Shifts in Microbiota Species and Fermentation Products in a Dietary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Clostridium Aerotolerans Sp
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1987, p. 102-105 Vol. 37, No. 2 0020-7713/87/020102-04$02.OO/O Copyright 0 1987, International Union of Microbiological Societies Clostridium aerotolerans sp. nov. a Xylanolytic Bacterium from Corn Stover and from the Rumina of Sheep Fed Corn Stover N. 0. VAN GYLSWYK" AND J. J. T. K. VAN DER TOORN Anaerobic Microbiology Division, Laboratory for Molecular and Cell Biology, Onderstepoort 01 10, South Africa Two strains of sporeforming, xylan-digesting, rod-shaped bacteria were isolated from a lo-* dilution of rumen ingesta taken from two sheep fed a corn stover ration. To determine the source of these strains, we examined the corn stover and isolated two strains of similar bacteria from it. The four strains were remarkably tolerant to oxygen although they did not grow in liquid medium that was shaken while exposed to air. They fermented a wide variety of carbon sources and produced formic, acetic, and lactic acids, ethanol, carbon dioxide, and hydrogen from xylan. The deoxyribonucleic acid base composition was 40 mol% guanine plus cytosine. The name proposed for these strains is Clostridiurn aerotolerans; the type strain is strain XSA62 (ATCC 43524). Two strains of sporeforming bacteria were found among a in which glucose (5 g/liter) replaced xylan. Spores were large number of bacteria isolated from colonies that pro- stained with malachite green (10). Motility was determined duced clearing zones in xylan (3%) agar medium inoculated after cells were grown overnight on maintenance slants. with a loh8 dilution of rumen ingesta from sheep fed corn Growth in basal medium containing cellobiose (5 g/liter) stover diets (14) as briefly described by van der Toorn and from which reducing agent (cysteine and sulfide) had been vim Gylswyk (15). -
1587714682 277 2.Pdf
Systematic and Applied Microbiology 42 (2019) 107–116 Contents lists available at ScienceDirect Systematic and Applied Microbiology jou rnal homepage: http://www.elsevier.com/locate/syapm The diverse and extensive plant polysaccharide degradative apparatuses of the rumen and hindgut Prevotella species: A factor in their ubiquity? ∗ Tomazˇ Accetto , Gorazd Avgustinˇ University of Ljubljana, Biotechnical faculty, Animal Science Department, Groblje 3, 1230 Domzale,ˇ Slovenia a r t i c l e i n f o a b s t r a c t Article history: Although the Prevotella are commonly observed in high shares in the mammalian hindgut and rumen Received 2 August 2018 studies using NGS approach, the knowledge on their actual role, though postulated to lie in soluble fibre Received in revised form 2 October 2018 degradation, is scarce. Here we analyse in total 23, more than threefold of hitherto known rumen and Accepted 3 October 2018 hindgut Prevotella species and show that rumen/hindgut Prevotella generally possess extensive reper- toires of polysaccharide utilization loci (PULs) and carbohydrate active enzymes targeting various plant Keywords: polysaccharides. These PUL repertoires separate analysed Prevotella into generalists and specialists yet a Prevotella finer diversity among generalists is evident too, both in range of substrates targeted and in PUL combi- Rumen Hindgut nations targeting the same broad substrate classes. Upon evaluation of the shares of species analysed in this study in rumen metagenomes we found firstly, that they contributed significantly to total Prevotella Polysaccharide utilization locus CAZYme abundance though much of rumen Prevotella diversity may still be unknown. Secondly, the hindgut Pre- Metagenome votella species originally isolated in pigs and humans occasionally dominated among the Prevotella with surprisingly high metagenome read shares and were consistently found in rumen metagenome samples from sites as apart as New Zealand and Scotland. -
Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner
