“Child in a Strange Country” Traveling Exhibit Section 4: Scientific Study

Total Page:16

File Type:pdf, Size:1020Kb

“Child in a Strange Country” Traveling Exhibit Section 4: Scientific Study American Printing House for the Blind “Child in a Strange Country” Traveling Exhibit Section 4: Scientifi c Study Graphic Proofs Submittal 09.05.12 11-261 American Printing House for the Blind – Traveling Exhibit Graphic Elevation Not to Scale Final Size: Size: Final Description:SectionGraphic 4:Scientifi Exhibit Traveling theBlind – Housefor Printing 11-261 American 35.4375” x78” 35.4375” Scientifi c Study Study c Much of Helen Keller’s initial science education Boston, where blind students used the most was experiential. In Tuscumbia, she explored modern scientifi c teaching tools. She explored the natural world by touch, with her teacher stuffed animals, seashells, and models of encouraging her curiosity. The garden, a fl owers and plants. She also learned by fi shbowl fi lled with tadpoles, and a table using a popular series of tactile pictures of of seashells were her laboratory. animals and plants created by Martin Kunz In October 1889, Helen sat in on classes in (1847-1923), director of a school for the blind zoology and botany at the Perkins School in in Illzach, Germany. “We chase butterfl ies, and sometimes we catch one. Then we sit down under a tree, or in the shade of a bush, and talk about it. Afterwards, if it has survived the lesson, we let it go; but usually its life and beauty are sacrifi ced on the altar of learning.” — Anne Sullivan, 1887 FPO Photo courtesy New England Historic Genealogical Society Revised Scienti — 09-05-12 11-261 Schultz ExhibitConcept “Child inaStrange Country” Traveling American PrintingHousefortheBlind fi c Study Graphic Proof Package 03 c Study GraphicProof SC.01 – Intro Final Size: Size: Final Description:SectionGraphic 4:Scientifi Exhibit Traveling theBlind – Housefor Printing 11-261 American 35.4375” x78” 35.4375” Exploring the Natural World c Study c Whenever possible, science teachers introduced their students who were blind to natural specimens they could explore by touch. Some schools collected a “museum” of study specimens, supplemented by scale models of objects that were very large or very small. Buildings, furniture, and large animals were modeled in miniature, while microscopic structures such as the atom became hand-sized models. Even the human body was reproduced, in parts and whole, as tactile models for detailed study. “We must realize that the degree of pupil comprehension ... is directly proportional to the contact experience with the subject studied. The experience may be direct or indirect and vary in intensity; but it must be present! Most of the public school experience is visual; Exploring Models of a Hippopotamus, 1914 Museums such as the American Museum of Natural History ours must be tactual and auditory. in New York City sometimes made their collections available in special programs for blind children. ” — William T. Heisler, Science Teacher, Overbrook School for the Blind Photo courtesy of the American Museum of Natural History SC_A03 SC_A02 (Lizard Plaque) (Elephant) Lizard Plaque Lizard plaque, copper-plated metal embossed zoology illustration from the Press of the Imperial and Royal Court and State, Vienna, Austria, mid-1800s. On loan from the Perkins School for the Blind. Original Kunz tactile illustration of elephant Indian Elephant, from Pictures for the Blind series by Martin Kunz, Illzach, Germany, SC_A05 ca. 1890. Museum Collection Tabletop SC_A01 Tabletop (Starfi sh/replacesSC_A09 Tabletop Gears) (Leaves) (Natural Specimens - sizes vary) Revised Scienti — 09-05-12 11-261 Schultz ExhibitConcept “Child inaStrange Country” Traveling American PrintingHousefortheBlind fi c Study Graphic Proof Package 03 c Study GraphicProof SC.02 – Inter Final Size: Size: Final Description:SectionGraphic 4:Scientifi Exhibit Traveling theBlind – Housefor Printing 11-261 American 35.4375” x78” 35.4375” Human Anatomy c Study c “[A] model of the eye, showing every part of its delicate mechanism, [is] constructed in so substantial a manner that every portion can be examined by touch…. The design of these ‘object lessons’ is to make tangible things that are visible to the seeing… but in the education of the blind they are peculiarly useful.” — B. B. Huntoon, Director, Kentucky Institute for the Blind, 25th report (1872) To