Topic 1. Elements, Compounds and Mixtures

Total Page:16

File Type:pdf, Size:1020Kb

Topic 1. Elements, Compounds and Mixtures TOPIC 1. ELEMENTS, COMPOUNDS AND MIXTURES. What is chemistry? Chemistry is the study of matter and the interconversion of matter. Matter is anything which has mass and occupies a volume. Sciences often begin by collecting and classifying. Subsequent observations lead to generalisations and laws. In the science of chemistry, there are numerous bases for classifying matter but the most fundamental is to subdivide matter into pure substances and mixtures. Pure substances can be further regarded as consisting of either elements or compounds. MATTER PURE SUBSTANCES MIXTURES An infinitely large number of mixtures is ELEMENTS COMPOUNDS possible 90 naturally occurring An infinitely large elements + about 30 number of compounds man-made elements is possible What characterises each of these groups? An ELEMENT is a substance which cannot be broken down into simpler component substances. An ATOM is the smallest possible unit of an element. Atoms are extremely small so any visible specimen of an element contains enormous numbers of atoms. Each element’s atoms are unique to that element. There are only 90 naturally occurring elements so it follows that there are only 90 different types of naturally occurring atom. What distinguishes the atoms of each different element is the subject of another Topic. Elements are conveniently further subdivided into two groups, METALS and NON- METALS, based on their physical and chemical properties. The physical properties of metals are probably already familiar - shiny when freshly cut, conduct heat and electricity well, malleable and ductile. The non-metals have the opposite properties to metals - they are usually powders or gases, do not conduct well and, if solids, are brittle. The chemical properties of each group will be discussed in future Topics. I - 1 I - 2 Elements as they occur in nature rarely consist of discrete, individual atoms. Usually they consist of two or more atoms joined together by CHEMICAL BONDS of various types. For example, oxygen, the essential life-supporting element in air, is not present as individual oxygen atoms but instead, consists of two oxygen atoms bonded together. This unit is called a MOLECULE of oxygen. Some elements occur as discrete molecules containing even larger numbers of atoms such as 4, 6, 10 or 12 bonded atoms. However, most elements including all the metals do not normally exist as discrete molecules containing a fixed number of atoms but instead, consist of very large aggregates of atoms bonded together. Regardless of whether an element occurs as single atoms or as atoms bonded together, each element always consists of the same type of atom which imparts its own unique properties to that element. For example, aluminium is recognised as a silver-coloured metal while copper has a different colour. Apart from the obvious difference in colour, there are many unique physical and chemical properties which each of these two elements possess and which are attributable to the differences between their atoms. Table 1 (Page I-21) gives a complete alphabetical list of all the elements, including some of those synthesised. In Table 2 (Page I-22), most of those elements are listed in groups containing four to six elements. Some of the groups are given names - for example, the elements of the first group collectively are known as the alkali metals, the seventh group is the halogens and the eight group is the noble gases. Elements within each group have many properties in common. In addition, another 11 elements which are part of a much larger grouping known as the transition elements are listed in Table 2. Note that hydrogen does not belong to any group and is regarded as being an exceptional individual element. Compounds. A COMPOUND differs from an element in that an element contains only a single type of atom while a compound consists of smallest units which contain at least two different types of atom (i.e. atoms of at least two different elements) joined together by chemical bonds. Compounds always contain atoms of their constituent elements in the same numerical ratio regardless of how the compound was prepared. Consequently analysis of any pure compound always returns the same result. Therefore a compound when pure is HOMOGENEOUS. Many compounds exist as discrete molecules. The smallest unit of the compound carbon dioxide is the carbon dioxide molecule, each of which consists of one carbon atom bonded to two oxygen atoms - this molecule is the smallest particle of carbon dioxide that can exist. The ratio of one carbon atom to two oxygen atoms in the molecule of this compound applies equally well to the carbon dioxide which may originate from burning of natural gas or petrol or from chemical reactions such as when an acid is mixed with a substance such as limestone or washing I - 3 soda. Carbon dioxide molecules always consist of one carbon atom bonded to two oxygen