Designation of Two New Pontoniine Shrimp Genera (Decapoda: Palaemonidae) A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
102 Research Article Turkish Journal of Maritime and Marine
Research Article Turkish Journal of Maritime and Marine Sciences Volume: 1 Issue: 2 (2015) 102-106 Two Decapod Crustacean Species, Pontonia pinnophylax (Otto, 1821) and Nepinnotheres pinnotheres (Linnaeus, 1758), Living Inside Pinna nobilis Linnaeus, 1758 in Izmir Bay (Aegean Sea, Turkey) İzmir Körfezi’nde (Ege Denizi, Türkiye) Pinna nobilis Linnaeus, 1758 İçerisinde Yaşayan İki Dekapod Krustase Türü: Pontonia pinnophylax (Otto, 1821) ve Nepinnotheres pinnotheres (Linnaeus, 1758) Türk Denizcilik ve Deniz Bilimleri Dergisi Cilt: 1 Sayı: 2 (2015) 102-106 Okan AKYOL1, *, Ali ULAŞ1 1 Ege University, Faculty of Fisheries, Urla, Izmir, TURKEY ABSTRACT These rare species are being reported for Four specimens of Pontonia pinnophylax the first time in a certain area from the (Otto, 1821) and two specimens of Turkish seas. Nepinnotheres pinnotheres (Linnaeus, 1758) were collected from four noble pen Keywords: noble pen shell, Pontonia shells, Pinna nobilis Linnaeus, 1758 off pinnophylax, Nepinnotheres pinnotheres, Urla coasts, Izmir Bay, Aegean Sea. new record, Aegean Sea. ÖZET Dört Pontonia pinnophylax (Otto, 1821) ve iki Nepinnotheres pinnotheres (Linnaeus, 1758) bireyi İzmir Körfezi (Ege Denizi) Urla kıyıları açıklarında dört pinadan (Pinna nobilis Linnaeus, 1758) toplanmıştır. Bu nadir türler, Türkiye denizlerinden belirgin bir alanda ilk kez rapor edilmektedir Anahtar Kelimeler: pina, Pontonia pinnophylax, Nepinnotheres pinnotheres, yeni kayıt, Ege Denizi. Article Info Received: 10 June 2015 Revised: 11 December 2015 Accepted: 15 December 2015 * (corresponding author) E-mail: [email protected] 102 1. Introduction it has never been seen again since then. Species of the genus Pontonia Latreille, Thus, both species can be accepted as very 1829 are distributed in tropical and rare. -
The Case of Ahe and Takaroa Atolls and Implications for the Cultured Pearl Industry
Estuarine, Coastal and Shelf Science 182 (2016) 243e253 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Revisiting wild stocks of black lip oyster Pinctada margaritifera in the Tuamotu Archipelago: The case of Ahe and Takaroa atolls and implications for the cultured pearl industry * Serge Andrefou et€ a, , Yoann Thomas a, 1, Franck Dumas b,Cedrik Lo c a UMR-9220 ENTROPIE, Institut de Recherche pour le Developpement, UniversitedelaReunion, CNRS, Noumea, New Caledonia b Ifremer, DYNECO/DHYSED, Plouzane, France c Direction des Ressources Marines et Minieres, Papeete, Tahiti, French Polynesia article info abstract Article history: Spat collecting of the black lip oyster (Pinctada margaritifera) is the foundation of cultured black pearl Received 30 June 2015 production, the second source of income for French Polynesia. To understand spat collecting temporal Received in revised form and spatial variations, larval supply and its origin need to be characterized. To achieve this, it is necessary 14 May 2016 to account for the stock of oysters, its distribution and population characteristics (size distribution, sex- Accepted 19 June 2016 ratio). While the farmed stock in concessions can be easily characterized, the wild stock is elusive. Here, Available online 20 June 2016 we investigate the distribution and population structure of the wild stock of Ahe and Takaroa atolls using fine-scale bathymetry and in situ census data. Stocks were surprisingly low (~666,000 and ~1,030,000 Keywords: Invertebrate population oysters for Ahe and Takaroa respectively) considering these two atolls have both been very successful Aquaculture spat collecting atolls in the past. -
Symposium Full Program