study anatomy, blind students in the 19th century examined anatomical models of body parts such as made by a French physician, Louis Thomas Jerôme Auzoux, of papier-mâché. In 1827, Dr. Auzoux opened a factory to manufacture models sold to schools all over the world. Dr. Louis Thomas Jerôme Auzoux 1920s model of a human eye Students explored the human body using tactile models. This papier-mâché model of the human eye was produced in the 1920s, probably using Auzoux molds. Image courtesy of the Moosnick Medical and Science Museum, Transylvania University, Lexington, KY. SC_A07 SC_A06 SC_A08 Revised Scienti — 09-05-12 11-261 Schultz ExhibitConcept “Child inaStrange Country” Traveling American PrintingHousefortheBlind fi c Study Graphic Proof Package 03 c Study GraphicProof SC.03 Final Size: Size: Final Description:SectionGraphic 4:Scientifi Exhibit Traveling theBlind – Housefor Printing 11-261 American 35.4375” x78” 35.4375” Natural Philosophy c Study c When Helen Keller was young, scientifi c subjects In the early days of scientifi c exploration, illustrated were taught within a very broad area called lectures and demonstrations of physical effects or philosophy. A student of the sciences was called “phenomena” became popular not only in university a natural philosopher. Laboratory tools were classes, but also as public entertainment in lecture known as philosophical apparatus. Students halls. Gradually, lecture apparatus began to be used used philosophical apparatus to study such for teaching science at the pre-university level. topics as mechanics, magnetism, astronomy, Because of their physical, tactile nature, most types hydrostatics and hydraulics, pneumatics, heat, of philosophical apparatus could be used without optics and electricity. adaptation in classes for students who were blind. A “philosophical apparatus” for studying the solar system. Photo courtesy of the American Museum of Natural History Magdeburg Hemispheres For example, blind and sighted students alike explored the power of atmospheric pressure by using Magdeburg hemispheres (named for SC_A04 Magdeburg, Germany, their place of origin). Students used a vacuum pump to draw air out from a pair of sealed hemispheres – and then tried, unsuccessfully, to pull the hemispheres (Magdeburg Hemispheres apart. Inventor Otto von Guericke (1602-1686) demonstrated his apparatus before Emperor Ferdinand III, and it is said that the vacuum seal - displayed in box) was so strong that two teams of eight horses could not pull it apart! Otto von Guericke’s experiment with atmospheric pressure Revised Scienti — 09-05-12 11-261 Schultz ExhibitConcept “Child inaStrange Country” Traveling American PrintingHousefortheBlind fi c Study Graphic Proof Package 03 c Study GraphicProof SC.04 – Flip/Inter Final Size: Size: Final Description:SectionGraphic 4:Scientifi Exhibit Traveling theBlind – Housefor Printing 11-261 American 35.4375” x78” 35.4375” Chemistry & Physics c Study c Chemistry and Physics were essential parts of the classic high school education in the early residential schools for blind students. Although heavily supervised, as early as the 1860s blind children used the same test tubes, beakers, alcohol lamps, and other equipment used by sighted students for their lab work. Some schools had fully equipped laboratories where each child had their own lab ware, others only a few pieces of carefully protected apparatus. Models developed later for the study of organic chemistry worked equally well for blind and sighted alike. Advanced study, however, was diffi cult until Abraham Nemeth introduced his braille code for scientifi c equations and symbols in 1952. Tactile Chemistry lab thermometers, balance scales, and other tools became available for classroom work in the 1970s. SC_A12 (1/3 Section - Periodic Table) Azer’s Interactive Periodic Table Azer’s Interactive Periodic Table This kit from the American Printing House for the Blind features tactile chemical symbols on a Velcro board and models to diagram the parts of an atom This kit from the American Printing House for the Blind features tactile chemical symbols on a Velcro board and models to diagram the parts of an atom. Revised Scienti — 09-05-12 11-261 Schultz ExhibitConcept “Child inaStrange Country” Traveling American PrintingHousefortheBlind fi c Study Graphic Proof Package 03 c Study GraphicProof SC.05 11-261 American Printing House for the Blind – Traveling