Phase II Proposal Instructions 25.0

Total Page:16

File Type:pdf, Size:1020Kb

Phase II Proposal Instructions 25.0 Phase II Proposal Instructions 25.0 HST Cycle 25 Phase II Proposal Instructions Operations and Data Management Division 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration Revision History Release Version Type Editors Date Cycle 25 GO June 2017 HST Instrument Team Members and S. Rose See Significant Changes Since the Previous Cycle Cycle 24 GO June 2016 HST Instrument Team Members and S. Rose Cycle 23 GO June 2015 HST Instrument Team Members and S. Rose Cycle 22 GO June 2014 J. Younger and S. Rose 21.0 GO May 2013 J. Younger and S. Rose 20.0 GO June 2012 J. Younger and S. Rose This version is issued in coordination with the APT release and should be fully compliant with Cycle 25.2 APT. This is the General Observer version. If you would like some hints on how to read and use this document, see: Some Pointers in PDF and APT JavaHelp How to get help 1. Visit STScI’s Web site: http://www.stsci.edu/hst where you will find resources for observing with HST and working with HST data. 2. Contact your Program Coordinator (PC) or Contact Scientist (CS) you have been assigned. These individuals were identified in the notification letter from STScI. 3. Send e-mail to [email protected], or call 1-800-544-8125. From outside the United States, call 1-410-338-1082. Table of Contents HST Cycle 25 Phase II Proposal Instructions Part I: Phase II Proposal Writing ................................. 1 Chapter 1: About This Document ............................... 2 1.1 Document Design and Structure ........................................ 3 1.2 Significant Changes Since the Previous Cycle............... 3 1.3 Document Presentation ........................................................ 4 1.4 Technical Content .................................................................. 4 1.5 Where to Find Additional Information................................ 5 1.6 Some Pointers in PDF and APT JavaHelp ...................... 5 Chapter 2: The Basics of Phase II Proposals... 8 2.1 How to Prepare and Submit Phase II Information.......... 8 2.1.1 Astronomer’s Proposal Tool (APT)........................................ 8 2.1.2 Entering Information: The APT Graphical Use Interface (GUI) versus the Text Proposal File ................................. 9 2.1.3 APT Tools............................................................................ 10 2.1.4 Submitting Your Program .................................................... 10 2.2 What to Submit ......................................................................11 2.3 General Instructions ............................................................ 12 2.3.1 Proposal Information [Proposal_Information] ...................... 12 2.3.2 Proposal Description ........................................................... 14 2.3.3 Investigators ........................................................................ 14 2.3.4 Target Information [Fixed_Targets, Solar_System_Targets, Generic_Targets] .................................... 14 2.3.5 Visit Information [Visits] ....................................................... 14 iii iv 2.4 Examples and General Advice.......................................... 15 2.4.1 Acquisitions and Pointings................................................... 15 2.4.2 Examples............................................................................. 16 2.4.3 Common Problems.............................................................. 16 2.4.4 Consideration of Limited Resources.................................... 17 2.5 Text Proposal File ................................................................ 18 2.5.1 Basic Syntax Rules.............................................................. 18 2.5.2 Sample Text Proposal File Template .................................. 19 Chapter 3: Fixed and Generic Targets ................. 23 3.1 Target Identification ............................................................. 24 3.1.1 Target Number [Target_Number] ........................................ 24 3.1.2 Target Name [Target_Name and Alternate_Names]........... 24 3.1.3 Target Category and Target Description [Description] ........ 26 3.1.4 Target Extent [Extended] Required for COS observations only............................................................. 27 3.2 Target Coordinates .............................................................. 32 3.2.1 Required Accuracies of Target Positions ............................ 32 3.2.2 Target Position Type [Position]............................................ 33 3.2.3 Equatorial Coordinates........................................................ 33 3.2.4 Positional Offsets................................................................. 