medium that was shaken while exposed to air. They fermented a wide variety of carbon sources and produced formic, acetic, and lactic acids, ethanol, carbon dioxide, and hydrogen from xylan. The deoxyribonucleic acid base composition was 40 mol% guanine plus cytosine. The name proposed for these strains is Clostridiurn aerotolerans; the type strain is strain XSA62 (ATCC 43524). Two strains of sporeforming bacteria were found among a in which glucose (5 g/liter) replaced xylan. Spores were large number of bacteria isolated from colonies that pro- stained with malachite green (10). Motility was determined duced clearing zones in xylan (3%) agar medium inoculated after cells were grown overnight on maintenance slants. with a loh8 dilution of rumen ingesta from sheep fed corn Growth in basal medium containing cellobiose (5 g/liter) stover diets (14) as briefly described by van der Toorn and from which reducing agent (cysteine and sulfide) had been vim Gylswyk (15).
    [Show full text]
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • The Isolation of Novel Lachnospiraceae Strains and the Evaluation of Their Potential Roles in Colonization Resistance Against Clostridium Difficile
    The isolation of novel Lachnospiraceae strains and the evaluation of their potential roles in colonization resistance against Clostridium difficile Diane Yuan Wang Honors Thesis in Biology Department of Ecology and Evolutionary Biology College of Literature, Science, & the Arts University of Michigan, Ann Arbor April 1st, 2014 Sponsor: Vincent B. Young, M.D., Ph.D. Associate Professor of Internal Medicine Associate Professor of Microbiology and Immunology Medical School Co-Sponsor: Aaron A. King, Ph.D. Associate Professor of Ecology & Evolutionary Associate Professor of Mathematics College of Literature, Science, & the Arts Reader: Blaise R. Boles, Ph.D. Assistant Professor of Molecular, Cellular and Developmental Biology College of Literature, Science, & the Arts 1 Table of Contents Abstract 3 Introduction 4 Clostridium difficile 4 Colonization Resistance 5 Lachnospiraceae 6 Objectives 7 Materials & Methods 9 Sample Collection 9 Bacterial Isolation and Selective Growth Conditions 9 Design of Lachnospiraceae 16S rRNA-encoding gene primers 9 DNA extraction and 16S ribosomal rRNA-encoding gene sequencing 10 Phylogenetic analyses 11 Direct inhibition 11 Bile salt hydrolase (BSH) detection 12 PCR assay for bile acid 7α-dehydroxylase detection 12 Tables & Figures Table 1 13 Table 2 15 Table 3 21 Table 4 25 Figure 1 16 Figure 2 19 Figure 3 20 Figure 4 24 Figure 5 26 Results 14 Isolation of novel Lachnospiraceae strains 14 Direct inhibition 17 Bile acid physiology 22 Discussion 27 Acknowledgments 33 References 34 2 Abstract Background: Antibiotic disruption of the gastrointestinal tract’s indigenous microbiota can lead to one of the most common nosocomial infections, Clostridium difficile, which has an annual cost exceeding $4.8 billion dollars.
    [Show full text]
  • Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner
    microorganisms Article Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner Bokyoung Lee 1,2, Jieun Lee 1,2, Min-Yeong Woo 1,2, Mi Jin Lee 1, Ho-Joon Shin 1,2, Kyongmin Kim 1,2 and Sun Park 1,2,* 1 Department of Microbiology, Ajou University School of Medicine, Youngtongku Wonchondong San 5, Suwon 442-749, Korea; [email protected] (B.L.); [email protected] (J.L.); [email protected] (M.-Y.W.); [email protected] (M.J.L.); [email protected] (H.-J.S.); [email protected] (K.K.) 2 Department of Biomedical Sciences, The Graduate School, Ajou University, Youngtongku Wonchondong San 5, Suwon 442-749, Korea * Correspondence: [email protected]; Tel.: +82-31-219-5070 Received: 22 August 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: T cell immunoglobulin and mucin domain-containing protein-3 (Tim-3) is an immune checkpoint molecule and a target for anti-cancer therapy. In this study, we examined whether gut microbiota manipulation altered the anti-tumour efficacy of Tim-3 blockade. The gut microbiota of mice was manipulated through the administration of antibiotics and oral gavage of bacteria. Alterations in the gut microbiome were analysed by 16S rRNA gene sequencing. Gut dysbiosis triggered by antibiotics attenuated the anti-tumour efficacy of Tim-3 blockade in both C57BL/6 and BALB/c mice. Anti-tumour efficacy was restored following oral gavage of faecal bacteria even as antibiotic administration continued. In the case of oral gavage of Enterococcus hirae or Lactobacillus johnsonii, transferred bacterial species and host mouse strain were critical determinants of the anti-tumour efficacy of Tim-3 blockade.
