Teaching Science Using Stories: the Storyline Approach

Total Page:16

File Type:pdf, Size:1020Kb

Teaching Science Using Stories: the Storyline Approach Teaching Science Using Stories: The Storyline Approach by Aaron D. Isabelfe A story provides the missing link that makes learning meaningful—Kif ran Egan torytellinK is an agoold and poweiiul means pf coniniunication lliat ciui be used as an effec- tive teachin^r strategy in tlie science classroom. listening to a story involves imagination, acti- vation of prior exf>eriences. knowledge, and imagery. A conimnnity of learners, characterized S by inquiry and discovery, can be uiitiated tlirough the process of storytelling. The Storyline Approach is an inquiry-based teaching method based upon a strategy first in- troduced by Kieran Egan (1986). Tiie story structure can provide students with a framework for concept formation and for the retention of the concept. The main cha^^ters of these stories are not fictitious; rather, the history of science is overflowmg with sdeSnsts, philosophers, math- 16 SCIENCE SCOPE ematicians, and inventors from diverse backgrounds In the context of the Storyline Approach, this initial who each have their own story to tell. In this article. I stimulus should be directly related to the concept that describe my experiences implementing the Storyline will be explored in the story and should be something Approach in the context of teaching the concept of air that students are familiar with. Eor example, as part of a preactivity reflection for learning about the concept of pressure to seventh- and eighth-grade students. I also air pressure, I give each student a set of suction cups offer story-shaping strategies and history-of-science in a cooperative group setting and offer the following resources to assist in the creation of your own story. directions: Narrative and the history of science Push the suction cups tightly together. In your co- The use of narrative in science education has been operative group, discus^ what is going on. Write the focus of increasing attention in recent years (Egan your explanation in two or three sentences, or 2003; Groce 2004; Hadzigeorgiou 2006; Wieder 2006). draw a pictin-e to help convey your ideas. Although researchers view narrative and its structure from different perspectives, there is agi^eement that After a brief discussion fueled by students' thinking. narrative reflects a very basic, yet powerful, form of 1 transition to the Explore phase by stating. "Before we communication. For example, oral cultures have ex- continue our discussion about why the suction cups ploited, and continue to exploit, the sequential structure stay tightly together, T'd first like to read you a story of narrative to aid memory; narrative plays a critical that may help you in your thinking." I read the story role in teaching children and in maintaining culture. that I created, "Under Pressure" (see Figure I). (Note: A historical presentation of science provides oppor- I distribute a copy of the story to each student, which tunities for students to "appreciate that scientific and is' especially helpful for visual learners.) Wlijle read: mathematical progress does not amount simply to a ing about Otto von Guericke's experiment. I use air series of incidental discoveries, but that the growth of overhead projector to display the well-known drawing science and math is chai"acterLzed by feats of Imagina- of the Magdeburg hemispheres experiment (see wwii>. tion and creativity" (Irwin 2000, p. 5). The history of scienceandsociety.co.uk; search under "Magdeburg"). science is "full of accidents and conjunctures and curi- I find that showing this image not only helps to give ous juxtapositions of eveats, and it demonstrates to us students a much better impression of this historical the complexity of human change and the unpredictable event, but it is also an appropriate context to integrate a character of the ultimate consequences of any given act historical document. The drawing is used to hel]) create or decision" (Feyerabend 1988, p. 9). The aini of the a visual context for the story itself, rather than a way to Storyline Approach is to draw upon these dramatic epi- compare the hemispheres and the suction cups. Tlie sodes, amazing discoveries, ancl intriguing characters teacher guides students in making a direct comparison in the history of science as the basis for interesting sto- between the hemispheres and the suction cups durinjj rylines, 'lliis approach can motivate students and give the Summarize phase, after the story is read. them immediate access to the science topic by human- izing the subject matter (Egan 1997, p. 51). After reading tbe story. I discuss with students what is factual and what is not. As it is not my intention to distort