35 3.2.5 Region of Sky (Extended Targets) ...................................... 36 3.2.6 Determining Coordinates in the Reference Frame Appropriate for HST Observations..................................... 37 3.2.7 Getting Coordinates from the GSC2 or DSS....................... 38 3.2.8 Early Acquisitions ................................................................ 39 3.2.9 Equinox for Coordinates [Equinox]...................................... 39 3.2.10 Coordinate Reference Frame [Reference_Frame]............ 39 3.2.11 Is Proper Motion or Parallax Relevant?............................. 40 3.3 Target Brightness and Bright Object Checking............. 42 3.3.1 Flux Data [Flux and Other_Fluxes]...................................... 42 3.3.2 Radial Velocity or Redshift [RV_ or _Z]............................... 44 3.3.3 Bright-Object Constraints .................................................... 44 3.4 Comments [Comments]...................................................... 46 3.5 Generic Targets [Generic_Targets] ................................. 46 3.5.1 Target Number(s) [Target_Number].................................... 47 3.5.2 Target Name [Target_Name]............................................... 47 3.5.3 Target Description [Description] .......................................... 47 3.5.4 Flux Data [Flux] ................................................................... 47 3.5.5 Comments [Comments]....................................................... 47 3.5.6 Generic Target Specifications [Criteria]............................... 47 v Chapter 4: Solar System Targets.............................. 48 4.1 Introduction ............................................................................ 49 4.2 Target Identification ............................................................. 50 4.2.1 Target Number [Target_Number] ........................................ 50 4.2.2 Target Name [Target_Name]............................................... 50 4.2.3 Target Description [Description] .......................................... 53 4.2.4 Target Extent [Extended]:.................................................... 53 4.3 Pointing HST - Target Position ......................................... 54 4.3.1 Target Pointing Specification (TPS) and Levels.................. 54 4.3.2 Target Position Level 1 [Level_1] ........................................ 56 4.3.3 Target Position Level 2 [Level_2] ........................................ 58 4.3.4 Target Position Level 3 [Level_3] ........................................ 65 4.3.5 Ephemeris Center [Ephem_Center] .................................... 65 4.3.6 Ephemeris Uncertainty [Ephem_Uncert] ............................. 65 4.3.7 Acquisition Uncertainty [Acq_Uncert] .................................. 66 4.4 Observing Windows [Windows] ........................................ 66 4.4.1 Default Target Windows ...................................................... 71 4.5 Flux Data [Flux and Other_Fluxes]............................... 72 4.6 Comments [Comments]...................................................... 73 4.7 Illustrations of Orbital Longitude....................................... 73 4.8 Examples of Target List Blocks ........................................ 74 Chapter 5: Visits, Exposures and Exposure Groups......................................................... 77 5.1 Visit Number and Status ................................................... 79 5.2 Visit Label [Visit_Label]....................................................... 80 5.3 Visit-level Special Requirements [Visit_Requirements] ................................................................... 80 5.4 On Hold Comments [On_Hold_Comments] .................. 81 5.5 Visit Comments [Visit_Comments]................................... 81 5.6 Exposure Number [Exposure_Number].......................... 81 5.7 Exposure Label [Exposure_Label] ................................... 82 5.8 Target Name [Target_Name] ............................................ 82 5.8.1 Astronomical Targets........................................................... 82 5.8.2 Special Targets.................................................................... 82 5.9 Instrument Configuration [Config] .................................... 83 5.10 Operating Mode [Opmode].............................................. 84 vi 5.11 Aperture or Field of View [Aperture].............................. 84 5.12 Spectral Element [Sp_Element] ..................................... 85 5.13 Central Wavelength or Range if Grating or Prism Used [Wavelength]...................................................... 85 5.14 Number of Times to Iterate the Exposure [Number_of_Iterations] ..............................................................
