UC Davis UC Davis Previously Published Works

Total Page:16

File Type:pdf, Size:1020Kb

UC Davis UC Davis Previously Published Works UC Davis UC Davis Previously Published Works Title The oyster enigma variations: A hypothesis of microbial calcification Permalink https://escholarship.org/uc/item/8kn6h5dg Journal Paleobiology, 40(1) ISSN 0094-8373 Author Vermeij, GJ Publication Date 2014-12-01 DOI 10.1666/13002 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The oyster enigma variations: a hypothesis of microbial calcification Author(s): Geerat J. Vermeij Source: Paleobiology, 40(1):1-13. 2013. Published By: The Paleontological Society DOI: http://dx.doi.org/10.1666/13002 URL: http://www.bioone.org/doi/full/10.1666/13002 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Paleobiology, 40(1), 2014, pp. 1–13 DOI: 10.1666/13002 The oyster enigma variations: a hypothesis of microbial calcification Geerat J. Vermeij Abstract.—Oysters, whose inner shell layer contains chambers, vesicles, and sometimes chalky deposits, often have extraordinarily thick shells of large size, prompting the idea that there is something unusual about the process of shell fPormation in these and similarly structured bivalves with the oyster syndrome. I propose the hypothesis that calcifying microbes, especially sulfate-reducing bacteria growing on organic substrates in fluid-filled shell-wall chambers, are responsible for shell calcification away from the shell-secreting mantle of the host bivalve. Other phenomena, including the formation of cameral deposits in fossil cephalopods, the cementation of molluscs and barnacles to hard substrata, the formation of a calcified intriticalx on the shell’s exterior, and cementation of objects by gastropods on the shell for camouflage, may also involve calcifying bacteria. Several lines of inquiry are suggested to test these hypotheses. Geerat J. Vermeij. Department of Geology, University of California, Davis, California 95616, U.S.A. E-mail: [email protected] Accepted: 9 July 2013 Published online: 27 September 2013 Introduction Chinzei 1986, 2013; Kirby 2001; Titschack et The British composer Edward Elgar (1857– al. 2010). 1934) could have been thinking about the The only bivalves rivaling oyster-like spe- cies in valve thickness are some taxa known or many bizarre, unexplained phenomena that inferred to harbor photosymbionts (fossil confront scientists when he wrote his Enigma megalodontids, alatoconchids, some Jurassic Variations. In the realm of evolutionary pinnids, an Eocene cardiid, and living tridac- biology, these phenomena often represent nine giant clams) as well as cool-temperate extreme variations on familiar themes that Permian bivalves of the Australian genera we claim to understand. Extremes can be Eurydesma and Myonia (Runnegar 1979; Ver- thought of either as the inevitable endpoints of meij 2013). Very large bivalves (length 200 mm a statistical distribution or as the outcomes of or more) with chemosymbionts (some sole- unusual circumstances or processes. Our myids, bathymodioline mytilids, vesicomyids, interpretation of extremes represents a tension Cretaceous myoconchids, and fossil Cenozoic between description and explanation, between lucinids) have thin to moderately thick shells what makes something possible and what (maximum thickness 28 mm in a Late Creta- propels it into existence. ceous species of the myoconchid Capsiconcha Among shell-bearing animals, one of those [see Kelly et al. 2000]). The same applies to enigmaticextremesisthevastsizeand very large bivalves that are known or pre- thickness of the shell of bivalves exhibiting sumed to lack symbionts, including some what I call the oyster syndrome, the condition living mytilids, pectinids, deep-sea limids, in which the inner layer of the shell contains pteriid pearl oysters, fossil Bakevelliidae and chambers, vesicles, and secondary mineral Isognomonidae, living pinnids, placunids, and precipitates referred to as chalky deposits or deep-burrowing mactrids, hiatellids, and pho- mocret (Malchus 1990). Oysters exceeding a ladomyids. In photosymbiotic bivalves, great shell height of 130 cm and a valve thickness of valve thickness may be enabled by a positive up to 10 cm are known from shallow-water feedback between calcification in the host and marine settings in many locations from the photosynthesis by the guests. An explanation Late Cretaceous (Cenomanian) onward (Ste- for exceptional thickness in bivalves with the phenson 1952; Sohl and Kauffman 1964; oyster syndrome must therefore focus on shell Ó 2014 The Paleontological Society. All rights reserved. 