Exhibit Graphic Description: Section 4: Scientifi c Study Final Size: 35.4375” x 78” for Special Eduacation, ca. 1945. ca. Eduacation, Special for SC_A10 Science Students Using Braille Textbooks at the New York Institution York at the New Textbooks Braille Using Students Science Using a modern “Sense of Science” kit from the from kit Science” of “Sense a modern Using the Blind. for House Printing American SC_A11 (SOS Packets) SC_A10 Exploring a Science Measurements Kit, Kentucky School for the Blind, ca. 1975. the Blind, ca. for School Kentucky Kit, Measurements a Science Exploring SC.06 – Table/Inter SC.06 – American Printing House for the Blind “Child in a Strange Country” Traveling Exhibit Concept Schultz 11-261 09-05-12 — Revised Scientifi c Study Graphic Proof Package 03 11-261 American Printing House for the Blind – Traveling Exhibit Graphic Description: Section 4: Scientifi c Study - Informational Graphic
Recommended publications
  • 1 the History of Vacuum Science and Vacuum Technology
    1 1 The History of Vacuum Science and Vacuum Technology The Greek philosopher Democritus (circa 460 to 375 B.C.), Fig. 1.1, assumed that the world would be made up of many small and undividable particles that he called atoms (atomos, Greek: undividable). In between the atoms, Democritus presumed empty space (a kind of micro-vacuum) through which the atoms moved according to the general laws of mechanics. Variations in shape, orientation, and arrangement of the atoms would cause variations of macroscopic objects. Acknowledging this philosophy, Democritus,together with his teacher Leucippus, may be considered as the inventors of the concept of vacuum. For them, the empty space was the precondition for the variety of our world, since it allowed the atoms to move about and arrange themselves freely. Our modern view of physics corresponds very closely to this idea of Democritus. However, his philosophy did not dominate the way of thinking until the 16th century. It was Aristotle’s (384 to 322 B.C.) philosophy, which prevailed throughout theMiddleAgesanduntilthebeginning of modern times. In his book Physica [1], around 330 B.C., Aristotle denied the existence of an empty space. Where there is nothing, space could not be defined. For this reason no vacuum (Latin: empty space, emptiness) could exist in nature. According to his philosophy, nature consisted of water, earth, air, and fire. The lightest of these four elements, fire, is directed upwards, the heaviest, earth, downwards. Additionally, nature would forbid vacuum since neither up nor down could be defined within it. Around 1300, the medieval scholastics began to speak of a horror vacui, meaning nature’s fear of vacuum.
    [Show full text]
  • Companion to "Physics of Gases and Phenomena of Heat"
    A Companion to „Physics of gases and the phenomena of heat” Slides 2–13 - discovery of the atmospheric pressure. In 1644 the Italian mathematician Evangelista Torricelli, who was a student of Galileo, performed his famous experiment with a tube filled with mercury (called quicksilver at that time). However, he described it only in a private letter to his friend Michelangelo Ricci. Because of that information of Torricelli’s results was very slowly disseminated throughout Europe. In July 1647 similar experiment was performed independently in Warsaw by Valeriano Magni, an Italian monk and scholar who was in the service of the king of Poland. The small brochure with the description of the experiment which Magni published in Warsaw in September of the same year was the first publication on the subject (see Slide 3, lower left picture). Torricelli suspected that the weight of the mercury column in his tube was balanced by the pressure of air in our atmosphere. However, a convincing experimental proof of that hypothesis was needed. French scholar Blaise Pascal planned the experiment (Slides 5-6), which was performed by his brother-in-law Florin Périer (Slides 7-11). One must admire care with which Périer did his task: he prepared two identical tubes with mercury, left one set in the town, and took the second set to performe multiple measurements during climbing the mountain Puy-de-Dôme near Clermont. One must also admire the excitation of experimenters when they had seen changes of the height of mercury column with the elevation. Having learned from Périer about the extent of the effect Pascal was able to repeat it in Paris.