Recommended publications
  • Arxiv:1912.09192V2 [Astro-Ph.EP] 24 Feb 2020
    Draft version February 25, 2020 Typeset using LATEX preprint style in AASTeX62 Photometric analyses of Saturn's small moons: Aegaeon, Methone and Pallene are dark; Helene and Calypso are bright. M. M. Hedman,1 P. Helfenstein,2 R. O. Chancia,1, 3 P. Thomas,2 E. Roussos,4 C. Paranicas,5 and A. J. Verbiscer6 1Department of Physics, University of Idaho, Moscow, ID 83844 2Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca NY 14853 3Center for Imaging Science, Rochester Institute of Technology, Rochester NY 14623 4Max Planck Institute for Solar System Research, G¨ottingen,Germany 37077 5APL, John Hopkins University, Laurel MD 20723 6Department of Astronomy, University of Virginia, Charlottesville, VA 22904 ABSTRACT We examine the surface brightnesses of Saturn's smaller satellites using a photometric model that explicitly accounts for their elongated shapes and thus facilitates compar- isons among different moons. Analyses of Cassini imaging data with this model reveals that the moons Aegaeon, Methone and Pallene are darker than one would expect given trends previously observed among the nearby mid-sized satellites. On the other hand, the trojan moons Calypso and Helene have substantially brighter surfaces than their co-orbital companions Tethys and Dione. These observations are inconsistent with the moons' surface brightnesses being entirely controlled by the local flux of E-ring par- ticles, and therefore strongly imply that other phenomena are affecting their surface properties. The darkness of Aegaeon, Methone and Pallene is correlated with the fluxes of high-energy protons, implying that high-energy radiation is responsible for darkening these small moons. Meanwhile, Prometheus and Pandora appear to be brightened by their interactions with nearby dusty F ring, implying that enhanced dust fluxes are most likely responsible for Calypso's and Helene's excess brightness.
    [Show full text]
  • Cassini Update
    Cassini Update Dr. Linda Spilker Cassini Project Scientist Outer Planets Assessment Group 22 February 2017 Sols%ce Mission Inclina%on Profile equator Saturn wrt Inclination 22 February 2017 LJS-3 Year 3 Key Flybys Since Aug. 2016 OPAG T124 – Titan flyby (1584 km) • November 13, 2016 • LAST Radio Science flyby • One of only two (cf. T106) ideal bistatic observations capturing Titan’s Northern Seas • First and only bistatic observation of Punga Mare • Western Kraken Mare not explored by RSS before T125 – Titan flyby (3158 km) • November 29, 2016 • LAST Optical Remote Sensing targeted flyby • VIMS high-resolution map of the North Pole looking for variations at and around the seas and lakes. • CIRS last opportunity for vertical profile determination of gases (e.g. water, aerosols) • UVIS limb viewing opportunity at the highest spatial resolution available outside of occultations 22 February 2017 4 Interior of Hexagon Turning “Less Blue” • Bluish to golden haze results from increased production of photochemical hazes as north pole approaches summer solstice. • Hexagon acts as a barrier that prevents haze particles outside hexagon from migrating inward. • 5 Refracting Atmosphere Saturn's• 22unlit February rings appear 2017 to bend as they pass behind the planet’s darkened limb due• 6 to refraction by Saturn's upper atmosphere. (Resolution 5 km/pixel) Dione Harbors A Subsurface Ocean Researchers at the Royal Observatory of Belgium reanalyzed Cassini RSS gravity data• 7 of Dione and predict a crust 100 km thick with a global ocean 10’s of km deep. Titan’s Summer Clouds Pose a Mystery Why would clouds on Titan be visible in VIMS images, but not in ISS images? ISS ISS VIMS High, thin cirrus clouds that are optically thicker than Titan’s atmospheric haze at longer VIMS wavelengths,• 22 February but optically 2017 thinner than the haze at shorter ISS wavelengths, could be• 8 detected by VIMS while simultaneously lost in the haze to ISS.