0094-8373/14/4001-0001/$1.00 2 GEERAT J. VERMEIJ calcification rather than on the production of other outstanding issues related to the geo- nonskeletal biomass. logical history of calcification. The aim of this Given that thick-shelled oysters are known unabashedly exploratory exercise is to awaken from open marine environments (Kirby 2001) interest by microbiologists in evolutionary as well as from dark unproductive caves and problems of great environmental importance deep-water rock walls (Hayami and Kase and not to test the hypothesis rigorously. 1992; Wisshak et al. 2009), the oyster syn- drome requires an explanation that does not Materials and Methods depend on the presence of photosymbionts. In order to document valve sizes and Moreover, as I shall show below, the oyster thicknesses of bivalves with and without the enigma and its variations extend to many oyster syndrome, I measured valve lengths other calcification-related phenomena as well. (longest linear dimensions) and thicknesses of An understanding of this enigma is therefore thick-shelled Late Cretaceous to Recent bi- of great interest in view of biomineralization valves at the Florida Museum of Natural processes in general and of the unparalleled History (abbreviated UF), and complemented rate of acidification (which interferes with these measurements with data from the calcification) in today’s ocean waters in taxonomic literature and my own collections. particular (Kump et al. 2009; Zeebe 2012). Particular attention was focused on oysters An understanding of any evolutionary (Ostreoidea), Spondylidae, Malleidae, Arci- enigma requires two complementary ap- dae, Chamidae, and Veneridae. For each proaches. One is an investigation of the species and site, I selected the individual with potential benefits of the phenomenon in the thickest valve. In addition, I surveyed question. This approach in turn entails the Miocene to Recent regional bivalve faunas identification of selective agents or agencies based on the taxonomic literature and my and knowledge of how they work to produce collections in order to ascertain where and the purported benefits. Complementing this when bivalves with the oyster syndrome were line of inquiry is an explanation of how the the thickest-shelled species in the assemblage. selected trait or benefit comes about phyloge- Taxonomic assignments for Cenozoic and netically, developmentally, physiologically, living oysters follow Harry (1985) and Bolton and mechanically. Without ignoring the first and Portell (2013). of these approaches, I emphasize the second, with the aim of proposing a hypothesis about The Oyster Syndrome how the unusual thickness and pattern of I define the oyster syndrome as the condi- calcification in bivalves with the oyster syn- tion in which the shell is porous and light- drome are achieved. weight thanks to the presence of vacuoles, In this speculative paper, I briefly review the chambers, vesicles, and sometimes chalky morphological peculiarities, phylogenetic and deposits (or mocret) in the inner layer of the geological distribution, and dimensions of shell wall. This condition is best exemplified bivalves with the oyster syndrome. I then by Late Triassic to Recent oysters (Ostreoidea) develop the hypothesis, first suggested but not (Harry 1985; Chinzei 1986, 1995, 2013; Mal- elaborated on by Chinzei and Seilacher (1993), chus 1990; Chinzei and Seilacher 1993; Car- that microbes housed inside the valves en- riker 1996; Hautmann 2001; Kirby 2001). hance calcification and make great size and In oysters that have them, chalky deposits valve thickness possible. Specifically, I argue may represent cases of calcification not direct- that sulfate-reducing bacteria, known to be ly controlled by the inner mantle surface. involved in calcification in other contexts, are Chalky deposits in the living oyster Crassostrea the responsible agents. I speculate that micro- virginica consist of bladelike structures orient- bial assistance in skeleton formation and ed perpendicular to the inner shell surface, cementation is widespread among sedentary where the blades are separated by