students' views of history or any of the figures impiementing the in the history of science, I place a special emphasis on Storyiine Approach the historically accurate components of the story. By employing the Launch, Explore, Summarize (LES) I then transition to the Summarize phase by revisit- instructional model, the Storyline Approach takes on ing the stimulus provided during the launch phase and an inquiry-based structure for the exploration of a sci- make explicit connections to the ideas presentetl in the ence concept (Burns 2000). (Note: Tlie LES methodol- story. I ask students, "Wliat is the connection between ogy is an analogous, condensed version of the Five Es the suction cups and the Magdeburg hemispheres? instructional model.) How are they different? How are they similar?" To make In the Launch phase of the LES method, the teacher this comparison more concrete, I introduce a smaller typically uses probing questions to activate and elicit model of the Magdeberg hemispheres that is approxi- students' prior knowledge about the concept under mately 6 inches (15 cm) in diamettr (Note: Magdeberg investigation. This can alfeo be done by stimulating hemispheres can be obtained from most science supply students' thinking by offering physical objects to ma- companies for approximately $30.) The science content nipulate or a visual display to capture their attention. conveyed tlirough the story assists students in formulat- TEACHING SCIENCE USING STORIES FiGURE 1 Under Pressure story There were only a couple days left until election day and The people wanted someone on the platform as fired up the two candidates for mayor were preparing for the last and loud as they were. big debate. The people of the town of Magdeburg, a Hans quietly and calmly said. "I want to give this town a small town in Germany, were all taking this election very good name as much as you do. So,! have a plan to clean seriously. There were a lot of serious issues at hand, like job up this town. Magdeburg will be known as "The Cleanest opportunities and health care. But above all of the problems Town in Germany..." to be discussed, the people of Magdeburg wanted one Someone at the back of the crowd interrupted Hans and problem solved more than any other: They wanted their shouted, "Speak up. Hans! We can't hear a word you're mayor to put their town on the map: they wanted their town saying!" to be heard of and admired across the country! Berlin and Hans started to repeat his idea when another person Munich were cities in Germany that people spoke about yelled back, "He's talking about cleaning up the town or all the time. But ho one knew anything about Magdeburg; something like that..." Once the people heard what Hans most people had never heard of such a town, never mind had been saying, the whole crowd began to boo him and where it was in Germany. his idea. Granted, it was a good idea to clean up the town, "But what could the town of Magdeburg ever be but the people of Magdeburg were aiming a little higher famous for?" the people asked. It was not as large than "Welcome to Magdeburg: The Cleanest Town in as Berlin or Munich. No one famous had ever been Germany." born there. Magdeburg didn't manufacture or produce As Hans walked off the stage, the crowd continued to anything important, Basically, Magdeburg was an grumble. In the midst of all the emotion, no one had even averaged-sized town, with an average population; it had noticed that the next candidate for mayor, a persoh by the an average location: the lives of its citizens could even name of Otto, had walked onto the stage end was standing be considered to be quite average. Everything about in front of them. Although Otto did not have the same political the town of Magdeburg was average and the people experience that Hans did, he not only had a bellowing were sick and tired of being just average. They wanted voice, but he also had a way with crowds; he was quite an to be known as "The Great Town of Magdeburg" or "The entertainer and a showman. Incredible Town of Magdeburg," or at the very least. "The Otto suddenly spoke clearly and loudly: "My good people Above Average Town of Magdeburg," The only problem of Magdeburg. There is no reason for such anger. If you was that they didn't know how to achieve this. That was will all just calm down and gather around me. you will be why this election was so important to them. They wanted able to witness my plan for making this town known to all their new mayor to have an answer to their problem. of Germany." Well, the day of the big debate finally arrived. Excitement Otto's calming, commanding presence affected the was in the air and the people were hopeful that their city crowd and they began to settle down and walk closer to would soon make a name for itself.