microorganisms Article Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner Bokyoung Lee 1,2, Jieun Lee 1,2, Min-Yeong Woo 1,2, Mi Jin Lee 1, Ho-Joon Shin 1,2, Kyongmin Kim 1,2 and Sun Park 1,2,* 1 Department of Microbiology, Ajou University School of Medicine, Youngtongku Wonchondong San 5, Suwon 442-749, Korea; [email protected] (B.L.); [email protected] (J.L.); [email protected] (M.-Y.W.); [email protected] (M.J.L.); [email protected] (H.-J.S.); [email protected] (K.K.) 2 Department of Biomedical Sciences, The Graduate School, Ajou University, Youngtongku Wonchondong San 5, Suwon 442-749, Korea * Correspondence: [email protected]; Tel.: +82-31-219-5070 Received: 22 August 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: T cell immunoglobulin and mucin domain-containing protein-3 (Tim-3) is an immune checkpoint molecule and a target for anti-cancer therapy. In this study, we examined whether gut microbiota manipulation altered the anti-tumour efficacy of Tim-3 blockade. The gut microbiota of mice was manipulated through the administration of antibiotics and oral gavage of bacteria. Alterations in the gut microbiome were analysed by 16S rRNA gene sequencing. Gut dysbiosis triggered by antibiotics attenuated the anti-tumour efficacy of Tim-3 blockade in both C57BL/6 and BALB/c mice. Anti-tumour efficacy was restored following oral gavage of faecal bacteria even as antibiotic administration continued. In the case of oral gavage of Enterococcus hirae or Lactobacillus johnsonii, transferred bacterial species and host mouse strain were critical determinants of the anti-tumour efficacy of Tim-3 blockade. -
Detoxification of Lignocellulose-Derived Microbial Inhibitory Compounds by Clostridium Beijerinckii NCIMB 8052 During Acetone-Butanol-Ethanol Fermentation
Detoxification of Lignocellulose-derived Microbial Inhibitory Compounds by Clostridium beijerinckii NCIMB 8052 during Acetone-Butanol-Ethanol Fermentation DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yan Zhang Graduate Program in Animal Sciences The Ohio State University 2013 Dissertation Committee: Thaddeus C. Ezeji, Advisor Steven C. Loerch Sandra G. Velleman Zhongtang Yu Venkat Gopalan Copyrighted by Yan Zhang 2013 Abstract Pretreatment and hydrolysis of lignocellulosic biomass to fermentable sugars generate a complex mixture of microbial inhibitors such as furan aldehydes (e.g., furfural), which at sublethal concentration in the fermentation medium can be tolerated or detoxified by acetone butanol ethanol (ABE)-producing Clostridium beijerinckii NCIMB 8052. The response of C. beijerinckii to furfural at the molecular level, however, has not been directly studied. Therefore, this study was to elucidate mechanism employed by C. beijerinckii to detoxify lignocellulose-derived microbial inhibitors and use this information to develop inhibitor-tolerant C. beijerinckii. Towards the long-term goal of developing inhibitor-tolerant Clostridium strains, the first objective was to evaluate ABE fermentation by C. beijerinckii using different proportions of Miscanthus giganteus hydrolysates as carbon source. Compared to the growth of C. beijerinckii in control medium, C. beijerinckii experienced different degrees of inhibition. The degree of inhibition was dose-dependent, and C. beijerinckii did not grow in P2 medium with greater than 25% (v/v) Miscanthus giganteus hydrolysates. To improve tolerance of C. beijerinckii to inhibitors, supplementation of P2 medium with undiluted (100%) Miscanthus giganteus hydrolysates with 4 g/L CaCO3 resulted in successful growth of and ABE production by C. -
Hygiene Aspects of the Biogas Process with Emphasis on Spore-Forming Bacteria
