CALCEPH - Octave/Matlab Language Release 3.5.0
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cassini Update
Cassini Update Dr. Linda Spilker Cassini Project Scientist Outer Planets Assessment Group 22 February 2017 Sols%ce Mission Inclina%on Profile equator Saturn wrt Inclination 22 February 2017 LJS-3 Year 3 Key Flybys Since Aug. 2016 OPAG T124 – Titan flyby (1584 km) • November 13, 2016 • LAST Radio Science flyby • One of only two (cf. T106) ideal bistatic observations capturing Titan’s Northern Seas • First and only bistatic observation of Punga Mare • Western Kraken Mare not explored by RSS before T125 – Titan flyby (3158 km) • November 29, 2016 • LAST Optical Remote Sensing targeted flyby • VIMS high-resolution map of the North Pole looking for variations at and around the seas and lakes. • CIRS last opportunity for vertical profile determination of gases (e.g. water, aerosols) • UVIS limb viewing opportunity at the highest spatial resolution available outside of occultations 22 February 2017 4 Interior of Hexagon Turning “Less Blue” • Bluish to golden haze results from increased production of photochemical hazes as north pole approaches summer solstice. • Hexagon acts as a barrier that prevents haze particles outside hexagon from migrating inward. • 5 Refracting Atmosphere Saturn's• 22unlit February rings appear 2017 to bend as they pass behind the planet’s darkened limb due• 6 to refraction by Saturn's upper atmosphere. (Resolution 5 km/pixel) Dione Harbors A Subsurface Ocean Researchers at the Royal Observatory of Belgium reanalyzed Cassini RSS gravity data• 7 of Dione and predict a crust 100 km thick with a global ocean 10’s of km deep. Titan’s Summer Clouds Pose a Mystery Why would clouds on Titan be visible in VIMS images, but not in ISS images? ISS ISS VIMS High, thin cirrus clouds that are optically thicker than Titan’s atmospheric haze at longer VIMS wavelengths,• 22 February but optically 2017 thinner than the haze at shorter ISS wavelengths, could be• 8 detected by VIMS while simultaneously lost in the haze to ISS. -
Dynamics of Saturn's Small Moons in Coupled First Order Planar Resonances
Dynamics of Saturn's small moons in coupled first order planar resonances Maryame El Moutamid Bruno Sicardy and St´efanRenner LESIA/IMCCE | Paris Observatory 26 juin 2012 Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Saturn system Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Very small moons Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk New satellites : Anthe, Methone and Aegaeon (Cooper et al., 2008 ; Hedman et al., 2009, 2010 ; Porco et al., 2005) Very small (0.5 km to 2 km) Vicinity of the Mimas orbit (outside and inside) The aims of the work A better understanding : - of the dynamics of this population of news satellites - of the scenario of capture into mean motion resonances Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Dynamical structure of the system µ µ´ Mp We consider only : - The resonant terms - The secular terms causing the precessions of the orbit When µ ! 0 ) The symmetry is broken ) different kinds of resonances : - Lindblad Resonance - Corotation Resonance D'Alembert rules : 0 0 c = (m + 1)λ − mλ − $ 0 L = (m + 1)λ − mλ − $ Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Corotation Resonance - Aegaeon (7/6) : c = 7λMimas − 6λAegaeon − $Mimas - Methone (14/15) : c = 15λMethone − 14λMimas − $Mimas - Anthe (10/11) : c = 11λAnthe − 10λMimas − $Mimas Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Corotation resonances Mean motion resonance : n1 = m+q n2 m Particular case : Lagrangian Equilibrium Points Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Adam's ring and Galatea Maryame -
CALCEPH - Fortran 77/90/95 Language Release 3.5.0