    [Show full text]
  • Dynamics of Saturn's Small Moons in Coupled First Order Planar Resonances
    Dynamics of Saturn's small moons in coupled first order planar resonances Maryame El Moutamid Bruno Sicardy and St´efanRenner LESIA/IMCCE | Paris Observatory 26 juin 2012 Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Saturn system Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Very small moons Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk New satellites : Anthe, Methone and Aegaeon (Cooper et al., 2008 ; Hedman et al., 2009, 2010 ; Porco et al., 2005) Very small (0.5 km to 2 km) Vicinity of the Mimas orbit (outside and inside) The aims of the work A better understanding : - of the dynamics of this population of news satellites - of the scenario of capture into mean motion resonances Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Dynamical structure of the system µ µ´ Mp We consider only : - The resonant terms - The secular terms causing the precessions of the orbit When µ ! 0 ) The symmetry is broken ) different kinds of resonances : - Lindblad Resonance - Corotation Resonance D'Alembert rules : 0 0 c = (m + 1)λ − mλ − $ 0 L = (m + 1)λ − mλ − $ Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Corotation Resonance - Aegaeon (7/6) : c = 7λMimas − 6λAegaeon − $Mimas - Methone (14/15) : c = 15λMethone − 14λMimas − $Mimas - Anthe (10/11) : c = 11λAnthe − 10λMimas − $Mimas Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Corotation resonances Mean motion resonance : n1 = m+q n2 m Particular case : Lagrangian Equilibrium Points Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Adam's ring and Galatea Maryame
    [Show full text]
  • The Orbits of Saturn's Small Satellites Derived From
    The Astronomical Journal, 132:692–710, 2006 August A # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE ORBITS OF SATURN’S SMALL SATELLITES DERIVED FROM COMBINED HISTORIC AND CASSINI IMAGING OBSERVATIONS J. N. Spitale CICLOPS, Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301; [email protected] R. A. Jacobson Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 C. C. Porco CICLOPS, Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 and W. M. Owen, Jr. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 Received 2006 February 28; accepted 2006 April 12 ABSTRACT We report on the orbits of the small, inner Saturnian satellites, either recovered or newly discovered in recent Cassini imaging observations. The orbits presented here reflect improvements over our previously published values in that the time base of Cassini observations has been extended, and numerical orbital integrations have been performed in those cases in which simple precessing elliptical, inclined orbit solutions were found to be inadequate. Using combined Cassini and Voyager observations, we obtain an eccentricity for Pan 7 times smaller than previously reported because of the predominance of higher quality Cassini data in the fit. The orbit of the small satellite (S/2005 S1 [Daphnis]) discovered by Cassini in the Keeler gap in the outer A ring appears to be circular and coplanar; no external perturbations are appar- ent. Refined orbits of Atlas, Prometheus, Pandora, Janus, and Epimetheus are based on Cassini , Voyager, Hubble Space Telescope, and Earth-based data and a numerical integration perturbed by all the massive satellites and each other.
    [Show full text]
  • Astrometric Positions for 18 Irregular Satellites of Giant Planets from 23
    Astronomy & Astrophysics manuscript no. Irregulares c ESO 2018 October 20, 2018 Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations,⋆,⋆⋆,⋆⋆⋆,⋆⋆⋆⋆ A. R. Gomes-Júnior1, M. Assafin1,†, R. Vieira-Martins1, 2, 3,‡, J.-E. Arlot4, J. I. B. Camargo2, 3, F. Braga-Ribas2, 5,D.N. da Silva Neto6, A. H. Andrei1, 2,§, A. Dias-Oliveira2, B. E. Morgado1, G. Benedetti-Rossi2, Y. Duchemin4, 7, J. Desmars4, V. Lainey4, W. Thuillot4 1 Observatório do Valongo/UFRJ, Ladeira Pedro Antônio 43, CEP 20.080-090 Rio de Janeiro - RJ, Brazil e-mail: [email protected] 2 Observatório Nacional/MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro - RJ, Brazil e-mail: [email protected] 3 Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil 4 Institut de mécanique céleste et de calcul des éphémérides - Observatoire de Paris, UMR 8028 du CNRS, 77 Av. Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 5 Federal University of Technology - Paraná (UTFPR / DAFIS), Rua Sete de Setembro, 3165, CEP 80230-901, Curitiba, PR, Brazil 6 Centro Universitário Estadual da Zona Oeste, Av. Manual Caldeira de Alvarenga 1203, CEP 23.070-200 Rio de Janeiro RJ, Brazil 7 ESIGELEC-IRSEEM, Technopôle du Madrillet, Avenue Galilée, 76801 Saint-Etienne du Rouvray, France Received: Abr 08, 2015; accepted: May 06, 2015 ABSTRACT Context. The irregular satellites of the giant planets are believed to have been captured during the evolution of the solar system. Knowing their physical parameters, such as size, density, and albedo is important for constraining where they came from and how they were captured.