11.4 Center for Condensed Matter Sciences, NTU 11.5-6 Howard Civil Service International House 2019 Organizer Ecological Engineering Research Center, National Taiwan University Co-Organizers College of Bioresources and Agriculture, National Taiwan University Wisdom Informatics Solutions for Environment Co., Ltd Symposium Program Sponsors Biodiversity Research Center, Academia Sinica The Japanese Association of Benthology Marine National Park Headquartrers, Taiwan Ministry of Science and Technology, Taiwan The Plankton Society of Japan Ocean Conversation Administration, Ocean Affairs Council, Taiwan Contents Welcome Messages .........................................................................2 More Welcomes and Greetings from Previous AMBS Chairmans .................................................3 Symposium Schedule ......................................................................7 Conference Information ................................................................8 Symposium Venue Map ..................................................................9 Information for the Presenters .................................................11 Student Presentation Contest Rules .......................................12 Presentation Schedule .................................................................13 Poster Presentation Schedule ...................................................20 Keynote Speaker Abstracts & Biographies ............................25 Organizers and Sponsors.............................................................32 -
Volume III of This Document)
4.1.3 Coastal Migratory Pelagics Description and Distribution (from CMP Am 15) The coastal migratory pelagics management unit includes cero (Scomberomous regalis), cobia (Rachycentron canadum), king mackerel (Scomberomous cavalla), Spanish mackerel (Scomberomorus maculatus) and little tunny (Euthynnus alleterattus). The mackerels and tuna in this management unit are often referred to as ―scombrids.‖ The family Scombridae includes tunas, mackerels and bonitos. They are among the most important commercial and sport fishes. The habitat of adults in the coastal pelagic management unit is the coastal waters out to the edge of the continental shelf in the Atlantic Ocean. Within the area, the occurrence of coastal migratory pelagic species is governed by temperature and salinity. All species are seldom found in water temperatures less than 20°C. Salinity preference varies, but these species generally prefer high salinity. The scombrids prefer high salinities, but less than 36 ppt. Salinity preference of little tunny and cobia is not well defined. The larval habitat of all species in the coastal pelagic management unit is the water column. Within the spawning area, eggs and larvae are concentrated in the surface waters. (from PH draft Mackerel Am. 18) King Mackerel King mackerel is a marine pelagic species that is found throughout the Gulf of Mexico and Caribbean Sea and along the western Atlantic from the Gulf of Maine to Brazil and from the shore to 200 meter depths. Adults are known to spawn in areas of low turbidity, with salinity and temperatures of approximately 30 ppt and 27°C, respectively. There are major spawning areas off Louisiana and Texas in the Gulf (McEachran and Finucane 1979); and off the Carolinas, Cape Canaveral, and Miami in the western Atlantic (Wollam 1970; Schekter 1971; Mayo 1973). -
Biodiversità Ed Evoluzione
Allma Mater Studiiorum – Uniiversiità dii Bollogna DOTTORATO DI RICERCA IN BIODIVERSITÀ ED EVOLUZIONE Ciclo XXIII Settore/i scientifico-disciplinare/i di afferenza: BIO - 05 A MOLECULAR PHYLOGENY OF BIVALVE MOLLUSKS: ANCIENT RADIATIONS AND DIVERGENCES AS REVEALED BY MITOCHONDRIAL GENES Presentata da: Dr Federico Plazzi Coordinatore Dottorato Relatore Prof. Barbara Mantovani Dr Marco Passamonti Esame finale anno 2011 of all marine animals, the bivalve molluscs are the most perfectly adapted for life within soft substrata of sand and mud. Sir Charles Maurice Yonge INDEX p. 1..... FOREWORD p. 2..... Plan of the Thesis p. 3..... CHAPTER 1 – INTRODUCTION p. 3..... 