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Early Ontogeny of Jurassic Bakevelliids and Their Bearing on Bivalve Evolution
    Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution NIKOLAUS MALCHUS Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica 49 (1): 85–110. Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pterio− morphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are con− sistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies. Key words: Bivalvia, Pteriomorphia, Bakevelliidae, larval shell, ontogeny, phylogeny. Nikolaus Malchus [[email protected]], Departamento de Geologia/Unitat Paleontologia, Universitat Autòno− ma Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
    [Show full text]
  • Scacchi, Species Solecurtidae
    BASTERIA, 58: 35-40, 1994 Solecurtus multistriatus (Scacchi, 1835), a good marine bivalve species from the Mediterranean Sea (Bivalvia, Heterodonta: Solecurtidae) Paolo Mariottini 1 Istituto di Scienze Biochimiche, Universita di Parma, 1-43100 Parma, Italy Carlo Smriglio Via di Valle Aurelia 134, 1-00167 Rome, Italy & Cesare Ciommei Via Montebruno 12, 1-00168 Rome, Italy Solecurtus multistriatus (Scacchi, 1835) from the Mediterranean Sea is here reported as a bona fide species; the authors give additional data about its morphology, ecology and distribution. Key words: Bivalvia, Solecurtidae, Solecurtus, morphology, distribution, Mediterranean Sea, Italy. INTRODUCTION In the Mediterranean Sea the genus Solecurtus Blainville, 1824, is represented by three species: S. scopula (Turton, 1822), S. strigilatus (Linne, 1758) and S. multistriatus (Scacchi, 1835). The last taxon was based by Scacchi (1835) (and not Scacchi, 1834, according to Cretella et ah, 1992) on a fossil specimen collected near Gravina, Puglia (Italy). Here the original description is given: "Testa ovali-oblonga, subaequilatera, antice oblique striata, striis approximatis angulo acuto in/lexis. Lata lin. 8, alta lin. 3". In the description 'lin.' (which stands for linea) is a standard size unit. The one adopted by the authors of that time corresponded to 2.25 mm; but, in this case, it is also possible that 'linea' represents a local Sicilian size unit (1.8 mm) as reported by Giannuzzi-Savelli et al. (1986). The author clearly stated that this species differs from the fossil and Recent specimens of "Solene bianco del Renieri" candidus of S. and of [S. (Renier, 1804), synonym scopula] "Solene strigilato" (S. strigilatus) . Nowadays the status of S.
    [Show full text]
  • The Case of Ahe and Takaroa Atolls and Implications for the Cultured Pearl Industry
    Estuarine, Coastal and Shelf Science 182 (2016) 243e253 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Revisiting wild stocks of black lip oyster Pinctada margaritifera in the Tuamotu Archipelago: The case of Ahe and Takaroa atolls and implications for the cultured pearl industry * Serge Andrefou et€ a, , Yoann Thomas a, 1, Franck Dumas b,Cedrik Lo c a UMR-9220 ENTROPIE, Institut de Recherche pour le Developpement, UniversitedelaReunion, CNRS, Noumea, New Caledonia b Ifremer, DYNECO/DHYSED, Plouzane, France c Direction des Ressources Marines et Minieres, Papeete, Tahiti, French Polynesia article info abstract Article history: Spat collecting of the black lip oyster (Pinctada margaritifera) is the foundation of cultured black pearl Received 30 June 2015 production, the second source of income for French Polynesia. To understand spat collecting temporal Received in revised form and spatial variations, larval supply and its origin need to be characterized. To achieve this, it is necessary 14 May 2016 to account for the stock of oysters, its distribution and population characteristics (size distribution, sex- Accepted 19 June 2016 ratio). While the farmed stock in concessions can be easily characterized, the wild stock is elusive. Here, Available online 20 June 2016 we investigate the distribution and population structure of the wild stock of Ahe and Takaroa atolls using fine-scale bathymetry and in situ census data. Stocks were surprisingly low (~666,000 and ~1,030,000 Keywords: Invertebrate population oysters for Ahe and Takaroa respectively) considering these two atolls have both been very successful Aquaculture spat collecting atolls in the past.