Recommended publications
  • 1 the History of Vacuum Science and Vacuum Technology
    1 1 The History of Vacuum Science and Vacuum Technology The Greek philosopher Democritus (circa 460 to 375 B.C.), Fig. 1.1, assumed that the world would be made up of many small and undividable particles that he called atoms (atomos, Greek: undividable). In between the atoms, Democritus presumed empty space (a kind of micro-vacuum) through which the atoms moved according to the general laws of mechanics. Variations in shape, orientation, and arrangement of the atoms would cause variations of macroscopic objects. Acknowledging this philosophy, Democritus,together with his teacher Leucippus, may be considered as the inventors of the concept of vacuum. For them, the empty space was the precondition for the variety of our world, since it allowed the atoms to move about and arrange themselves freely. Our modern view of physics corresponds very closely to this idea of Democritus. However, his philosophy did not dominate the way of thinking until the 16th century. It was Aristotle’s (384 to 322 B.C.) philosophy, which prevailed throughout theMiddleAgesanduntilthebeginning of modern times. In his book Physica [1], around 330 B.C., Aristotle denied the existence of an empty space. Where there is nothing, space could not be defined. For this reason no vacuum (Latin: empty space, emptiness) could exist in nature. According to his philosophy, nature consisted of water, earth, air, and fire. The lightest of these four elements, fire, is directed upwards, the heaviest, earth, downwards. Additionally, nature would forbid vacuum since neither up nor down could be defined within it. Around 1300, the medieval scholastics began to speak of a horror vacui, meaning nature’s fear of vacuum.
    [Show full text]
  • Companion to "Physics of Gases and Phenomena of Heat"
    A Companion to „Physics of gases and the phenomena of heat” Slides 2–13 - discovery of the atmospheric pressure. In 1644 the Italian mathematician Evangelista Torricelli, who was a student of Galileo, performed his famous experiment with a tube filled with mercury (called quicksilver at that time). However, he described it only in a private letter to his friend Michelangelo Ricci. Because of that information of Torricelli’s results was very slowly disseminated throughout Europe. In July 1647 similar experiment was performed independently in Warsaw by Valeriano Magni, an Italian monk and scholar who was in the service of the king of Poland. The small brochure with the description of the experiment which Magni published in Warsaw in September of the same year was the first publication on the subject (see Slide 3, lower left picture). Torricelli suspected that the weight of the mercury column in his tube was balanced by the pressure of air in our atmosphere. However, a convincing experimental proof of that hypothesis was needed. French scholar Blaise Pascal planned the experiment (Slides 5-6), which was performed by his brother-in-law Florin Périer (Slides 7-11). One must admire care with which Périer did his task: he prepared two identical tubes with mercury, left one set in the town, and took the second set to performe multiple measurements during climbing the mountain Puy-de-Dôme near Clermont. One must also admire the excitation of experimenters when they had seen changes of the height of mercury column with the elevation. Having learned from Périer about the extent of the effect Pascal was able to repeat it in Paris.
    [Show full text]
  • Introduction to the Principles of Vacuum Physics
    1 INTRODUCTION TO THE PRINCIPLES OF VACUUM PHYSICS Niels Marquardt Institute for Accelerator Physics and Synchrotron Radiation, University of Dortmund, 44221 Dortmund, Germany Abstract Vacuum physics is the necessary condition for scientific research and modern high technology. In this introduction to the physics and technology of vacuum the basic concepts of a gas composed of atoms and molecules are presented. These gas particles are contained in a partially empty volume forming the vacuum. The fundamentals of vacuum, molecular density, pressure, velocity distribution, mean free path, particle velocity, conductivity, temperature and gas flow are discussed. 1. INTRODUCTION — DEFINITION, HISTORY AND APPLICATIONS OF VACUUM The word "vacuum" comes from the Latin "vacua", which means "empty". However, there does not exist a totally empty space in nature, there is no "ideal vacuum". Vacuum is only a partially empty space, where some of the air and other gases have been removed from a gas containing volume ("gas" comes from the Greek word "chaos" = infinite, empty space). In other words, vacuum means any volume containing less gas particles, atoms and molecules (a lower particle density and gas pressure), than there are in the surrounding outside atmosphere. Accordingly, vacuum is the gaseous environment at pressures below atmosphere. Since the times of the famous Greek philosophers, Demokritos (460-370 B.C.) and his teacher Leukippos (5th century B.C.), one is discussing the concept of vacuum and is speculating whether there might exist an absolutely empty space, in contrast to the matter of countless numbers of indivisible atoms forming the universe. It was Aristotle (384-322 B.C.), who claimed that nature is afraid of total emptiness and that there is an insurmountable "horror vacui".