1.1. BIVALVE MOLLUSKS: ZOOLOGY, PHYLOGENY, AND BEYOND p. 3..... The phylum Mollusca p. 4..... A survey of class Bivalvia p. 7..... The Opponobranchia: true ctenidia for a truly vexed issue p. 9..... The Autobranchia: between tenets and question marks p. 13..... Doubly Uniparental Inheritance p. 13..... The choice of the “right” molecular marker in bivalve phylogenetics p. 17..... 1.2. MOLECULAR EVOLUTION MODELS, MULTIGENE BAYESIAN ANALYSIS, AND PARTITION CHOICE p. 23..... CHAPTER 2 – TOWARDS A MOLECULAR PHYLOGENY OF MOLLUSKS: BIVALVES’ EARLY EVOLUTION AS REVEALED BY MITOCHONDRIAL GENES. p. 23..... 2.1. INTRODUCTION p. 28..... 2.2. MATERIALS AND METHODS p. 28..... Specimens’ collection and DNA extraction p. 30..... PCR amplification, cloning, and sequencing p. 30..... Sequence alignment p. 32..... Phylogenetic analyses p. 37..... Taxon sampling p. 39..... Dating p. 43..... 2.3. RESULTS p. 43..... Obtained sequences i p. 44..... Sequence analyses p. 45..... Taxon sampling p. 45..... Maximum Likelihood p. 47..... Bayesian Analyses p. 50..... Dating the tree p. -
Revision of Lineostethus
ZOOLOGIA 36: e29774 ISSN 1984-4689 (online) zoologia.pensoft.net RESEARCH ARTICLE Sexual and reproductive traits of the pearl oyster shrimp Pontonia margarita (Decapoda: Palemonidae), symbiotically inhabiting the mantle cavity of the rugose pen shell Pinna rugosa (Bivalvia: Pinnidae) Diego García-Ulloa 1, Víctor Landa-Jaime 1, Andrés Martín Góngora-Gómez 2, Manuel García-Ulloa 2, Juan Antonio Hernández-Sepúlveda 2 1Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara. Avenida Gómez Farías 82, San Patricio, Melaque, Jalisco, Mexico. 2Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional. Unidad Sinaloa, Blvd. Juan de Dios Bátiz Paredes 250, Col. San Joachin, Guasave, Sinaloa, Mexico. Corresponding author: Víctor Landa Jaime ([email protected]) http://zoobank.org/89936C76-5F8E-4132-91B9-50F0E7EFBE3B ABSTRACT. Symbiosis between decapods and mollusks provides a unique opportunity to examine some of the evolutionary strategies employed by marine invertebrates. We describe the sexual and reproductive traits of the pearl oyster shrimp, Pon- tonia margarita Verril, 1869, found symbiotically inhabiting the mantle cavity of the rugose pen shell, Pinna rugosa Sowerby, 1835. Solitary males and females (ovigerous and non-ovigerous) and heterosexual pairs (with ovigerous and non-ovigerous females) were found in a total of 47 rugose pen shells collected from a sandy area with seagrass meadows on the southeast- ern coast of the Gulf of California, Mexico. The body length (BL) of female P. margarita was correlated with the shell volume of their rugose pen shell host. The sex ratio was female-biased (0.85M:1F). Female P. margarita were larger than their male counterparts in terms of BL, cephalothorax length (CL), and the maximum chelae length of the second pereopod (MCL). -
Assessing Tropical Marine Invertebrates: a Manual for Pacific Island Resource Managers
Assessing Tropical Marine Invertebrates: a Manual for Pacific Island Resource Managers Coastal Fisheries Science and Management Section Secretariat of the Pacific Community by Kalo Pakoa, Kim Friedman, Bradley Moore, Emmanuel Tardy and Ian Bertram This publication has been produced with the assistance of the European Union. The contents of this publication are the sole responsability of the Secretariat of the Pacific Community and can in no way be taken to reflect the views of the European Union. ©Copyright Secretariat of the Pacific Community (SPC) 2014 All rights for commercial / for profit reproduction or translation, in any form, reserved. SPC authorises the partial reproduction or translation of this material for scientific, educational or research purposes, provided that SPC and the source document are properly acknowledged. Permission to reproduce the document and/or translate in whole, in any form, whether for commercial / for profit or non-profit purposes, must be requested in writing. Original SPC artwork may not be altered or separately published without permission. Original text: English Secretariat of the Pacific Community Cataloguing-in-publication data Pakoa, Kalo Assessing Tropical Marine Invertebrates: a Manual for Pacific Island Resource Managers / by Kalo Pakoa, Kim Friedman, Bradley Moore, Emmanuel Tardy and Ian Bertram 1. Sea cucumbers — Oceania. 2. Marine resources — Oceania. 3. Marine invertebrates — Oceania. I. Pakoa, Kalo II. Friedman, Kim J. III. Moore, Bradley, IV. Tardy, Emmanuel, V. Bertram, Ian VI. Title -