    [Show full text]
  • Detoxification of Lignocellulose-Derived Microbial Inhibitory Compounds by Clostridium Beijerinckii NCIMB 8052 During Acetone-Butanol-Ethanol Fermentation
    Detoxification of Lignocellulose-derived Microbial Inhibitory Compounds by Clostridium beijerinckii NCIMB 8052 during Acetone-Butanol-Ethanol Fermentation DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yan Zhang Graduate Program in Animal Sciences The Ohio State University 2013 Dissertation Committee: Thaddeus C. Ezeji, Advisor Steven C. Loerch Sandra G. Velleman Zhongtang Yu Venkat Gopalan Copyrighted by Yan Zhang 2013 Abstract Pretreatment and hydrolysis of lignocellulosic biomass to fermentable sugars generate a complex mixture of microbial inhibitors such as furan aldehydes (e.g., furfural), which at sublethal concentration in the fermentation medium can be tolerated or detoxified by acetone butanol ethanol (ABE)-producing Clostridium beijerinckii NCIMB 8052. The response of C. beijerinckii to furfural at the molecular level, however, has not been directly studied. Therefore, this study was to elucidate mechanism employed by C. beijerinckii to detoxify lignocellulose-derived microbial inhibitors and use this information to develop inhibitor-tolerant C. beijerinckii. Towards the long-term goal of developing inhibitor-tolerant Clostridium strains, the first objective was to evaluate ABE fermentation by C. beijerinckii using different proportions of Miscanthus giganteus hydrolysates as carbon source. Compared to the growth of C. beijerinckii in control medium, C. beijerinckii experienced different degrees of inhibition. The degree of inhibition was dose-dependent, and C. beijerinckii did not grow in P2 medium with greater than 25% (v/v) Miscanthus giganteus hydrolysates. To improve tolerance of C. beijerinckii to inhibitors, supplementation of P2 medium with undiluted (100%) Miscanthus giganteus hydrolysates with 4 g/L CaCO3 resulted in successful growth of and ABE production by C.
    [Show full text]
  • Hygiene Aspects of the Biogas Process with Emphasis on Spore-Forming Bacteria
    Hygiene Aspects of the Biogas Process with Emphasis on Spore-Forming Bacteria Elisabeth Bagge Department of Bacteriology, National Veterinary Institute and Faculty of Veterinary Medicine and Animal Sciences Department of Biomedical Sciences and Veterinary Public Health Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2009 Acta Universitatis Agriculturae Sueciae 2009:28 Cover: Västerås biogas plant (photo: E. Bagge, November 2006) ISSN 1652-6880 ISBN 978-91-86195-75-5 © 2009 Elisabeth Bagge, Uppsala Print: SLU Service/Repro, Uppsala 2009 Hygiene Aspects of the Biogas Process with Emphasis on Spore-Forming Bacteria Abstract Biogas is a renewable source of energy which can be obtained from processing of biowaste. The digested residues can be used as fertiliser. Biowaste intended for biogas production contains pathogenic micro-organisms. A pre-pasteurisation step at 70°C for 60 min before anaerobic digestion reduces non spore-forming bacteria such as Salmonella spp. To maintain the standard of the digested residues it must be handled in a strictly hygienic manner to avoid recontamination and re-growth of bacteria. The risk of contamination is particularly high when digested residues are transported in the same vehicles as the raw material. However, heat treatment at 70°C for 60 min will not reduce spore-forming bacteria such as Bacillus spp. and Clostridium spp. Spore-forming bacteria, including those that cause serious diseases, can be present in substrate intended for biogas production. The number of species and the quantity of Bacillus spp. and Clostridium spp. in manure, slaughterhouse waste and in samples from different stages during the biogas process were investigated.