    [Show full text]
  • Introduction to the Principles of Vacuum Physics
    1 INTRODUCTION TO THE PRINCIPLES OF VACUUM PHYSICS Niels Marquardt Institute for Accelerator Physics and Synchrotron Radiation, University of Dortmund, 44221 Dortmund, Germany Abstract Vacuum physics is the necessary condition for scientific research and modern high technology. In this introduction to the physics and technology of vacuum the basic concepts of a gas composed of atoms and molecules are presented. These gas particles are contained in a partially empty volume forming the vacuum. The fundamentals of vacuum, molecular density, pressure, velocity distribution, mean free path, particle velocity, conductivity, temperature and gas flow are discussed. 1. INTRODUCTION — DEFINITION, HISTORY AND APPLICATIONS OF VACUUM The word "vacuum" comes from the Latin "vacua", which means "empty". However, there does not exist a totally empty space in nature, there is no "ideal vacuum". Vacuum is only a partially empty space, where some of the air and other gases have been removed from a gas containing volume ("gas" comes from the Greek word "chaos" = infinite, empty space). In other words, vacuum means any volume containing less gas particles, atoms and molecules (a lower particle density and gas pressure), than there are in the surrounding outside atmosphere. Accordingly, vacuum is the gaseous environment at pressures below atmosphere. Since the times of the famous Greek philosophers, Demokritos (460-370 B.C.) and his teacher Leukippos (5th century B.C.), one is discussing the concept of vacuum and is speculating whether there might exist an absolutely empty space, in contrast to the matter of countless numbers of indivisible atoms forming the universe. It was Aristotle (384-322 B.C.), who claimed that nature is afraid of total emptiness and that there is an insurmountable "horror vacui".
    [Show full text]
  • CEU Department of Medieval Studies
    ANNUAL OF MEDIEVAL STUDIES AT CEU VOL. 17 2011 Edited by Alice M. Choyke and Daniel Ziemann Central European University Budapest Department of Medieval Studies All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the permission of the publisher. Editorial Board Niels Gaul, Gerhard Jaritz, György Geréby, Gábor Klaniczay, József Laszlovszky, Marianne Sághy, Katalin Szende Editors Alice M. Choyke and Daniel Ziemann Technical Advisor Annabella Pál Cover Illustration Beltbuckle from Kígyóspuszta (with kind permission of the Hungarian National Museum, Budapest) Department of Medieval Studies Central European University H-1051 Budapest, Nádor u. 9., Hungary Postal address: H-1245 Budapest 5, P.O. Box 1082 E-mail: [email protected] Net: http://medievalstudies.ceu.hu Copies can be ordered at the Department, and from the CEU Press http://www.ceupress.com/order.html ISSN 1219-0616 Non-discrimination policy: CEU does not discriminate on the basis of—including, but not limited to—race, color, national or ethnic origin, religion, gender or sexual orientation in administering its educational policies, admissions policies, scholarship and loan programs, and athletic and other school-administered programs. © Central European University Produced by Archaeolingua Foundation & Publishing House TABLE OF CONTENTS Editors’ Preface ............................................................................................................ 5 I. ARTICLES AND STUDIES ..........................................................