Hygiene Aspects of the Biogas Process with Emphasis on Spore-Forming Bacteria Elisabeth Bagge Department of Bacteriology, National Veterinary Institute and Faculty of Veterinary Medicine and Animal Sciences Department of Biomedical Sciences and Veterinary Public Health Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2009 Acta Universitatis Agriculturae Sueciae 2009:28 Cover: Västerås biogas plant (photo: E. Bagge, November 2006) ISSN 1652-6880 ISBN 978-91-86195-75-5 © 2009 Elisabeth Bagge, Uppsala Print: SLU Service/Repro, Uppsala 2009 Hygiene Aspects of the Biogas Process with Emphasis on Spore-Forming Bacteria Abstract Biogas is a renewable source of energy which can be obtained from processing of biowaste. The digested residues can be used as fertiliser. Biowaste intended for biogas production contains pathogenic micro-organisms. A pre-pasteurisation step at 70°C for 60 min before anaerobic digestion reduces non spore-forming bacteria such as Salmonella spp. To maintain the standard of the digested residues it must be handled in a strictly hygienic manner to avoid recontamination and re-growth of bacteria. The risk of contamination is particularly high when digested residues are transported in the same vehicles as the raw material. However, heat treatment at 70°C for 60 min will not reduce spore-forming bacteria such as Bacillus spp. and Clostridium spp. Spore-forming bacteria, including those that cause serious diseases, can be present in substrate intended for biogas production. The number of species and the quantity of Bacillus spp. and Clostridium spp. in manure, slaughterhouse waste and in samples from different stages during the biogas process were investigated. -
Characterization of Antibiotic Resistance Genes in the Species of the Rumen Microbiota
ARTICLE https://doi.org/10.1038/s41467-019-13118-0 OPEN Characterization of antibiotic resistance genes in the species of the rumen microbiota Yasmin Neves Vieira Sabino1, Mateus Ferreira Santana1, Linda Boniface Oyama2, Fernanda Godoy Santos2, Ana Júlia Silva Moreira1, Sharon Ann Huws2* & Hilário Cuquetto Mantovani 1* Infections caused by multidrug resistant bacteria represent a therapeutic challenge both in clinical settings and in livestock production, but the prevalence of antibiotic resistance genes 1234567890():,; among the species of bacteria that colonize the gastrointestinal tract of ruminants is not well characterized. Here, we investigate the resistome of 435 ruminal microbial genomes in silico and confirm representative phenotypes in vitro. We find a high abundance of genes encoding tetracycline resistance and evidence that the tet(W) gene is under positive selective pres- sure. Our findings reveal that tet(W) is located in a novel integrative and conjugative element in several ruminal bacterial genomes. Analyses of rumen microbial metatranscriptomes confirm the expression of the most abundant antibiotic resistance genes. Our data provide insight into antibiotic resistange gene profiles of the main species of ruminal bacteria and reveal the potential role of mobile genetic elements in shaping the resistome of the rumen microbiome, with implications for human and animal health. 1 Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil. 2 Institute for Global Food Security, School of Biological -
Phylogenetic Analysis of Butyrivibrio Strains Reveals Three Distinct Groups of Species Within the Clostvidium Subphylum of the Gram-Positive Bacteria
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1996, p. 195-199 Vol. 46, No. 1 0020-7713/96/$04.00+0 Copyright 0 1996, International Union of Microbiological Societies Phylogenetic Analysis of Butyrivibrio Strains Reveals Three Distinct Groups of Species within the Clostvidium Subphylum of the Gram-Positive Bacteria ANNE WILLEMS," MONICA AMAT-MARCO, AND MATTHEW D. COLLINS Department of Microbial Physiology, Institute of Food Research, Reading Laboratoy, Reading RG6 6BZ, United Kingdom The phylogenetic positions of 40 Butyrivibrio strains were determined by performing a comparative sequence analysis of the 165 rRNA genes of these organisms. We found that all of the strains which we studied belong to cluster XIVa (M. D. Collins, P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow, Int. J. Syst. Bacteriol. 442312-826, 1994) of the Clostridium subphylum of the gram-positive bacteria, which also includes several Clostridium, Coprococcus,Eubacterium, and Rumino- coccus species. We also found that the Butyrivibrio strains which we examined were genotypically heterogeneous and exhibited 12 distinct rRNA sequence types. The 12 rRNA sequence types formed three distinct lineages in cluster XIVa, which were separate from each other and from all other species belonging to this cluster. One lineage consisted of strains which exhibited a single rRNA type and corresponded to the species Butyrivibrio crossotus. The second lineage consisted of 12 strains designated Butyrivibrio Jibrisolvens which exhibited seven distinct rRNA sequence types. The type strain of B. Jibrisolvens was a member of this lineage, but its position was peripheral. The third lineage comprised 26 B. -