    [Show full text]
  • ( 12 ) United States Patent
    US009956282B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,956 , 282 B2 Cook et al. (45 ) Date of Patent: May 1 , 2018 ( 54 ) BACTERIAL COMPOSITIONS AND (58 ) Field of Classification Search METHODS OF USE THEREOF FOR None TREATMENT OF IMMUNE SYSTEM See application file for complete search history . DISORDERS ( 56 ) References Cited (71 ) Applicant : Seres Therapeutics , Inc. , Cambridge , U . S . PATENT DOCUMENTS MA (US ) 3 ,009 , 864 A 11 / 1961 Gordon - Aldterton et al . 3 , 228 , 838 A 1 / 1966 Rinfret (72 ) Inventors : David N . Cook , Brooklyn , NY (US ) ; 3 ,608 ,030 A 11/ 1971 Grant David Arthur Berry , Brookline, MA 4 ,077 , 227 A 3 / 1978 Larson 4 ,205 , 132 A 5 / 1980 Sandine (US ) ; Geoffrey von Maltzahn , Boston , 4 ,655 , 047 A 4 / 1987 Temple MA (US ) ; Matthew R . Henn , 4 ,689 ,226 A 8 / 1987 Nurmi Somerville , MA (US ) ; Han Zhang , 4 ,839 , 281 A 6 / 1989 Gorbach et al. Oakton , VA (US ); Brian Goodman , 5 , 196 , 205 A 3 / 1993 Borody 5 , 425 , 951 A 6 / 1995 Goodrich Boston , MA (US ) 5 ,436 , 002 A 7 / 1995 Payne 5 ,443 , 826 A 8 / 1995 Borody ( 73 ) Assignee : Seres Therapeutics , Inc. , Cambridge , 5 ,599 ,795 A 2 / 1997 McCann 5 . 648 , 206 A 7 / 1997 Goodrich MA (US ) 5 , 951 , 977 A 9 / 1999 Nisbet et al. 5 , 965 , 128 A 10 / 1999 Doyle et al. ( * ) Notice : Subject to any disclaimer , the term of this 6 ,589 , 771 B1 7 /2003 Marshall patent is extended or adjusted under 35 6 , 645 , 530 B1 . 11 /2003 Borody U .
    [Show full text]
  • Phylogenetic Analysis of Butyrivibrio Strains Reveals Three Distinct Groups of Species Within the Clostvidium Subphylum of the Gram-Positive Bacteria
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1996, p. 195-199 Vol. 46, No. 1 0020-7713/96/$04.00+0 Copyright 0 1996, International Union of Microbiological Societies Phylogenetic Analysis of Butyrivibrio Strains Reveals Three Distinct Groups of Species within the Clostvidium Subphylum of the Gram-Positive Bacteria ANNE WILLEMS," MONICA AMAT-MARCO, AND MATTHEW D. COLLINS Department of Microbial Physiology, Institute of Food Research, Reading Laboratoy, Reading RG6 6BZ, United Kingdom The phylogenetic positions of 40 Butyrivibrio strains were determined by performing a comparative sequence analysis of the 165 rRNA genes of these organisms. We found that all of the strains which we studied belong to cluster XIVa (M. D. Collins, P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow, Int. J. Syst. Bacteriol. 442312-826, 1994) of the Clostridium subphylum of the gram-positive bacteria, which also includes several Clostridium, Coprococcus,Eubacterium, and Rumino- coccus species. We also found that the Butyrivibrio strains which we examined were genotypically heterogeneous and exhibited 12 distinct rRNA sequence types. The 12 rRNA sequence types formed three distinct lineages in cluster XIVa, which were separate from each other and from all other species belonging to this cluster. One lineage consisted of strains which exhibited a single rRNA type and corresponded to the species Butyrivibrio crossotus. The second lineage consisted of 12 strains designated Butyrivibrio Jibrisolvens which exhibited seven distinct rRNA sequence types. The type strain of B. Jibrisolvens was a member of this lineage, but its position was peripheral. The third lineage comprised 26 B.
    [Show full text]
  • Mapping the Diversity of Microbial Lignin Catabolism: Experiences from the Elignin Database
    Applied Microbiology and Biotechnology (2019) 103:3979–4002 https://doi.org/10.1007/s00253-019-09692-4 MINI-REVIEW Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database Daniel P. Brink1 & Krithika Ravi2 & Gunnar Lidén2 & Marie F Gorwa-Grauslund1 Received: 22 December 2018 /Revised: 6 February 2019 /Accepted: 9 February 2019 /Published online: 8 April 2019 # The Author(s) 2019 Abstract Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database (www.elignindatabase.com), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings. Keywords Lignin . Database . Aromatic metabolism . Catabolic pathways
    [Show full text]
  • The Effect of Inoculum on the Performance of Sulfatereducing
    ARTICLE IN PRESS WATER RESEARCH 41 (2007) 904– 914 Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/watres The effect of inoculum on the performance of sulfate- reducing columns treating heavy metal contaminated water A. Prudena, N. Messnerb, L. Pereyraa, R.E. Hansona, S.R. Hiibelb, K.F. Reardonb,Ã aDepartment of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA bDepartment of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA article info abstract Article history: Sulfate-reducing permeable reactive zones (SR-PRZs) are a passive means of immobilizing Received 27 April 2006 metals and neutralizing the pH of mine drainage through microbially mediated reactions. Received in revised form In this bench-scale study, the influence of inoculum on the performance of columns 8 November 2006 simulating SR-PRZs was investigated using chemical and biomolecular analyses. Columns Accepted 10 November 2006 inoculated from two sources (bovine dairy manure (DM) and a previous sulfate-reducing Available online 12 January 2007 column (SRC)) and uninoculated columns (U) were fed a simulated mine drainage and Keywords: compared on the basis of pH neutralization and removal of cadmium, zinc, iron, and Mine drainage treatment sulfate. Cadmium, zinc, and sulfate removal was significantly higher in SRC columns than Sulfate-reducing bacteria in the DM and U columns, while there was no significant difference between the DM and U Microbial ecology columns. Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in Molecular biology the microbial community composition among columns with different inocula, and Environmental biotechnology indicated that the microbial community in the SRC columns was the first to reach a pseudo-steady state.