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • Facies, Phosphate, and Fossil Preservation Potential Across a Lower Cambrian Carbonate Shelf, Arrowie Basin, South Australia
    Palaeogeography, Palaeoclimatology, Palaeoecology 533 (2019) 109200 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Facies, phosphate, and fossil preservation potential across a Lower Cambrian T carbonate shelf, Arrowie Basin, South Australia ⁎ Sarah M. Jacqueta,b, , Marissa J. Bettsc,d, John Warren Huntleya, Glenn A. Brockb,d a Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA b Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia c Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia d Early Life Institute and Department of Geology, State Key Laboratory for Continental Dynamics, Northwest University, Xi'an 710069, China ARTICLE INFO ABSTRACT Keywords: The efects of sedimentological, depositional and taphonomic processes on preservation potential of Cambrian Microfacies small shelly fossils (SSF) have important implications for their utility in biostratigraphy and high-resolution Calcareous correlation. To investigate the efects of these processes on fossil occurrence, detailed microfacies analysis, Organophosphatic biostratigraphic data, and multivariate analyses are integrated from an exemplar stratigraphic section Taphonomy intersecting a suite of lower Cambrian carbonate palaeoenvironments in the northern Flinders Ranges, South Biominerals Australia. The succession deepens upsection, across a low-gradient shallow-marine shelf. Six depositional Facies Hardgrounds Sequences are identifed ranging from protected (FS1) and open (FS2) shelf/lagoonal systems, high-energy inner ramp shoal complex (FS3), mid-shelf (FS4), mid- to outer-shelf (FS5) and outer-shelf (FS6) environments. Non-metric multi-dimensional scaling ordination and two-way cluster analysis reveal an underlying bathymetric gradient as the main control on the distribution of SSFs.
    [Show full text]
  • Dof: 19/08/2016
    DOF: 19/08/2016 NORMA Oficial Mexicana NOM-013-SAG/PESC-2016, Para regular el aprovechamiento de las especies de caracol en aguas de jurisdicción federal del Golfo de México y Mar Caribe. Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. JUAN JOSÉ LINARES MARTÍNEZ, Director General de Normalización Agroalimentaria de la Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, con fundamento en los artículos 35 fracciones XXI incisos d) y e) y XXII de la Ley Orgánica de la Administración Pública Federal; 1o., 2o. fracciones III y IV, 3o., 8o. fracciones I, III, VII, XII, XIV, XXXVIII y XL; 9o. fracciones II y V; 10o. fracción I; 17 fracciones I, II, III, IV, VII y X y 124 de la Ley General de Pesca y Acuacultura Sustentables; 38, fracciones II y IX, 40, fracciones I, X, XIII y XVIII, y último párrafo, 41, 43, 44, 45, 46, 47, 50, 51, 52, 56, 62, 63, 64, 70, 71, 73 y 74 de la Ley Federal sobre Metrología y Normalización y 28 y 34 de su Reglamento; 4o. de la Ley Federal deProcedimiento Administrativo; 1o., 2o. Incisos B fracción XVII y D fracción III, 3o.; 29 fracción I y Octavo Transitorio del Reglamento Interior de la Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, vigente; en correlación con los artículos 37 y 39 fracción VII del Reglamento Interior de la Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, publicado en el Diario Oficial de la Federación el día 10 de julio de 2001, he tenido a bien expedir la presente: NORMA OFICIAL MEXICANA NOM-013-SAG/PESC-2016, PARA REGULAR EL APROVECHAMIENTO DE LAS ESPECIES DE CARACOL EN AGUAS DE JURISDICCIÓN FEDERAL DEL GOLFO DE MÉXICO Y MAR CARIBE ÍNDICE 0.