    [Show full text]
  • 3.1 Discipline Science Results
    CASSINI FINAL MISSION REPORT 2019 1 SATURN Before Cassini, scientists viewed Saturn’s unique features only from Earth and from a few spacecraft flybys. During more than a decade orbiting the gas giant, Cassini studied the composition and temperature of Saturn’s upper atmosphere as the seasons changed there. Cassini also provided up-close observations of Saturn’s exotic storms and jet streams, and heard Saturn’s lightning, which cannot be detected from Earth. The Grand Finale orbits provided valuable data for understanding Saturn’s interior structure and magnetic dynamo, in addition to providing insight into material falling into the atmosphere from parts of the rings. Cassini’s Saturn science objectives were overseen by the Saturn Working Group (SWG). This group consisted of the scientists on the mission interested in studying the planet itself and phenomena which influenced it. The Saturn Atmospheric Modeling Working Group (SAMWG) was formed to specifically characterize Saturn’s uppermost atmosphere (thermosphere) and its variation with time, define the shape of Saturn’s 100 mbar and 1 bar pressure levels, and determine when the Saturn safely eclipsed Cassini from the Sun. Its membership consisted of experts in studying Saturn’s upper atmosphere and members of the engineering team. 2 VOLUME 1: MISSION OVERVIEW & SCIENCE OBJECTIVES AND RESULTS CONTENTS SATURN ........................................................................................................................................................................... 1 Executive
    [Show full text]
  • CALCEPH - Fortran 77/90/95 Language Release 3.5.0
    CALCEPH - Fortran 77/90/95 language Release 3.5.0 M. Gastineau, J. Laskar, A. Fienga, H. Manche Aug 19, 2021 CONTENTS 1 Introduction 3 2 Installation 5 2.1 Unix-like system (Linux, Mac OS X, BSD, Cygwin, ...)........................5 2.1.1 Quick instructions........................................5 2.1.2 Detailed instructions......................................5 2.2 Windows system.............................................7 2.2.1 Using the Microsoft Visual C++ compiler...........................7 2.2.2 Using the MinGW.......................................9 3 Library interface 11 3.1 A simple example program........................................ 11 3.2 Headers and Libraries.......................................... 11 3.2.1 Compilation on a Unix-like system............................... 12 3.2.2 Compilation on a Windows system............................... 12 3.3 Types................................................... 12 3.4 Constants................................................. 12 4 Multiple file access functions 15 4.1 Thread notes............................................... 15 4.2 Usage................................................... 15 4.3 Functions................................................. 15 4.3.1 calceph_open.......................................... 15 4.3.2 f90calceph_open_array..................................... 16 4.3.3 f90calceph_prefetch....................................... 17 4.3.4 f90calceph_isthreadsafe..................................... 17 4.3.5 f90calceph_compute.....................................