atoms regardless of the source of the compound. However, not all compounds exist as discrete molecules - for example the compound sodium chloride also known as table salt exists not as individual sodium chloride molecules but as a highly structured crystal lattice, familiar as the rock salt commonly used in salt grinders. There are several types of chemical bonds that join atoms in elements and compounds and the type of bond present determines in part whether a given compound exists as discrete molecules. Chemical bonds are examined in later Topics. Note that when elements have combined to form compounds, they lose their original properties and the compound formed has its own characteristic properties. For example, carbon - a black solid - combines with another element, the colourless gas oxygen which supports combustion, to form the compound carbon dioxide which is a colourless gas that is incapable of supporting combustion. Compounds can only be converted back to their component elements by breaking the chemical bonds which hold the atoms together in the compound. For example, the compound water, which contains two hydrogen atoms and one oxygen atom combined in each water molecule can be converted to the free elements oxygen and hydrogen by passing an electric current through the water, a process called ELECTROLYSIS. Whenever chemical bonds are broken or formed, the process is called a CHEMICAL CHANGE. Processes such as the cooking of food, the burning of fuels and the corrosion of metals are all examples of common chemical changes. You need more calcium in your diet. A very common mistake made by the general population is the failure to differentiate between a pure element and compounds of that element, e.g. the poisonous gaseous element chlorine and essential compounds of chlorine such as sodium chloride. Likewise, the calcium referred to above is in the form of compounds of calcium and definitely not the free element. Mixtures A MIXTURE, as the name implies, consist of different elements or compounds which have been physically mixed together. Consequently, any given sample taken from a mixture would contain at least slightly different amounts of its various components compared with any other sample collected, because mixtures are HETEROGENEOUS. Analysis of a mixture often requires specified procedures in order to obtain a representative sample. Mixtures are always impure in that they I - 4 contain more than one substance and therefore more than one type of constituent entity, whereas an element or compound can always be obtained as a pure substance because they contain only a single type of constituent entity. Air is a good example of a mixture, containing principally the elements oxygen, nitrogen and argon and the compounds carbon dioxide and water vapour as well as dust and other solid particles. The observed composition of a sample of air varies, depending on the sample analysed. Figures published represent only the average composition obtained by analysis of many different samples. Note also that this composition is constantly changing, particularly with regard to the amounts of carbon dioxide and water present. As mixtures are simply physical mixtures of pure substances, they can be separated into their pure components by physical methods such as filtration, distillation or even by making use of the differing densities of the components. These processes do not involve the breaking of any chemical bonds and are therefore called PHYSICAL CHANGES. Some examples of physical processes used to separate mixtures include distillation of crude oil to obtain various fractions for petrol, lubricating oil, kerosene, diesel etc; density differences to extract gold in panning; filtering to remove solids from swimming pool water. Check your understanding of this section. How does a compound differ from an element? How does a molecule differ from an atom? What is the difference between a mixture and a compound? List some properties of a metal and compare them with those of a non-metal. How can water be converted to its component free elements? Would an aspirin tablet be a mixture or a compound? Chemical symbols. Each type of atom (i.e. each element) is conveniently represented by a symbol which denotes a single atom of that element. For example, H hydrogen O oxygen C carbon N nitrogen S sulfur Cl chlorine He helium Al aluminium Cu copper Note that each symbol always starts with an upper case letter, and that when a second letter is used, it is always written in lower case. Table 1 (page I-21) includes the symbols of all elements and Table 2 (page I-22) contains those elements whose symbols are frequently used in basic chemistry courses and which must be committed to memory. Symbols can be used not just to represent single atoms of elements, but also in combinations to represent molecules of elements and also the formulas of compounds. I - 5 In these cases, when there is more than a single atom of any element present, a subscript is used to show how many.