    [Show full text]
  • Siliqua Patula Class: Bivalvia; Heterodonta Order: Veneroida the Flat Razor Clam Family: Pharidae
    Phylum: Mollusca Siliqua patula Class: Bivalvia; Heterodonta Order: Veneroida The flat razor clam Family: Pharidae Taxonomy: The familial designation of this (see Plate 397G, Coan and Valentich-Scott species has changed frequently over time. 2007). Previously in the Solenidae, current intertidal Body: (see Plate 29 Ricketts and Calvin guides include S. patula in the Pharidae (e.g., 1952; Fig 259 Kozloff 1993). Coan and Valentich-Scott 2007). The superfamily Solenacea includes infaunal soft Color: bottom dwelling bivalves and contains the two Interior: (see Fig 5, Pohlo 1963). families: Solenidae and Pharidae (= Exterior: Cultellidae, von Cosel 1993) (Remacha- Byssus: Trivino and Anadon 2006). In 1788, Dixon Gills: described S. patula from specimens collected Shell: The shell in S. patula is thin and with in Alaska (see Range) and Conrad described sharp (i.e., razor-like) edges and a thin profile the same species, under the name Solen (Fig. 4). Thin, long, fragile shell (Ricketts and nuttallii from specimens collected in the Calvin 1952), with gapes at both ends Columbia River in 1838 (Weymouth et al. (Haderlie and Abbott 1980). Shell smooth 1926). These names were later inside and out (Dixon 1789), elongate, rather synonymized, thus known synonyms for cylindrical and the length is about 2.5 times Siliqua patula include Solen nuttallii, the width. Solecurtus nuttallii. Occasionally, researchers Interior: Prominent internal vertical also indicate a subspecific epithet (e.g., rib extending from beak to margin (Haderlie Siliqua siliqua patula) or variations (e.g., and Abbott 1980). Siliqua patula var. nuttallii, based on rib Exterior: Both valves are similar and morphology, see Possible gape at both ends.
    [Show full text]
  • Gastropod Fauna of the Cameroonian Coasts
    Helgol Mar Res (1999) 53:129–140 © Springer-Verlag and AWI 1999 ORIGINAL ARTICLE Klaus Bandel · Thorsten Kowalke Gastropod fauna of the Cameroonian coasts Received: 15 January 1999 / Accepted: 26 July 1999 Abstract Eighteen species of gastropods were encoun- flats become exposed. During high tide, most of the tered living near and within the large coastal swamps, mangrove is flooded up to the point where the influence mangrove forests, intertidal flats and the rocky shore of of salty water ends, and the flora is that of a freshwater the Cameroonian coast of the Atlantic Ocean. These re- regime. present members of the subclasses Neritimorpha, With the influence of brackish water, the number of Caenogastropoda, and Heterostropha. Within the Neriti- individuals of gastropod fauna increases as well as the morpha, representatives of the genera Nerita, Neritina, number of species, and changes in composition occur. and Neritilia could be distinguished by their radula Upstream of Douala harbour and on the flats that lead anatomy and ecology. Within the Caenogastropoda, rep- to the mangrove forest next to Douala airport the beach resentatives of the families Potamididae with Tympano- is covered with much driftwood and rubbish that lies on tonos and Planaxidae with Angiola are characterized by the landward side of the mangrove forest. Here, Me- their early ontogeny and ecology. The Pachymelaniidae lampus liberianus and Neritina rubricata are found as are recognized as an independent group and are intro- well as the Pachymelania fusca variety with granulated duced as a new family within the Cerithioidea. Littorini- sculpture that closely resembles Melanoides tubercu- morpha with Littorina, Assiminea and Potamopyrgus lata in shell shape.