Mollusca of New Caledonia
Plate 12 Mollusca of New Caledonia Philippe BOUCHET, Virginie HEROS, Philippe MAESTRATI, Pierre LOZOUET, Rudo von COSEL, Delphine BRABANT Museum National d'Histoire Naturelle, Paris malaco@mnhnJr The first record of a land mollusc (Placostylus fibratus (Martyn, 1784» from New Caledonia can unequivocally be traced to the voyage of Cook that discovered the island in 1774. By contrast, the marine molluscs of New Caledonia ironically remained out of reach to European natural history cab inets until well into the 19th century. New Caledonia remained untouched by the circumnavigating expeditions of the 1830-1840s onboard, e.g., the "Astrolabe", the "Zelee" or the "Uranie". Seashells may have been collected in New Caledonia by whalers and other merchants in search of sandalwood or beche-de-mer, and then traded, but by the time they reached European conchologists, all indica tion of their geographical origin had faded away. It is impossible to tell whether Indo-West Pacific species originally described from localities such as "Mers du Sud" or "Southern Seas" were original ly collected in, e.g., Fiji, Tahiti, Australia or New Caledonia. However, even ifNew Caledonian shells may have arrived on the European market or in cabinets, it must have been in very small amount, as such an emblematic species of the New Caledonia molluscan fauna as Nautilus macromphalus was not named until 1859. In fact, it was not until Xavier Montrouzier set foot in New Caledonia that the island was placed on the map of marine conchology. From there on, three major periods can be rec ognized in the history of New Caledonia marine malacology. -
Bivalvia: Pteriidae
ICLARM Studies and Reviews 21 The Biology and Culture of Pearl Oysters (Bivalvia: Pteriidae) M.H. GERVIS and N.A. SIMS ODA.. ;1"16,.' LAM,, OVERSEAS DEVELOPMENT ADMINISTRATION (ODA) INTERNATIONAL CENTER FOR LIVING AQUATIC OF THE UNITED KINGDOM RESOURCES MANAGEMENT LONDON, ENGLAND MANILA, PHILIPPINES The Biology and Culture of Pearl Oysters (Bivalvia: Pteriidae) M.H. GERVIS and N.A. SIMS 1992 VERSEAS DEVELOPMENT ADMINISTRATION (ODA) INTERNATIONAL CENTER FOR LIVING AQUATIC OF THE UNITED KINGDOM RESOURCES MANAGEMENT LONDON, ENGLAND MANILA, PHILIPPINES The Biology and Culture of Pearl Oysters (Bivalvia: Pteriidae) M.H. GERVIS AND N.A. SIMS 1992 Printed in Manila, Philippines Published by the Overseas Development Administration 94 Victoria Street, London SWlE 5JL, Utiited Kingdcm and the International Center for Living Aquatic Resources Management, MC P.O. Box 1501, Makati, Metro Manila, Philippires. ICLARM's Technical Series were developed in response to the lack of existing publishing outlets for longer papers on tropical fisheries research. The ICLARM Studies and Reviews series consists of concise documents providing thorough coverage of topics of interest to the Center, which are undertaken by staff or by external specialists on commission. Essentially, all documents in the series are carefolly peer reviewed externally and internally. A number have been rejected. Those published are thus prnimary literature. Between 1,000 and 2,000 copies of each title are disseminated - sold or provided in exchange or free of charge. Gervis, M.H. and N.A. Sims. 1992. The biology and culture of pearl oysters (Bivalvia: Pteriidae). ICLARM Stud. Rev. 21, 49 p. ISSN 0115-4389 ISBN 971-8709.27-4 Cover: Top: Ago Bay, Japan - Home of pearl culture. -
Northernmost Record of the Pantropical Portunid Crab Cronius Ruber in the Eastern Atlantic (Canary Islands): Natural Range Extension Or Human-Mediated Introduction?