Recommended publications
  • Hendrickson SP.Pdf
    CHEMISTRY IN THE WORLD THIRD EDITION BY Dr. Kirstin Hendrickson ARIZONA STATE UNIVERSITY Bassim Hamadeh, CEO and Publisher Kassie Graves, Director of Acquisitions Jamie Giganti, Senior Managing Editor Jess Estrella, Senior Graphic Designer Bob Farrell, Senior Field Acquisitions Editor Natalie Lakosil, Licensing Manager Kaela Martin, Allie Kiekhofer, and Rachel Singer, Associate Editors Kat Ragudos, Interior Designer Copyright © 2017 by Cognella, Inc. All rights reserved. No part of this publication may be reprinted, reproduced, transmitted, or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information retrieval system without the written permission of Cognella, Inc. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Cover image copyright © Scott Lefler. copyright © Scott Lefler. copyright © Scott Lefler. copyright © 2011 Depositphotos/Nadezda Razvodovska. Printed in the United States of America ISBN: 978-1-63487-540-0 (pbk) / 978-1-63487-541-7 (br) For my students, from whom I have learned more than I could ever teach. DEDICATION CONTENTS Acknowledgments xi To the Student and the Instructor: xiii How to Use This Book UNIT 1: ALL AROUND US AND INSIDE OF US 1 Chapter 1: Chemistry Is Everywhere 3 1.1 Classifications of Matter 5 1.2 The Periodic Table 12 1.3 Thinking About Chemicals, Chemical 14 Reactions,
    [Show full text]
  • 2. Molecular Stucture/Basic Spectroscopy the Electromagnetic Spectrum
    2. Molecular stucture/Basic spectroscopy The electromagnetic spectrum Spectral region fooatocadr atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, Addison-Wesley Publishing Company,1987 Per-Erik Bengtsson Spectral regions Mo lecu lar spec troscopy o ften dea ls w ith ra dia tion in the ultraviolet (UV), visible, and infrared (IR) spectltral reg ions. • The visible region is from 400 nm – 700 nm • The ultraviolet region is below 400 nm • The infrared region is above 700 nm. 400 nm 500 nm 600 nm 700 nm Spectroscopy: That part of science which uses emission and/or absorption of radiation to deduce atomic/molecular properties Per-Erik Bengtsson Some basics about spectroscopy E = Energy difference = c /c h = Planck's constant, 6.63 10-34 Js ergy nn = Frequency E hn = h/hc /l E = h = hc / c = Velocity of light, 3.0 108 m/s = Wavelength 0 Often the wave number, , is used to express energy. The unit is cm-1. = E / hc = 1/ Example The energy difference between two states in the OH-molecule is 35714 cm-1. Which wavelength is needed to excite the molecule? Answer = 1/ =35714 cm -1 = 1/ = 280 nm. Other ways of expressing this energy: E = hc/ = 656.5 10-19 J E / h = c/ = 9.7 1014 Hz Per-Erik Bengtsson Species in combustion Combustion involves a large number of species Atoms oxygen (O), hydrogen (H), etc. formed by dissociation at high temperatures Diatomic molecules nitrogen (N2), oxygen (O2) carbon monoxide (CO), hydrogen (H2) nitr icoxide (NO), hy droxy l (OH), CH, e tc.
    [Show full text]
  • Toxic Metals in the Environment: the Role of Surfaces
    Toxic Metals in the Environment: The Role of Surfaces Donald L. Sparks1 etals are prevalent in the environment. They are derived from both such as density, weight, atomic number, and degree of toxicity natural and anthropogenic sources. Certain metals are essential for (Roberts et al. 2005). Certain met- Mplant growth and for animal and human health. However, if present als and metalloids are essential for in excessive concentrations they become toxic. Metals undergo an array of plant growth and for animal and human health. With respect to biogeochemical processes at reactive natural surfaces, including surfaces of plants, these are referred to as clay minerals, metal oxides and oxyhydroxides, humic substances, plant roots, micronutrients and include B, Cu, and microbes. These processes control the solubility, mobility, bioavailability, Fe, Zn, Mn, and Mo. In addition, and toxicity of metals in the environment. The use of advanced analytical As, Co, Cr, Ni, Se, Sn, and V are essential in animal nutrition. techniques has furthered our understanding of the reactivity and mobility Micronutrients are also referred to of metals in the near-surface environment. as trace elements since they are required in only small quantities, Keywords: critical zone, metals, sorption, surface complexation, biogeochemical processes unlike major nutrients such as N, P, and K. In excess, trace elements INTRODUCTION can be toxic to plants, microbes, animals, and humans. Metals comprise about 75% of the known elements and can Problems also arise when there is a deficiency in essential form alloys with each other and with nonmetals (Morris elements. 1992). Metals have useful properties such as strength, mal- Important trace elements in the environment are As, Ag, B, leability, and conductivity of heat and electricity.