    [Show full text]
  • CEU Department of Medieval Studies
    ANNUAL OF MEDIEVAL STUDIES AT CEU VOL. 17 2011 Edited by Alice M. Choyke and Daniel Ziemann Central European University Budapest Department of Medieval Studies All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the permission of the publisher. Editorial Board Niels Gaul, Gerhard Jaritz, György Geréby, Gábor Klaniczay, József Laszlovszky, Marianne Sághy, Katalin Szende Editors Alice M. Choyke and Daniel Ziemann Technical Advisor Annabella Pál Cover Illustration Beltbuckle from Kígyóspuszta (with kind permission of the Hungarian National Museum, Budapest) Department of Medieval Studies Central European University H-1051 Budapest, Nádor u. 9., Hungary Postal address: H-1245 Budapest 5, P.O. Box 1082 E-mail: [email protected] Net: http://medievalstudies.ceu.hu Copies can be ordered at the Department, and from the CEU Press http://www.ceupress.com/order.html ISSN 1219-0616 Non-discrimination policy: CEU does not discriminate on the basis of—including, but not limited to—race, color, national or ethnic origin, religion, gender or sexual orientation in administering its educational policies, admissions policies, scholarship and loan programs, and athletic and other school-administered programs. © Central European University Produced by Archaeolingua Foundation & Publishing House TABLE OF CONTENTS Editors’ Preface ............................................................................................................ 5 I. ARTICLES AND STUDIES ..........................................................
    [Show full text]
  • Ipad Educational Apps This List of Apps Was Compiled by the Following Individuals on Behalf of Innovative Educator Consulting: Naomi Harm Jenna Linskens Tim Nielsen
    iPad Educational Apps This list of apps was compiled by the following individuals on behalf of Innovative Educator Consulting: Naomi Harm Jenna Linskens Tim Nielsen INNOVATIVE 295 South Marina Drive Brownsville, MN 55919 Home: (507) 750-0506 Cell: (608) 386-2018 EDUCATOR Email: [email protected] Website: http://naomiharm.org CONSULTING Inspired Technology Leadership to Transform Teaching & Learning CONTENTS Art ............................................................................................................... 3 Creativity and Digital Production ................................................................. 5 eBook Applications .................................................................................... 13 Foreign Language ....................................................................................... 22 Music ........................................................................................................ 25 PE / Health ................................................................................................ 27 Special Needs ............................................................................................ 29 STEM - General .......................................................................................... 47 STEM - Science ........................................................................................... 48 STEM - Technology ..................................................................................... 51 STEM - Engineering ...................................................................................