CALCEPH - Fortran 77/90/95 language Release 3.5.0 M. Gastineau, J. Laskar, A. Fienga, H. Manche Aug 19, 2021 CONTENTS 1 Introduction 3 2 Installation 5 2.1 Unix-like system (Linux, Mac OS X, BSD, Cygwin, ...)........................5 2.1.1 Quick instructions........................................5 2.1.2 Detailed instructions......................................5 2.2 Windows system.............................................7 2.2.1 Using the Microsoft Visual C++ compiler...........................7 2.2.2 Using the MinGW.......................................9 3 Library interface 11 3.1 A simple example program........................................ 11 3.2 Headers and Libraries.......................................... 11 3.2.1 Compilation on a Unix-like system............................... 12 3.2.2 Compilation on a Windows system............................... 12 3.3 Types................................................... 12 3.4 Constants................................................. 12 4 Multiple file access functions 15 4.1 Thread notes............................................... 15 4.2 Usage................................................... 15 4.3 Functions................................................. 15 4.3.1 calceph_open.......................................... 15 4.3.2 f90calceph_open_array..................................... 16 4.3.3 f90calceph_prefetch....................................... 17 4.3.4 f90calceph_isthreadsafe..................................... 17 4.3.5 f90calceph_compute..................................... -
THE SATURNIAN G RING: a SHORT NOTE ABOUT ITS FORMATION Revista Mexicana De Astronomía Y Astrofísica, Vol
Revista Mexicana de Astronomía y Astrofísica ISSN: 0185-1101 [email protected] Instituto de Astronomía México Maravilla, D.; Leal-Herrera, J. L. THE SATURNIAN G RING: A SHORT NOTE ABOUT ITS FORMATION Revista Mexicana de Astronomía y Astrofísica, vol. 50, núm. 2, octubre, 2014, pp. 341- 347 Instituto de Astronomía Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57148278016 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Astronom´ıa y Astrof´ısica, 50, 341–347 (2014) THE SATURNIAN G RING: A SHORT NOTE ABOUT ITS FORMATION D. Maravilla and J. L. Leal-Herrera Departamento de Ciencias Espaciales, Instituto de Geof´ısica, UNAM, Mexico Received March 21 2014; accepted August 18 2014 RESUMEN En este trabajo se estudia la formaci´on del anillo G de Saturno considerando que el sat´elite Ege´on es la fuente de part´ıculas de polvo. El polvo que forma el anillo se produce por impactos entre los micrometeoroides interplanetarios que ingresan en la magnet´osfera Saturniana y la superficie de Ege´on. Para explicar c´omo se forma el anillo se usa un modelo gravito-electrodin´amico suponiendo que las fuerzas gravitacional y electromagn´etica son las ´unicas fuerzas que modulan el comportamiento din´amico de las part´ıculas de polvo. Las soluciones del modelo muestran que existen reg´ımenes de confinamiento (captura) as´ıcomo reg´ımenes de escape de polvo en la vecindad de Ege´on. -
Moons of Saturn
National Aeronautics and Space Administration 0 300,000,000 900,000,000 1,500,000,000 2,100,000,000 2,700,000,000 3,300,000,000 3,900,000,000 4,500,000,000 5,100,000,000 5,700,000,000 kilometers Moons of Saturn www.nasa.gov Saturn, the sixth planet from the Sun, is home to a vast array • Phoebe orbits the planet in a direction opposite that of Saturn’s • Fastest Orbit Pan of intriguing and unique satellites — 53 plus 9 awaiting official larger moons, as do several of the recently discovered moons. Pan’s Orbit Around Saturn 13.8 hours confirmation. Christiaan Huygens discovered the first known • Mimas has an enormous crater on one side, the result of an • Number of Moons Discovered by Voyager 3 moon of Saturn. The year was 1655 and the moon is Titan. impact that nearly split the moon apart. (Atlas, Prometheus, and Pandora) Jean-Dominique Cassini made the next four discoveries: Iapetus (1671), Rhea (1672), Dione (1684), and Tethys (1684). Mimas and • Enceladus displays evidence of active ice volcanism: Cassini • Number of Moons Discovered by Cassini 6 Enceladus were both discovered by William Herschel in 1789. observed warm fractures where evaporating ice evidently es- (Methone, Pallene, Polydeuces, Daphnis, Anthe, and Aegaeon) The next two discoveries came at intervals of 50 or more years capes and forms a huge cloud of water vapor over the south — Hyperion (1848) and Phoebe (1898). pole. ABOUT THE IMAGES As telescopic resolving power improved, Saturn’s family of • Hyperion has an odd flattened shape and rotates chaotically, 1 2 3 1 Cassini’s visual known moons grew. -