    [Show full text]
  • History of Thermodynamics Consequences of the Laws Of
    International Journal of Pure and Applied Mathematics Volume 119 No. 12 2018, 1675-1683 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu CONCEPTS OF THERMODYNAMICS Dr.N.Selvi1, Dr. P.Sugumar2 Associate Professor 1 2 Department of Physics, BIST, BIHER, Bharath University, Chennai. [email protected] The branch of science called thermodynamics deals with systems that are able to transfer thermal energy into at least one other form of energy (mechanical, electrical, etc.) or into work. The laws of thermodynamics were developed over the years as some of the most fundamental rules which are followed when a thermodynamic system goes through some sort of energy change. History of Thermodynamics The history of thermodynamics begins with Otto von Guericke who, in 1650, built the world's first vacuum pump and demonstrated a vacuum using his Magdeburg hemispheres[1-6]. Guericke was driven to make a vacuum to disprove Aristotle's long-held supposition that 'nature abhors a vacuum'. Shortly after Guericke, the English physicist and chemist Robert Boyle had learned of Guericke's designs and, in 1656[7-13], in coordination with English scientist Robert Hooke, built an air pump. Using this pump, Boyle and Hooke noticed a correlation between pressure, temperature, and volume[14-19]. In time, Boyle's Law was formulated, which states that pressure and volume are inversely proportional. Consequences of the Laws of Thermodynamics The laws of thermodynamics tend to be fairly easy to state and understand ... so much so that it's easy to underestimate the impact they have[20-25].
    [Show full text]
  • Vacuum in the 17Th Century and Onward the Beginning of Experimental Sciences Donald M
    HISTORY CORNER A SHORT HISTORY: VACUUM IN THE 17TH CENTURY AND ONWARD THE BEGINNING OF Experimental SCIENCES Donald M. Mattox, Management Plus Inc., Albuquerque, N.M. acuum as defined as a space with nothing in it (“perfect Early Vacuum Equipment vacuum”) was debated by the early Greek philosophers. The early period of vacuum technology may be taken as the V The saying “Nature abhors a vacuum” (horror vacui) is gener- 1640s to the 1850s. In the 1850s, invention of the platinum- ally attributed to Aristotle (Athens ~350 BC). Aristotle argued to-metal seal and improved vacuum pumping technology al- that vacuum was logically impossible. Plato (Aristotle’s teach- lowed the beginning of widespread studies of glow discharges er) argued against there being such a thing as a vacuum since using “Geissler tubes”[6]. Invention of the incandescent lamp “nothing” cannot be said to exist. Hero (Heron) of Alexandria in the 1850s provided the incentive for development of indus- (Roman Egypt) attempted using experimental techniques to trial scale vacuum technology[7]. create a vacuum (~50 AD) but his attempts failed although he did invent the first steam engine (“Heron’s steam engine”) and Single-stroke Mercury-piston Vacuum Pump “Heron’s fountain,” often used in teaching hydraulics. Hero It was the latter part of 1641 that Gasparo Berti demonstrated wrote extensively about siphons in his book Pneumatica and his water manometer, which consisted of a lead pipe about 10 noted that there was a maximum height to which a siphon can meters tall with a glass flask cemented to the top of the pipe “lift” water.
    [Show full text]
  • Robert Boyle 1627—1691
    History 2-p1-53-cc2015.indd 1 17-1-11 22:23 2 History Robert Boyle 1627—1691 2-p1-53-cc2015.indd 2 17-1-11 22:23 Robert Boyle 3 Robert Boyle 1627—1691 Robert Boyle was born on January 1st, 1627 in Waterford, Ireland. He emphasized on the importance of conducting experiments in scientific research and was a sci- entist with outstanding experimental skills. He optimized many scientific instru- ments and made contributions to many areas of research. Boyle is regarded as the founder of modern chemistry. He considered chemistry as a physical science, not just a practical art or mysterious alchemy, although he was a believer in alchemy. Through experiments, he proved that the ancient Greek theory of four elements was invalid, and proposed a concept of elements close to the one we have today. He believed that all matters were composed of minute particles and the universe worked like a sophisticated machine. His thoughts deeply influenced many scien- tists including Newton. Boyle died on December 31st, 1691 (aged 64) in London, England. The main scientific contributions of Boyle are: l Discovery of Boyle’s Law (at constant temperature, the absolute pressure and the volume of a fixed amount of gas are inversely proportional). l Design of a new vacuum pump and conducted experiments inside vacuum, and finding that in vacuum sound could not transmit and a candle could not burn. l Preliminary explanation to combustion and metal calcination. l Emphasis on the importance of chemical analysis, invention of experimental methods to identify chemicals and measure purity, the use of vegetable colors to identify acid and base.