    [Show full text]
  • This World of Humans: Episode #3 Guide for Educators
    This World of Humans: Episode #3 Guide for Educators Traffic Pollution Shortens Children’s Chromosomes These activities address NGSS ETS1.A, ESS3.A, ESS3.D, as well as specific Cross-Cutting Concepts and Science and Engineering Practices (see page 8). Many are also suitable for courses designated as “Writing-Intensive.” About the Article This article presents early research into the effect of traffic-related air pollution on telomere length in the cells of children living in Fresno, CA. The authors developed this pilot study to explore connections between the amount of PAH in the atmosphere and telomere length, with the aim of shedding light onto the relationship between air pollution and cardiopulmonary disease. About the interview In this interview, Dr. Balmes discusses the research and its implications for society. This includes a more in- depth look into the study design (including modeling PAH exposure) and study population. Both the article and the interview can be found here: https://www.visionlearning.com/en/twoh/#ep3 Recommended: pair these materials with the Visionlearning modules: Modeling in Scientific Research and/or Using Graphs and Visual Data in Science (see “Extension Activities” on page 4). Use in the Classroom These materials are useful for exploring ways in which scientists build models to understand causation and correlation…. Students should read the article before listening to the interview. 1. Pre-reading and pre-listening activities are provided to prompt prior knowledge and help students make connections between their own lives and the research they are learning about. Materials may be used in the classroom to generate discussion, or as homework if the article or interview will be read/listened to in-class.
    [Show full text]
  • Teaching the Process of Science
    Teaching the Process of Science Anne E. Egger Stanford University and Visionlearning 14 December 2008 Tuesday, January 6, 2009 1 Introductory Geoscience • Every year, 340,000 undergraduate students take college-level introductory geoscience courses in the United States • 6000 students declare a major in the geosciences < 2% of students from introductory courses • 2700 students graduate with a BS in the geosciences < 50% of declared cohort Two audiences Data from the American Geological Institute Tuesday, January 6, 2009 2 Introductory Geoscience • Our introductory courses are critical for recruiting majors into science disciplines • These same courses may be the only science course that some students take • Often have high enrollment • Often considered the least desirable teaching assignment • Traditionally overstuffed with content delivered in a lecture format Tuesday, January 6, 2009 3 The role of introductory courses ...the primary aim of any undergraduate introductory science course— whether in biology, chemistry, physics, or earth sciences—should be to enable students to appreciate and participate in science as a special way of knowing about the world Alberts, 2005 Tuesday, January 6, 2009 4 In order to “appreciate and participate”... Students need to understand • scientific content - the theories, observations, ideas, and concepts that form a body of knowledge about the natural world • the process of science - the means through which our conceptual and content knowledge was developed and continues to grow and change, and what makes it different from other ways of knowing • how science is used - how individuals and societies benefit from and utilize the results of scientific investigation Tuesday, January 6, 2009 5 The unique perspective of the geosciences • Geologic time/deep time • Spatial thinking, spatial analysis • Complexity of the earth system • Connection to landscape Tuesday, January 6, 2009 6 Are we enabling our students to appreciate and participate in Well...
    [Show full text]
  • “Child in a Strange Country” Traveling Exhibit Section 4: Scientific Study
    American Printing House for the Blind “Child in a Strange Country” Traveling Exhibit Section 4: Scientifi c Study Graphic Proofs Submittal 09.05.12 11-261 American Printing House for the Blind – Traveling Exhibit Graphic Elevation Not to Scale Final Size: Size: Final Description:SectionGraphic 4:Scientifi Exhibit Traveling theBlind – Housefor Printing 11-261 American 35.4375” x78” 35.4375” Scientifi c Study Study c Much of Helen Keller’s initial science education Boston, where blind students used the most was experiential. In Tuscumbia, she explored modern scientifi c teaching tools. She explored the natural world by touch, with her teacher stuffed animals, seashells, and models of encouraging her curiosity. The garden, a fl owers and plants. She also learned by fi shbowl fi lled with tadpoles, and a table using a popular series of tactile pictures of of seashells were her laboratory. animals and plants created by Martin Kunz In October 1889, Helen sat in on classes in (1847-1923), director of a school for the blind zoology and botany at the Perkins School in in Illzach, Germany. “We chase butterfl ies, and sometimes we catch one. Then we sit down under a tree, or in the shade of a bush, and talk about it. Afterwards, if it has survived the lesson, we let it go; but usually its life and beauty are sacrifi ced on the altar of learning.” — Anne Sullivan, 1887 FPO Photo courtesy New England Historic Genealogical Society Revised Scienti — 09-05-12 11-261 Schultz ExhibitConcept “Child inaStrange Country” Traveling American PrintingHousefortheBlind fi c Study Graphic Proof Package 03 c Study GraphicProof SC.01 – Intro Final Size: Size: Final Description:SectionGraphic 4:Scientifi Exhibit Traveling theBlind – Housefor Printing 11-261 American 35.4375” x78” 35.4375” Exploring the Natural World c Study c Whenever possible, science teachers introduced their students who were blind to natural specimens they could explore by touch.