    [Show full text]
  • Neocallimastix Californiae G1 36,250,970 NA 29,649 95.52 85.2 SRX2598479 (3)
    Supplementary material for: Horizontal gene transfer as an indispensable driver for Neocallimastigomycota evolution into a distinct gut-dwelling fungal lineage 1 1 1 2 Chelsea L. Murphy ¶, Noha H. Youssef ¶, Radwa A. Hanafy , MB Couger , Jason E. Stajich3, Y. Wang3, Kristina Baker1, Sumit S. Dagar4, Gareth W. Griffith5, Ibrahim F. Farag1, TM Callaghan6, and Mostafa S. Elshahed1* Table S1. Validation of HGT-identification pipeline using previously published datasets. The frequency of HGT occurrence in the genomes of a filamentous ascomycete and a microsporidian were determined using our pipeline. The results were compared to previously published results. Organism NCBI Assembly Reference Method used Value Value accession number to original in the original reported obtained study study in this study Colletotrichum GCA_000149035.1 (1) Blast and tree 11 11 graminicola building approaches Encephalitozoon GCA_000277815.3 (2) Blast against 12-22 4 hellem custom database, AI score calculation, and tree building Table S2. Results of transcriptomic sequencing. Accession number Genus Species Strain Number of Assembled Predicted peptides % genome Ref. reads transcriptsa (Longest Orfs)b completenessc coveraged (%) Anaeromyces contortus C3G 33,374,692 50,577 22,187 96.55 GGWR00000000 This study Anaeromyces contortus C3J 54,320,879 57,658 26,052 97.24 GGWO00000000 This study Anaeromyces contortus G3G 43,154,980 52,929 21,681 91.38 GGWP00000000 This study Anaeromyces contortus Na 42,857,287 47,378 19,386 93.45 GGWN00000000 This study Anaeromyces contortus O2 60,442,723 62,300 27,322 96.9 GGWQ00000000 This study Anaeromyces robustus S4 21,955,935 NA 17,127 92.41 88.7 SRX3329608 (3) Caecomyces sp.
    [Show full text]
  • Detecting Dipicolinic Acid Production and Biosynthesis Pathways in Bacilli and Clostridia
    bioRxiv preprint doi: https://doi.org/10.1101/803486; this version posted October 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. INVESTIGATIONS Detecting dipicolinic acid production and biosynthesis pathways in Bacilli and Clostridia Benjamin Gordon∗,1, Paul Duellman∗, Anthony Salvucci∗ and Marthah De Lorme∗ ∗Agrinos Global Research & Development Center, Davis, CA 95618 1 2 ABSTRACT Bacterial endospores are highly resistant structures and dipicolinic acid is a key component of KEYWORDS 3 their resilience and stability. Due to the difficulty in controlling endospore contaminants, they are of interest Bacilli 4 in clean rooms, food processing, and production industries, while benefical endospore-formers are sought Clostridia 5 for potential utility. Dipicolinic acid production has traditionally been recognized in Bacilli, Clostridia, and Dipicolinic Acid 6 Paenibacilli. Here, sixty-seven strains of aerobic and anaerobic endospore-forming bacteria belonging to the Endospore 7 genera Bacillus, Brevibacillus, Clostridium, Fontibacillus, Lysinibacillus, Paenibacillus, Rummeliibacillus, and Iron-sulfur flavo- 8 Terribacillus were grown axenically and sporulated biomasses were assayed for dipicolinic acid production protein 9 using fluorimetric detection. Strains testing positive were sequenced and the genomes analyzed to identify 10 dipicolinic acid biosynthesis genes. The well-characterized biosynthesis pathway was conserved in 59 strains 11 of Bacilli and Paenibacilli as well as two strains of Clostridia; six strains of Clostridia lacked homologs to genes 12 recognized as involved in dipicolinic acid biosynthesis.
    [Show full text]