PDS4 Context List
Target Context List Name Type LID 136108 HAUMEA Planet urn:nasa:pds:context:target:planet.136108_haumea 136472 MAKEMAKE Planet urn:nasa:pds:context:target:planet.136472_makemake 1989N1 Satellite urn:nasa:pds:context:target:satellite.1989n1 1989N2 Satellite urn:nasa:pds:context:target:satellite.1989n2 ADRASTEA Satellite urn:nasa:pds:context:target:satellite.adrastea AEGAEON Satellite urn:nasa:pds:context:target:satellite.aegaeon AEGIR Satellite urn:nasa:pds:context:target:satellite.aegir ALBIORIX Satellite urn:nasa:pds:context:target:satellite.albiorix AMALTHEA Satellite urn:nasa:pds:context:target:satellite.amalthea ANTHE Satellite urn:nasa:pds:context:target:satellite.anthe APXSSITE Equipment urn:nasa:pds:context:target:equipment.apxssite ARIEL Satellite urn:nasa:pds:context:target:satellite.ariel ATLAS Satellite urn:nasa:pds:context:target:satellite.atlas BEBHIONN Satellite urn:nasa:pds:context:target:satellite.bebhionn BERGELMIR Satellite urn:nasa:pds:context:target:satellite.bergelmir BESTIA Satellite urn:nasa:pds:context:target:satellite.bestia BESTLA Satellite urn:nasa:pds:context:target:satellite.bestla BIAS Calibrator urn:nasa:pds:context:target:calibrator.bias BLACK SKY Calibration Field urn:nasa:pds:context:target:calibration_field.black_sky CAL Calibrator urn:nasa:pds:context:target:calibrator.cal CALIBRATION Calibrator urn:nasa:pds:context:target:calibrator.calibration CALIMG Calibrator urn:nasa:pds:context:target:calibrator.calimg CAL LAMPS Calibrator urn:nasa:pds:context:target:calibrator.cal_lamps CALLISTO Satellite urn:nasa:pds:context:target:satellite.callisto -
Overview of the Esa Jovian Technology Reference Studies
DOCUMENT OVERVIEW OF THE ESA JOVIAN TECHNOLOGY REFERENCE STUDIES prepared by/préparé par Alessandro Atzei, Arno Wielders, Anamarija Stankov, Peter Falkner reference/réference SCI-AP/2004/TN-085/AA issue/édition 3 revision/révision 0 date of issue/date d’édition 30/03/07 status/état Final Document type/type de document Technical Note SCI-AP a ESTEC Jovian Studies Overview Keplerlaan 1 - 2201 AZ Noordwijk - The Netherlands April_2_04_07 .doc Tel. (31) 71 5656565 - Fax (31) 71 5656040 Overview of the ESA Jovian Technology Reference Studies issue 3 revision 0 - 30/03/07 page 2 of 148 APPROVAL Title Overview of the ESA Jovian Technology Reference Studies issue 3 revision 0 titre issue revision author Alessandro Atzei, Arno Wielders, Anamarija Stankov, Peter date 30/03/07 auteur Falkner date approved by date approuvé by date Overview of the ESA Jovian Technology Reference Studies issue 3 revision 0 - 30/03/07 page 3 of 148 T ABLE O F C ONTENTS INTRODUCTION .....................................................................................................................................................7 Technology reference Studies....................................................................................................................7 Purpose of this document...........................................................................................................................7 STUDYING THE JOVIAN SYSTEM ..........................................................................................................................9 -
Mission Science Highlights and Science Objectives Assessment