    [Show full text]
  • Voyager 1 Encounter with the Saturnian System Author(S): E
    Voyager 1 Encounter with the Saturnian System Author(s): E. C. Stone and E. D. Miner Source: Science, New Series, Vol. 212, No. 4491 (Apr. 10, 1981), pp. 159-163 Published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/1685660 . Accessed: 04/02/2014 18:59 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Association for the Advancement of Science is collaborating with JSTOR to digitize, preserve and extend access to Science. http://www.jstor.org This content downloaded from 131.215.71.79 on Tue, 4 Feb 2014 18:59:21 PM All use subject to JSTOR Terms and Conditions was complicated by several factors. Sat- urn's greater distance necessitated a fac- tor of 3 reduction in the rate of data transmission (44,800 bits per second at Saturn compared to 115,200 bits per sec- Reports ond at Jupiter). Furthermore, Saturn's satellites and rings provided twice as many objects to be studied at Saturn as at Jupiter, and the close approaches to Voyager 1 Encounter with the Saturnian System these objects all occurred within a 24- hour period, compared to nearly 72 Abstract.
    [Show full text]
  • THE SATURNIAN G RING: a SHORT NOTE ABOUT ITS FORMATION Revista Mexicana De Astronomía Y Astrofísica, Vol
    Revista Mexicana de Astronomía y Astrofísica ISSN: 0185-1101 [email protected] Instituto de Astronomía México Maravilla, D.; Leal-Herrera, J. L. THE SATURNIAN G RING: A SHORT NOTE ABOUT ITS FORMATION Revista Mexicana de Astronomía y Astrofísica, vol. 50, núm. 2, octubre, 2014, pp. 341- 347 Instituto de Astronomía Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57148278016 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Astronom´ıa y Astrof´ısica, 50, 341–347 (2014) THE SATURNIAN G RING: A SHORT NOTE ABOUT ITS FORMATION D. Maravilla and J. L. Leal-Herrera Departamento de Ciencias Espaciales, Instituto de Geof´ısica, UNAM, Mexico Received March 21 2014; accepted August 18 2014 RESUMEN En este trabajo se estudia la formaci´on del anillo G de Saturno considerando que el sat´elite Ege´on es la fuente de part´ıculas de polvo. El polvo que forma el anillo se produce por impactos entre los micrometeoroides interplanetarios que ingresan en la magnet´osfera Saturniana y la superficie de Ege´on. Para explicar c´omo se forma el anillo se usa un modelo gravito-electrodin´amico suponiendo que las fuerzas gravitacional y electromagn´etica son las ´unicas fuerzas que modulan el comportamiento din´amico de las part´ıculas de polvo. Las soluciones del modelo muestran que existen reg´ımenes de confinamiento (captura) as´ıcomo reg´ımenes de escape de polvo en la vecindad de Ege´on.
    [Show full text]
  • Moons of Saturn
    National Aeronautics and Space Administration 0 300,000,000 900,000,000 1,500,000,000 2,100,000,000 2,700,000,000 3,300,000,000 3,900,000,000 4,500,000,000 5,100,000,000 5,700,000,000 kilometers Moons of Saturn www.nasa.gov Saturn, the sixth planet from the Sun, is home to a vast array • Phoebe orbits the planet in a direction opposite that of Saturn’s • Fastest Orbit Pan of intriguing and unique satellites — 53 plus 9 awaiting official larger moons, as do several of the recently discovered moons. Pan’s Orbit Around Saturn 13.8 hours confirmation. Christiaan Huygens discovered the first known • Mimas has an enormous crater on one side, the result of an • Number of Moons Discovered by Voyager 3 moon of Saturn. The year was 1655 and the moon is Titan. impact that nearly split the moon apart. (Atlas, Prometheus, and Pandora) Jean-Dominique Cassini made the next four discoveries: Iapetus (1671), Rhea (1672), Dione (1684), and Tethys (1684). Mimas and • Enceladus displays evidence of active ice volcanism: Cassini • Number of Moons Discovered by Cassini 6 Enceladus were both discovered by William Herschel in 1789. observed warm fractures where evaporating ice evidently es- (Methone, Pallene, Polydeuces, Daphnis, Anthe, and Aegaeon) The next two discoveries came at intervals of 50 or more years capes and forms a huge cloud of water vapor over the south — Hyperion (1848) and Phoebe (1898). pole. ABOUT THE IMAGES As telescopic resolving power improved, Saturn’s family of • Hyperion has an odd flattened shape and rotates chaotically, 1 2 3 1 Cassini’s visual known moons grew.