    [Show full text]
  • History of Thermodynamics Consequences of the Laws Of
    International Journal of Pure and Applied Mathematics Volume 119 No. 12 2018, 1675-1683 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu CONCEPTS OF THERMODYNAMICS Dr.N.Selvi1, Dr. P.Sugumar2 Associate Professor 1 2 Department of Physics, BIST, BIHER, Bharath University, Chennai. [email protected] The branch of science called thermodynamics deals with systems that are able to transfer thermal energy into at least one other form of energy (mechanical, electrical, etc.) or into work. The laws of thermodynamics were developed over the years as some of the most fundamental rules which are followed when a thermodynamic system goes through some sort of energy change. History of Thermodynamics The history of thermodynamics begins with Otto von Guericke who, in 1650, built the world's first vacuum pump and demonstrated a vacuum using his Magdeburg hemispheres[1-6]. Guericke was driven to make a vacuum to disprove Aristotle's long-held supposition that 'nature abhors a vacuum'. Shortly after Guericke, the English physicist and chemist Robert Boyle had learned of Guericke's designs and, in 1656[7-13], in coordination with English scientist Robert Hooke, built an air pump. Using this pump, Boyle and Hooke noticed a correlation between pressure, temperature, and volume[14-19]. In time, Boyle's Law was formulated, which states that pressure and volume are inversely proportional. Consequences of the Laws of Thermodynamics The laws of thermodynamics tend to be fairly easy to state and understand ... so much so that it's easy to underestimate the impact they have[20-25].
    [Show full text]
  • Anthony Carpi John Jay College, CUNY [email protected] 524 W
    Anthony Carpi John Jay College, CUNY [email protected] 524 W. 59th St., NY, NY 10019 http://www.visionlearning.com/carpi (212) 237‐8944 PROFESSIONAL EXPERIENCE Associate Provost and Dean of Research 8/12-present John Jay College, the City University of New York (Interim 8/12-6/14) Major Accomplishments: Established faculty mentoring programs and a research support infrastructure that have contributed to a doubling in the college’s external grant portfolio ($14.6 M 2013 to >$30M 2018), and a 45% increase in scholarly works produced by our faculty in 5 years. Integrated strategic and outcomes-based planning into the office portfolio; expanded the dissemination and visibility of the college’s research agenda to a national audience. Chair, Department of Sciences 12/09-01/11 John Jay College, CUNY (Deputy Chairperson: 2007-2009) Major Accomplishments: Led a renaissance in Departmental operations that improved student graduation rates by 300%, increased available research space 4-fold, expanded external funding by over 1000%, enlarged the Department operating budget by 80%, and shifted faculty demographics from 29% to 48% female. Integrated student-focused outcomes assessment into the Department’s mission and classes, implemented strategic enrollment projections into course planning. Professor of Environmental Chemistry & Toxicology 9/97-present John Jay College, CUNY (Tenured: 2002; Associate: 2003; Full: 2009) Major Accomplishments: Mentored 59 students to date including 35 undergraduates, 21 of whom are from underrepresented groups and 23 of whom of female; 23 of these students have moved on to post- graduate study, 9 of whom have already earned a Ph.D. Top grant winner in department, and among top 1% at college.