André Luis Alves Neves 6
Elucidating the role of the rumen microbiome in cattle feed efficiency and its 1 potential as a reservoir for novel enzyme discovery 2 3 by 4 5 André Luis Alves Neves 6 7 8 9 10 11 12 A thesis submitted in partial fulfillment of the requirements for the degree of 13 14 15 Doctor of Philosophy 16 17 in 18 19 Animal Science 20 21 22 23 24 25 Department of Agricultural, Food and Nutritional Science 26 University of Alberta 27 28 29 30 31 32 33 34 35 36 37 © André Luis Alves Neves, 2019 38 39 40 Abstract 1 2 The rapid advances in omics technologies have led to a tremendous progress in our 3 understanding of the rumen microbiome and its influence on cattle feed efficiency. 4 However, significant gaps remain in the literature concerning the driving forces that 5 influence the relationship between the rumen microbiota and host individual variation, and 6 how their interactive effects on animal productivity contribute to the identification of cattle 7 with improved feed efficiency. Furthermore, little is known about the impact of mRNA- 8 based metatranscriptomics on the analysis of rumen taxonomic profiles, and a strategy 9 for the discovery of lignocellulolytic enzymes through the targeted functional profiling of 10 carbohydrate-active enzymes (CAZymes) remains to be developed. Study 1 investigated 11 the dynamics of rumen microorganisms in cattle raised under different feeding regimens 12 (forage vs. grain) and studied the relationship among the abundance of these 13 microorganisms, host individuality and the diet. To examine host individual variation in 14 the rumen microbial abundance following dietary switches, hosts were grouped based on 15 the magnitude of microbial population shift using log2-fold change (log2-fc) in the copy 16 numbers of bacteria, archaea, protozoa and fungi. -
Mapping the Diversity of Microbial Lignin Catabolism: Experiences from the Elignin Database
Applied Microbiology and Biotechnology (2019) 103:3979–4002 https://doi.org/10.1007/s00253-019-09692-4 MINI-REVIEW Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database Daniel P. Brink1 & Krithika Ravi2 & Gunnar Lidén2 & Marie F Gorwa-Grauslund1 Received: 22 December 2018 /Revised: 6 February 2019 /Accepted: 9 February 2019 /Published online: 8 April 2019 # The Author(s) 2019 Abstract Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database (www.elignindatabase.com), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings. Keywords Lignin . Database . Aromatic metabolism . Catabolic pathways -
Revisiting the Evolution and Taxonomy of Clostridia, a Phylogenomic Update
GBE Revisiting the Evolution and Taxonomy of Clostridia,a Phylogenomic Update Pablo Cruz-Morales1,3, Camila A. Orellana1,GeorgeMoutafis2, Glenn Moonen2, Gonzalo Rincon2, Lars K. Nielsen1, and Esteban Marcellin1,* 1Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia 2Zoetis, Parkville, Victoria, Australia 3Present address: Joint BioEnergy Institute, Emeryville, CA *Corresponding author: E-mail: [email protected]. Accepted: May 6, 2019 Abstract Clostridium is a large genus of obligate anaerobes belonging to the Firmicutes phylum of bacteria, most of which have a Gram-positive cell wall structure. The genus includes significant human and animal pathogens, causative of potentially deadly diseases such as tetanus and botulism. Despite their relevance and many studies suggesting that they are not a monophyletic group, the taxonomy of the group has largely been neglected. Currently, species belonging to the genus are placed in the unnatural