    [Show full text]
  • The Steam Engine in England and France
    Master’s Thesis 2016 30 ECTS School of Economics and Business The spark that ignited the Industrial Revolution An examination of the institutions surrounding the development of the steam engine in England and France Joshua Bragg Development and Natural Resource Economics Contents Preface and Acknowledgements ............................................................................................................. 1 Introduction ............................................................................................................................................. 3 Research Questions ............................................................................................................................. 5 Why did England dominate steam engine development and not France? ..................................... 6 Journey into Great Economic Mysteries ............................................................................................. 6 Background .............................................................................................................................................. 8 Energy Canyons ................................................................................................................................... 8 The Sources of Economic Growth ....................................................................................................... 8 The Mystery of Economic Growth ..................................................................................................... 10 Endogenous Growth
    [Show full text]
  • Magdeburg Hemispheres
    MAGDEBURG HEMISPHERES MGH001 1 2 3 4 Figure 1 5 DESCRIPTION The Magdeburg Hemispheres consist of a pair of matching cast iron hemispheres (1,2, Figure 1) with their mating surfaces ground flat to fit each other closely. Two handles (3,4) are attached to the hemispheres, and a valve (5) with a hose barb is fitted to one hemisphere. When the hemispheres are fitted together, they form an airtight sphere. With an air pump attached to the hose barb, the air can be removed from the sphere. Air pressure from the outside then prevents the hemispheres from being pulled apart, even when a large force is applied. This demonstrates the forces that can be generated by air pressure. HISTORICAL BACKGROUND During the 17th century, many scientists became interested in the properties of air. An Italian investigator, Evangelista Torricelli, showed that the normal pressure of the air can only support a column of mercury about 76cm high. If the tube containing the mercury is longer than that, there is a vacuum above the mercury. This work inspired the mayor of the German city of Magdeburg, Otto von Guericke, to design an air pump that could produce a vacuum in any container. It was ready in 1650, and now von Guericke needed a device to demonstrate the power of his pump. He designed a large pair of copper hemispheres (about 50 cm in diameter) that fitted together so that he could use his pump to create a vacuum inside. Then he would see if two teams of horses Von Guericke’s original could pull the hemispheres apart.
    [Show full text]
  • Magdeburg Hemispheres
    ©2009 - v 5/15 ______________________________________________________________________________________________________________________________________________________________________ 611-2325 (35-070) Magdeburg Hemispheres Introduction: At sea level, the pressure of Earth’s atmosphere on the surface is 101.325 kPa, or 14.96 pounds per square inch. This is called air pressure. While we don’t notice this force because our bodies are accustomed to it, it can be used in a variety of ways. One way is the Magdeburg Hemispheres. In 1650, the mayor of the German city of Magdeburg, Otto von Guericke demonstrated his innvention for the German emperor. It consisted of two twenty inch iron hemispheres which were designed to mate together. A small valve allowed a vacuum pump of Guericke’s design to remove the air. Thirty horses in two teams of 15 were put in in opposite directions and tried to pull the hemispheres apart. They were unsucessful. The secret behind the strength of the Magdeburg Hemispheres is the concept of air pressure. Every square inch of them is subjected to 15 pounds of force. Under normal conditions this has no effect. However, nature abhors a vacuum, and air will attempt to fill one if possible. When a vacuum is produced inside the hemispheres, air pressure presses against them, attempting to fill the vacuum. Essentially, 15 pounds of force is placed on every square inch of the two hemispheres, which can quickly add up. This makes it very difficult to pull the hemispheres apart. Operation: to use your Magdeburg Hemispheres, you will need a vacuum pump. A more powerful pump produces better results, because more air is removed, resulting in a harder vacuum.