SCIENTIA MARINA 81(1) March 2017, 81-89, Barcelona (Spain) ISSN-L: 0214-8358 doi: http://dx.doi.org/10.3989/scimar.04551.17B Northernmost record of the pantropical portunid crab Cronius ruber in the eastern Atlantic (Canary Islands): natural range extension or human-mediated introduction? José A. González 1, Raül Triay-Portella 1, Aitor Escribano 2, José A. Cuesta 3 1 Ecología Marina Aplicada y Pesquerías, i-UNAT, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain. (JAG) (Corresponding author) E-mail: [email protected]. ORCID-iD: http://orcid.org/0000-0001-8584-6731 (RT-P) E-mail: [email protected]. ORCID-iD: http://orcid.org/0000-0002-7591-6254 2 Université de Liège, 7 Place du 20 Août, 4000 Liège, Belgium. (AE) E-mail: [email protected]. ORCID-iD: http://orcid.org/0000-0002-1405-5227 3 Instituto de Ciencias Marinas de Andalucía, CSIC, Avda. República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain. (JAC) E-mail: [email protected]. ORCID-iD: http://orcid.org/0000-0001-9482-2336 Summary: The pantropical crab Cronius ruber (Lamarck, 1818) (Brachyura: Portunidae) is recorded for the first time from the Canary Islands. Previously known from off Cape Verde Islands and Senegal, this is the northernmost record of the species in the eastern Atlantic Ocean. Crabs have been caught by means of a collecting small trap for sampling in shallow waters, and then identified by both morphological characters and DNA barcoding (16S). Cytochrome c oxidase I partial sequence has been obtained for this species for the first time. -
Checklist of the Mollusca of Cocos (Keeling) / Christmas Island Ecoregion
RAFFLES BULLETIN OF ZOOLOGY 2014 RAFFLES BULLETIN OF ZOOLOGY Supplement No. 30: 313–375 Date of publication: 25 December 2014 http://zoobank.org/urn:lsid:zoobank.org:pub:52341BDF-BF85-42A3-B1E9-44DADC011634 Checklist of the Mollusca of Cocos (Keeling) / Christmas Island ecoregion Siong Kiat Tan* & Martyn E. Y. Low Abstract. An annotated checklist of the Mollusca from the Australian Indian Ocean Territories (IOT) of Christmas Island (Indian Ocean) and the Cocos (Keeling) Islands is presented. The checklist combines data from all previous studies and new material collected during the recent Christmas Island Expeditions organised by the Lee Kong Chian Natural History Museum (formerly the Raffles Museum of Biodiversty Resarch), Singapore. The checklist provides an overview of the diversity of the malacofauna occurring in the Cocos (Keeling) / Christmas Island ecoregion. A total of 1,178 species representing 165 families are documented, with 760 (in 130 families) and 757 (in 126 families) species recorded from Christmas Island and the Cocos (Keeling) Islands, respectively. Forty-five species (or 3.8%) of these species are endemic to the Australian IOT. Fifty-seven molluscan records for this ecoregion are herein published for the first time. We also briefly discuss historical patterns of discovery and endemism in the malacofauna of the Australian IOT. Key words. Mollusca, Polyplacophora, Bivalvia, Gastropoda, Christmas Island, Cocos (Keeling) Islands, Indian Ocean INTRODUCTION The Cocos (Keeling) Islands, which comprise North Keeling Island (a single island atoll) and the South Keeling Christmas Island (Indian Ocean) (hereafter CI) and the Cocos Islands (an atoll consisting of more than 20 islets including (Keeling) Islands (hereafter CK) comprise the Australian Horsburgh Island, West Island, Direction Island, Home Indian Ocean Territories (IOT). -
University of Cincinnati
UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Bivalve Epibiont Armor: The Evolution of an Antipredatory Strategy A thesis submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Geological Sciences of the College of Arts and Sciences 2003 by Donna Carlson Jones B.S., State University of New York, College at Fredonia, 1995 M.S., University of Rochester, 1998 Committee Chair: Arnold I. Miller Abstract Conventionally, spines on bivalves and other organisms are thought to serve an antipredatory function; however, this has been tested minimally for epifaunal bivalves, and completed research is contradictory. It is possible that spines do not serve an antipredatory function directly, but provide a substrate for epibionts, those organisms that encrust the outer surface of the bivalve’s shell. Although potentially harmful, coverage by epibionts would benefit the bivalve by concealing it from potential predators. The first portion of this project examined the mechanical behavior of crushed spined and un- spined shells of one epifaunal bivalve (Spondylus regius) in order to ascertain if spines increase the amount of work or force required to fail a shell, elucidating a potential protective function of the spines. A second study demonstrated that epibiont acquisition on various morphologies (including spined, ribbed and smooth varieties) of epifaunal bivalve shells is differential with respect to epibiont species richness and percent coverage.