    [Show full text]
  • The Cassini-Huygens Mission Overview
    SpaceOps 2006 Conference AIAA 2006-5502 The Cassini-Huygens Mission Overview N. Vandermey and B. G. Paczkowski Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 The Cassini-Huygens Program is an international science mission to the Saturnian system. Three space agencies and seventeen nations contributed to building the Cassini spacecraft and Huygens probe. The Cassini orbiter is managed and operated by NASA's Jet Propulsion Laboratory. The Huygens probe was built and operated by the European Space Agency. The mission design for Cassini-Huygens calls for a four-year orbital survey of Saturn, its rings, magnetosphere, and satellites, and the descent into Titan’s atmosphere of the Huygens probe. The Cassini orbiter tour consists of 76 orbits around Saturn with 45 close Titan flybys and 8 targeted icy satellite flybys. The Cassini orbiter spacecraft carries twelve scientific instruments that are performing a wide range of observations on a multitude of designated targets. The Huygens probe carried six additional instruments that provided in-situ sampling of the atmosphere and surface of Titan. The multi-national nature of this mission poses significant challenges in the area of flight operations. This paper will provide an overview of the mission, spacecraft, organization and flight operations environment used for the Cassini-Huygens Mission. It will address the operational complexities of the spacecraft and the science instruments and the approach used by Cassini- Huygens to address these issues. I. The Mission Saturn has fascinated observers for over 300 years. The only planet whose rings were visible from Earth with primitive telescopes, it was not until the age of robotic spacecraft that questions about the Saturnian system’s composition could be answered.
    [Show full text]
  • An Analysis of the Environment and Gas Content of Luminous Infrared Galaxies
    Abstract Title of Dissertation: An Analysis of the Environment and Gas Content of Luminous Infrared Galaxies Bevin Ashley Zauderer, Doctor of Philosophy, 2010 Dissertation directed by: Professor Stuart N. Vogel Department of Astronomy Luminous and ultraluminous infrared galaxies (U/LIRGs) represent a population among the most extreme in our universe, emitting an extraordinary amount of energy at infrared wavelengths from dust heated by prolific star formation and/or an active galactic nucleus (AGN). We present three investigations of U/LIRGs to better understand their global environment, their interstellar medium properties, and their nuclear region where molecular gas feeds a starburst or AGN. To study the global environment, we compute the spatial cluster-galaxy amplitude, Bgc, for 76 z < 0.3 ULIRGs. We find the environment of ULIRGs is similar to galaxies in the field. Comparing our results with other galactic populations, we conclude that ULIRGs might be a phase in the lives of AGNs and QSOs, but not all moderate-luminosity QSOs necessarily pass through a ULIRG phase. To study the interstellar medium properties, we observe H I and other spectral lines in 77 U/LIRGs with the Arecibo telescope. We detect H I in emission or absorption in 61 of 77 galaxies, 52 being new detections. We compute the implied gas mass for galaxies with emission, and optical depths and column densities for the seven sources with absorption detections. To study the molecular gas in the nuclear region of LIRG Arp 193, sub-arcsecond scale angular resolution is required and a method of atmospheric phase correction imperative. We present results of a large experiment observing bright quasars to test the limitations of the Combined Array for Research in Millimeter Astronomy’s Paired Antenna Calibration System (C-PACS) for atmospheric phase correction.
    [Show full text]