    [Show full text]
  • Teaching Science Using Stories: the Storyline Approach
    Teaching Science Using Stories: The Storyline Approach by Aaron D. Isabelfe A story provides the missing link that makes learning meaningful—Kif ran Egan torytellinK is an agoold and poweiiul means pf coniniunication lliat ciui be used as an effec- tive teachin^r strategy in tlie science classroom. listening to a story involves imagination, acti- vation of prior exf>eriences. knowledge, and imagery. A conimnnity of learners, characterized S by inquiry and discovery, can be uiitiated tlirough the process of storytelling. The Storyline Approach is an inquiry-based teaching method based upon a strategy first in- troduced by Kieran Egan (1986). Tiie story structure can provide students with a framework for concept formation and for the retention of the concept. The main cha^^ters of these stories are not fictitious; rather, the history of science is overflowmg with sdeSnsts, philosophers, math- 16 SCIENCE SCOPE ematicians, and inventors from diverse backgrounds In the context of the Storyline Approach, this initial who each have their own story to tell. In this article. I stimulus should be directly related to the concept that describe my experiences implementing the Storyline will be explored in the story and should be something Approach in the context of teaching the concept of air that students are familiar with. Eor example, as part of a preactivity reflection for learning about the concept of pressure to seventh- and eighth-grade students. I also air pressure, I give each student a set of suction cups offer story-shaping strategies and history-of-science in a cooperative group setting and offer the following resources to assist in the creation of your own story.
    [Show full text]
  • Welcomes You
    Magdeburg, the Capital City of Saxony-Anhalt WITH THEIR HEART, SOUL THE CAPITAL CITY OF PARKS TRAVEL TITBITS BLUE GOLD AND MIND Plenty of space for FROM MAGDEBURG The river Elbe as a bringer of Emperor Otto the Great and the adventures, fun Personal travel reports – prosperity and a haven of the Magdeburg Virgin are alive! and learning recorded in words and pictures Hanseatic city Page 4 Page 11 Page 14 Page 18 otto welcomes you Historic tales and modern stories from Magdeburg, the City of Otto WE ARE HAPPY TO HELP. CONTACT US TODAY! Marketing Tourist Information Conference Office Domplatz 1b Breiter Weg 22 Domplatz 1b 39104 Magdeburg, Germany 39104 Magdeburg, Germany 39104 Magdeburg, Germany Tel. + 49 391 8380321 Tel. + 49 391 63601402 Tel. + 49 391 8380-133/-134 Fax + 49 391 8380397 Fax + 49 391 63601430 Fax + 49 391 8380397 [email protected] [email protected] [email protected] www.magdeburg-tourist.de www.magdeburg-tourist.de www.magdeburg-kongress.de INFORMATION Tel. + 49 391 8380402 SOUVENIRS Tel. + 49 391 8380403 ACCOMMODATION SERVICE Tel. + 49 391 8380404 CITY TOURS Tel. + 49 391 8380-401/-408 Fax + 49 391 8380430 PUBLICATION DETAILS PUBLISHER: Magdeburg Marketing Kongress und Tourismus GmbH, Chairman of the Supervisory Board: Rainer Nitsche, Managing Director: Sandra Yvonne Stieger, Domplatz 1b, 39104 Magdeburg, Germany, tel.: +49 391 8380321, fax: +49 391 8380397, [email protected], www.magdeburg-tourist.de PICTURE CREDITS: Cover image: Candy Szengel Inside pages: www.Andreaslander.de
    [Show full text]