CASSINI FINAL MISSION REPORT 2019 1 MISSION SCIENCE HIGHLIGHTS AND SCIENCE OBJECTIVES ASSESSMENT Cassini-Huygens, humanity’s most distant planetary orbiter and probe to date, provided the first in- depth, close up study of Saturn, its magnificent rings and unique moons, including Titan and Enceladus, and its giant magnetosphere. Discoveries from the Cassini-Huygens mission revolutionized our understanding of the Saturn system and fundamentally altered many of our concepts of where life might be found in our solar system and beyond. Cassini-Huygens arrived at Saturn in 2004, dropped the parachuted probe named Huygens to study the atmosphere and surface of Saturn’s planet-sized moon Titan, and orbited Saturn for the next 13 years making remarkable discoveries. When it was running low on fuel, the Cassini orbiter was programmed to vaporize in Saturn’s atmosphere in 2017 to protect the ocean worlds, Enceladus and Titan, where it discovered potential habitats for life. CASSINI FINAL MISSION REPORT 2019 2 CONTENTS MISSION SCIENCE HIGHLIGHTS AND SCIENCE OBJECTIVES ASSESSMENT ........................................................ 1 Executive Summary................................................................................................................................................ 5 Origin of the Cassini Mission ....................................................................................................................... 5 Instrument Teams and Interdisciplinary Investigations ............................................................................... -
Perfect Little Planet Educator's Guide
Educator’s Guide Perfect Little Planet Educator’s Guide Table of Contents Vocabulary List 3 Activities for the Imagination 4 Word Search 5 Two Astronomy Games 7 A Toilet Paper Solar System Scale Model 11 The Scale of the Solar System 13 Solar System Models in Dough 15 Solar System Fact Sheet 17 2 “Perfect Little Planet” Vocabulary List Solar System Planet Asteroid Moon Comet Dwarf Planet Gas Giant "Rocky Midgets" (Terrestrial Planets) Sun Star Impact Orbit Planetary Rings Atmosphere Volcano Great Red Spot Olympus Mons Mariner Valley Acid Solar Prominence Solar Flare Ocean Earthquake Continent Plants and Animals Humans 3 Activities for the Imagination The objectives of these activities are: to learn about Earth and other planets, use language and art skills, en- courage use of libraries, and help develop creativity. The scientific accuracy of the creations may not be as im- portant as the learning, reasoning, and imagination used to construct each invention. Invent a Planet: Students may create (draw, paint, montage, build from household or classroom items, what- ever!) a planet. Does it have air? What color is its sky? Does it have ground? What is its ground made of? What is it like on this world? Invent an Alien: Students may create (draw, paint, montage, build from household items, etc.) an alien. To be fair to the alien, they should be sure to provide a way for the alien to get food (what is that food?), a way to breathe (if it needs to), ways to sense the environment, and perhaps a way to move around its planet. -
Exploring Saturn's Moons
Exploring Saturn’s Moons 3 Moon Millions of km Tarvos 18.56 Mundilfari 18.7258 Jarnsaxa 18.557 Greip 18.0657 Tarqeq 17.9 Siarnaq 17.776 Skoll 17.473800 Erriapus 17.237 Bebhionn 17.2 Hyrrokkin 18.168 Saturn has 64 moons that range in size from Aegaeon, which is barely over 1 kilometer across, to Titan which is 5151 km in diameter and is about the same size as the planet Mercury! The farthest moons of Saturn orbit at distances of nearly 25 million km from Saturn. By comparison, Mercury orbits about 35 million km from our Sun. Problem 1 – Order the moons in terms of their increasing distance from Saturn by sorting the decimal values from smallest to largest. Problem 2 – How much farther away from Saturn is the moon Skoll than Erriapus in A) millions of kilometers? B) in kilometers? Problem 3 – What is the span of distances between the closest moon in this list and the farthest moon in this list A) in millions of