order defined as Clostridiales, which includes the class Clostridia. Here, we used genomic data from 779 strains to study the taxonomy and evolution of the group. This analysis allowed us to 1) confirm that the group is composed of more than one genus, 2) detect major differences between pathogens classified as a single species within the group of authentic Clostridium spp. (sensu stricto), 3) identify inconsistencies between taxonomy and toxin evolution that reflect on the pervasive misclassification of strains, and 4) identify differential traits within central metabolism of members of what has been defined earlier and confirmed by us as cluster I. Our analysis shows that the current taxonomic classification of Clostridium species hinders the prediction of functions and traits, suggests a new classification for this fascinating class of bacteria, and highlights the importance of phylogenomics for taxonomic studies. -
Redalyc.Bacterial Diversity in Bovine Rumen by Metagenomic 16S Rdna
Acta Scientiarum. Animal Sciences ISSN: 1806-2636 [email protected] Universidade Estadual de Maringá Brasil Barbetta de Jesus, Raphael; Pine Omori, Wellington; de Macedo Lemos, Eliana Gertrudes; Marcondes de Souza, Jackson Antônio Bacterial diversity in bovine rumen by metagenomic 16S rDNA sequencing and scanning electron microscopy Acta Scientiarum. Animal Sciences, vol. 37, núm. 3, julio-septiembre, 2015, pp. 251-257 Universidade Estadual de Maringá Maringá, Brasil Available in: http://www.redalyc.org/articulo.oa?id=303141017006 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Acta Scientiarum http://www.uem.br/acta ISSN printed: 1806-2636 ISSN on-line: 1807-8672 Doi: 10.4025/actascianimsci.v37i3.26535 Bacterial diversity in bovine rumen by metagenomic 16S rDNA sequencing and scanning electron microscopy Raphael Barbetta de Jesus1,2, Wellington Pine Omori1,2, Eliana Gertrudes de Macedo Lemos1,3 and Jackson Antônio Marcondes de Souza1,2* 1Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de Acesso Professor Paulo Donato Castellane, s/n, 14884- 900, Jaboticabal, São Paulo, Brazil. 2Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil. 3Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil. *Author for correspondence. E-mail: [email protected] ABSTRACT. The bacterial diversity by 16S rDNA partial sequencing and scanning electron microscope (SEM) of the rumen microbiome was characterized. Three Nellore bovines, cannulated at the rumen, were utilized. -
MICRO-ORGANISMS and RUMINANT DIGESTION: STATE of KNOWLEDGE, TRENDS and FUTURE PROSPECTS Chris Mcsweeney1 and Rod Mackie2
BACKGROUND STUDY PAPER NO. 61 September 2012 E Organización Food and Organisation des Продовольственная и cельскохозяйственная de las Agriculture Nations Unies Naciones Unidas Organization pour организация para la of the l'alimentation Объединенных Alimentación y la United Nations et l'agriculture Наций Agricultura COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE MICRO-ORGANISMS AND RUMINANT DIGESTION: STATE OF KNOWLEDGE, TRENDS AND FUTURE PROSPECTS Chris McSweeney1 and Rod Mackie2 The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO or its Members. 1 Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, 306 Carmody Road, St Lucia Qld 4067, Australia. 2 University of Illinois, Urbana, Illinois, United States of America. This document is printed in limited numbers to minimize the environmental impact of FAO's processes and contribute to climate neutrality. Delegates and observers are kindly requested to bring their copies to meetings and to avoid asking for additional copies. Most FAO meeting documents are available on the Internet at www.fao.org ME992 BACKGROUND STUDY PAPER NO.61 2 Table of Contents Pages I EXECUTIVE SUMMARY .............................................................................................. 5 II INTRODUCTION ............................................................................................................ 7 Scope of the Study ...........................................................................................................