    [Show full text]
  • Mining: Science, from Anthropology to Chemistry by Lee Wright
    ATA JUNE 07 BI-REV.qxd 5/24/07 12:33 AM Page 32 Glossary Mining: Science, from Anthropology to Chemistry By Lee Wright This latest trip down the The Joint Institute for Laboratory GENERAL SCIENCE glossary mine shaft provides a com- Astrophysics (JILA) is one of the (SPANISH) pendium of various Internet resources leading physical-science research Ciencias de la Tierra y dealing with scientific subjects. institutes in the U.S. Its faculty, grad- del Medio Ambiente Because the sciences cover a lot of uate students, and postdoctoral www.esi.unav.es/asignaturas/ ground, I only have room this month research associates explore some of ecologia/Hipertexto/00General/ to address topics from anthropology today’s most challenging and funda- Glosario.html to chemistry. The focus is on termi- mental scientific questions. JILA is This site emphasizes ecological terms. nology and reference materials for the jointly operated by the University of “pure” sciences, as opposed to the Colorado and the National Institute of Glosario PRL “applied” sciences, such as mechan- Standards and Technology. www.jmcprl.net/GLOSARIO/G-A.htm ical engineering or metallurgical processes. The list begins with several PCS Edventures, Inc. Novedades Científicas resources of a general nature and con- http://discover.edventures.com/ www.novaciencia.com tinues in alphabetical order by sub- functions/termlib.php?action= ject. Once again, most of these items &alpha=A Sólo Ciencia involve English and Spanish, but there www.solociencia.com/index.htm is one German into English glossary VisionLearning of biology terms, as well as several www.visionlearning.com/library/ ANTHROPOLOGY multilingual glossaries.
    [Show full text]
  • Nathan H. Lents, Ph.D
    Nathan H. Lents, Ph.D. Department of Sciences 524 W. 59th Street John Jay College of Criminal Justice New York, NY 10019 The City University of New York 646.557.4504 www.nathanlents.com [email protected] www.TheHumanEvolutionBlog.com Office: 05.61.06; Lab: 05.62 John Jay College, The City University of New York (CUNY) Sep 2006 – present Professor of Biology, w/ tenure Sep 2016 – present (Assistant Prof, 2006-2011; Associate Prof, 2011-2016) Past Positions: Director, Honors Program & Macaulay Honors College Program Jan 2016 – Aug 2019 Director, Biology minor and Cell and Molecular Biology major Jan 2014 – Jan 2016 Director, Office of Undergraduate Research (O.U.R.) Sep 2010 – Aug 2013 Deputy Chair, Department of Sciences Jan 2010 – Aug 2014 Current Ad-hoc Positions Visiting Professor of Forensic Biology, University of Lincoln; Lincolnshire, U.K. April 2013 – present Forensic Science Legal and Educational Consultant, self-employed Feb 2012 – present Life Sciences Editor; The Visionlearning Project, New York, NY June 2011 – present Host and Executive Producer, This World of Humans Podcast. May 2017 – present Education New York University Medical Center Postdoctoral Fellowship, Cancer Genomics and Computational Biology 2004-2006 Saint Louis University, School of Medicine Doctor of Philosophy, with distinction, Pharmacological and Physiological Sciences June 2004 Saint Louis University Bachelor of Science, Biology (Molecular) Summa Cum Laude Dec 1999 Languages English, native; Spanish, near-fluent (reading/writing), upper advanced (speaking) Awards • 2018 Outstanding Scholarly Mentoring Award, John Jay College • 2017 Distinguished Alumnus, Pre-commencement Address, Graduate Prog. in Biomedical Sciences (S.L.U.) • 2011 Research Excellence Award, John Jay College • 2009 Distinguished Teaching Award, John Jay College • Saint Louis U.
    [Show full text]