kilometers? B) in kilometers? Space Math http://spacemath.gsfc.nasa.gov Answer Key 3 Problem 1 – Order the moons in terms of their increasing distance from Saturn by sorting the decimal values from smallest to largest. Moon Millions of km Tarvos 18.56 Bebhionn 17.2 Mundilfari 18.7258 Erriapus 17.237 Jarnsaxa 18.557 Skoll 17.473800 Greip 18.0657 Siarnaq 17.776 Tarqeq 17.9 Tarqeq 17.9 Siarnaq 17.776 Greip 18.0657 Skoll 17.473800 Hyrrokkin 18.168 Erriapus 17.237 Jarnsaxa 18.557 Bebhionn 17.2 Tarvos 18.56 Hyrrokkin 18.168 Mundilfari 18.7258 Problem 2 – How much farther away from Saturn is the moon Skoll than Erriapus in A) millions of kilometers? B) in kilometers? Answer: A) Erriapus = 17.237 Skoll=17.473800 Difference = 0.2368 million km. -
Scales of the Solar System
Basic Solar System Data The Sun Diameter (103 km) 1400 The Planets (etc.) Distance from Sun (106km) Orbital Period (yrs) Mercury 4.8 58 .24 Venus 13 108 .61 Earth 13 149 1.0 Mars 7 228 1.9 Jupiter 144 778 11.9 Saturn 121 1430 29.5 Uranus 53 2870 84 Neptune 50 4500 165 Pluto 3.0 5900 249 Nearest Star 40 million (4+ light years) Farthest edge of Milky Way 1 million million (100,000 light years) Nearest galaxy 20 million million (2 million light years) Farthest observable objects 50,000 million million (5 billion light years) Major Asteroids Ceres 1.0 (The asteroids generally Pallas .6 occupy orbits between Vesta .5 Mars and Jupiter) Major Moons Distance from Planet (103km) Orbital Period (days) of the Earth The Moon 3.5 385 27 of Mars Phobos .028 9 .3 Deimos .016 24 1.3 of Jupiter Io 3.6 422 1.8 Europa 3.1 671 3.6 Ganymede 5.3 1070 7.2 Callisto 5.0 1880 17 Sinope (farthest) .014 23700 758 of Saturn Tethys 1.0 295 1.9 Dione .8 377 2.7 Rhea 1.5 527 4.5 Titan 5.8 1220 16 Iapetus 1.5 3560 79 Phoebe (farthest) .2 13000 550 of Uranus Miranda .4 130 1.4 Ariel 1.4 191 2.5 Umbriel 1.0 260 4.1 Titania 1.8 436 8.7 Oberon 1.6 583 13 of Neptune Triton 3.8 354 5.9 Nereid .6 5570 360 Relative Scales (with the solar diameter = “1”) The Planets (etc.) Diameter Distance from Sun Mercury .003 41 Venus .009 77 Earth .009 106 Mars .005 163 Jupiter .10 556 Saturn .09 1020 Uranus .04 2050 Neptune .04 3200 Pluto .002 4200 Nearest star 30 million Farthest edge of Milky Way .7 million million Nearest galaxy 14 million million Farthest observable objects 40,000 million -
CALCEPH - Python Language Release 3.5.0
CALCEPH - Python language Release 3.5.0 M. Gastineau, J. Laskar, A. Fienga, H. Manche Aug 19, 2021 CONTENTS 1 Introduction 3 2 Installation 5 2.1 Instructions................................................5 3 Library interface 7 3.1 A simple example program........................................7 3.2 Modules.................................................7 3.3 Types...................................................8 3.4 Constants.................................................8 4 Multiple file access functions 11 4.1 Thread notes............................................... 11 4.2 Usage................................................... 11 4.3 Functions................................................. 11 4.3.1 calcephpy.CalcephBin.open................................... 11 4.3.2 calcephpy.CalcephBin.open................................... 12 4.3.3 calcephpy.CalcephBin.prefetch................................. 13 4.3.4 calcephpy.CalcephBin.isthreadsafe............................... 13 4.3.5 calcephpy.CalcephBin.compute................................. 13 4.3.6 calcephpy.CalcephBin.compute_unit.............................. 15 4.3.7 calcephpy.CalcephBin.orient_unit............................... 17 4.3.8 calcephpy.CalcephBin.rotangmom_unit............................ 18 4.3.9 calcephpy.CalcephBin.compute_order............................. 19 4.3.10 calcephpy.CalcephBin.orient_order............................... 21 4.3.11 calcephpy.CalcephBin.rotangmom_order............................ 23 4.3.12 calcephpy.CalcephBin.getconstant..............................