    [Show full text]
  • Symposium Full Program
    11.4 Center for Condensed Matter Sciences, NTU 11.5-6 Howard Civil Service International House 2019 Organizer Ecological Engineering Research Center, National Taiwan University Co-Organizers College of Bioresources and Agriculture, National Taiwan University Wisdom Informatics Solutions for Environment Co., Ltd Symposium Program Sponsors Biodiversity Research Center, Academia Sinica The Japanese Association of Benthology Marine National Park Headquartrers, Taiwan Ministry of Science and Technology, Taiwan The Plankton Society of Japan Ocean Conversation Administration, Ocean Affairs Council, Taiwan Contents Welcome Messages .........................................................................2 More Welcomes and Greetings from Previous AMBS Chairmans .................................................3 Symposium Schedule ......................................................................7 Conference Information ................................................................8 Symposium Venue Map ..................................................................9 Information for the Presenters .................................................11 Student Presentation Contest Rules .......................................12 Presentation Schedule .................................................................13 Poster Presentation Schedule ...................................................20 Keynote Speaker Abstracts & Biographies ............................25 Organizers and Sponsors.............................................................32
    [Show full text]
  • Designation of Two New Pontoniine Shrimp Genera (Decapoda: Palaemonidae) A
    JOURNAL OF NATURAL HISTORY, 1992, 26, 1273-1282 Designation of two new pontoniine shrimp genera (Decapoda: Palaemonidae) A. J. BRUCE Division of Natural Sciences, Northern Territory Museum, PO Box 4646, Darwin, Australia 0801 (.Accepted 4 August 1992) Two new pontoniine genera are designated, Pseudopontonia gen. nov., for Ponto- nia minuta Baker, and Anchiopontonia gen. nov., for Pontonia hurri Holthuis, both genera being presently monospecific. Pontonia minuta is known only from south and eastern Australia, and is of unknown commensal association. Anchiopontonia hurii, an associate of spondylid bivalves, known from the Marshall and Tuamotu Islands, is also newly recorded from the Ryukyu Islands. KEYWORDS: Crustacea; Palaemonidae; Pontoniinae; new genera; Pseudopontonia; Anchiopontonia; Indo-West Pacific Introduction In a recent publication (Bruce, 1991), it was noted that the genus Pontonia Latreille exhibited an unusually wide range of morphological variation that suggested a prob- able polyphyletic origin, possibly in coevolution with different types of host animals. At present some nine species are referred to the genus in the Indo-West Pacific region, with a further 14 in the Atlantic-Mediterranean and East Pacific regions, not including the rather dubious P. unidens Baker. Two species contrast strongly with the majority of these species and exhibit morphological differences that justify the designation of new monospecific genera, thereby reducing the heterogeneity of the species presently included in Pontonia s. str. Pseudopontonia gen. nov. Definition. Small shrimps of robust, subcylindrical body form. Rostrum well developed, thickened, broad, blunt distally, without dorsal carina, unarmed. Carapace smooth, glabrous, inferior orbital angle bluntly produced, orbit feebly developed; supraorbital, epigastric, hepatic and antennal spines absent, anterolateral margin of branchiostegite produced.
    [Show full text]
  • First North American Occurrence of the Rudist Durania Sp
    TRANSACTIONS OF THE KANSAS Vol. 115, no. 3-4 ACADEMY OF SCIENCE p. 117-124 (2012) Bombers and Bivalves: First North American occurrence of the rudist Durania sp. (Bivalvia: Radiolitidae) in the Upper Cretaceous (Cenomanian) Greenhorn Limestone of southeastern Colorado Bruce A. Schumacher USDA Forest Service, 1420 E. 3rd St., La Junta, CO 81050 [email protected] A colonial monospecific cluster of rudist bivalves from the lowermost Bridge Creek Limestone Member, Greenhorn Limestone (Upper Cenomanian) are attributable to Durania cf. D. cornupastoris. This discovery marks only the eighth recorded pre- Coniacian occurrence of rudist bivalves in the Cretaceous Western Interior and the only Cenomanian record of rudist Durania in North America. Discovered in 2011, the specimen was unearthed by aerial bombing at a training facility utilized during World War II. The appearance of rudist bivalves at mid-latitudes coincident with marked change in marine sediments likely represents the onset of mid-Cretaceous global warming. Keywords: Cenomanian, climate, Durania, Greenhorn, rudist Introduction The Greenhorn Limestone in southeastern Colorado (Fig. 3) is divided into the three Some seventy years ago southeastern Colorado subunits (Cobban and Scott 1972; Hattin 1975; was utilized during World War II (1943 – 1945) Kauffman 1986). Roughly the lower two-thirds as a training area for precision bombing practice of the unit is comprised of the basal Lincoln and air-to-ground gunnery. The La Junta Limestone Member (5 m) and the Hartland Municipal Airport was created in April 1940 as Shale Member (19 m). The dominant lithology La Junta Army Air Field (Thole 1999) and was of the lower members is calcareous shale with used by the United States Army Air Forces for minor amounts of thin calcarenite beds.
    [Show full text]