    [Show full text]
  • Ijmp.Jor.Br V
    INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) http://www.ijmp.jor.br v. 10, n. 8, Special Edition Seng 2019 ISSN: 2236-269X DOI: 10.14807/ijmp.v10i8.1046 A NEW HYPOTHESIS ABOUT THE NUCLEAR HYDROGEN STRUCTURE Relly Victoria Virgil Petrescu IFToMM, Romania E-mail: [email protected] Raffaella Aversa University of Naples, Italy E-mail: [email protected] Antonio Apicella University of Naples, Italy E-mail: [email protected] Taher M. Abu-Lebdeh North Carolina A and T State Univesity, United States E-mail: [email protected] Florian Ion Tiberiu Petrescu IFToMM, Romania E-mail: [email protected] Submission: 5/3/2019 Accept: 5/20/2019 ABSTRACT In other papers already presented on the structure and dimensions of elemental hydrogen, the elementary particle dynamics was taken into account in order to be able to determine the size of the hydrogen. This new work, one comes back with a new dynamic hypothesis designed to fundamentally change again the dynamic particle size due to the impulse influence of the particle. Until now it has been assumed that the impulse of an elementary particle is equal to the mass of the particle multiplied by its velocity, but in reality, the impulse definition is different, which is derived from the translational kinetic energy in a rapport of its velocity. This produces an additional condensation of matter in its elemental form. Keywords: Particle structure; Impulse; Condensed matter. [http://creativecommons.org/licenses/by/3.0/us/] Licensed under a Creative Commons Attribution 3.0 United States License 1749 INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) http://www.ijmp.jor.br v.
    [Show full text]
  • Chemical Formulas the Elements
    Chemical Formulas A chemical formula gives the numbers and types of atoms that are found in a substance. When the substance is a discrete molecule, then the chemical formula is also its molecular formula. Fe (iron) is a chemical formula Fe2O3 is a molecular formula The Elements The chemical formulas of most of the elements are simply their elemental symbol: Na (sodium) Fe (iron) He (helium) U (uranium) These chemical formulas are said to be monatomic—only an atom in chemical formula 1 The Elements There are seven elements that occur naturally as diatomic molecules—molecules that contain two atoms: H2 (hydrogen) N2 (nitrogen) O2 (oxygen) F2 (fluorine) Cl2 (chlorine) Br2 (bromine) I2 (iodine) The last four elements in this list are in the same family of the Periodic Table Binary Compounds A binary compound is one composed of only two different types of atoms. Rules for binary compound formulas 1. Element to left in Periodic Table comes first except for hydrogen: KCl PCl3 Al2S3 Fe3O4 2 Binary Compounds 2. Hydrogen comes last unless other element is from group 16 or 17: LiH, NH3, B2H4, CH4 3. If both elements are from the same group, the lower element comes first: SiC, BrF3 Other Compounds For compounds with three or more elements that are not ionic, if it contains carbon, this comes first followed by hydrogen. Other elements are then listed in alphabetical order: C2H6O C4H9BrO CH3Cl C8H10N4O2 3 Other Compounds However, the preceding rule is often ignored when writing organic formulas (molecules containing carbon, hydrogen, and maybe other elements) in order to give a better idea of how the atoms are connected: C2H6O is the molecular formula for ethanol, but nobody ever writes it this way—instead the formula is written C2H5OH to indicate one H atom is connected to the O atom.
    [Show full text]
  • Carbon and Silicon
    INTERCHAPTER M Carbon and Silicon Carbon nanotubes have potential applications ranging from new composites for use in ultralight automobiles and bullet-proof clothing to ultrathin wires. The discovery of carbon nanotubes helped launch the newly emerging field of nanotechnology. University Science Books, ©2011. All rights reserved. www.uscibooks.com M. CARBON AND siLICON M1 Carbon is widely distributed in nature both as the free M-1. Diamond and Graphite Are Allotropic element and in compounds. The great majority of nat- Forms of Carbon urally occurring carbon is found in coal, petroleum, As discussed in Section 15-10, the two most impor- limestone, CaCO3(s), dolomite, MgCa(CO3)2(s), and a few other deposits. Carbon is also a principal ele- tant allotropic forms of solid carbon are diamond ment in all living matter, and the study of its com- and graphite. Recall that diamond has an extended, pounds forms the vast fields of organic chemistry covalently bonded tetrahedral structure and that and biochemistry. Carbon is decidedly nonmetallic, graphite has a layered structure. Because diamond whereas silicon is a semimetal. is the hardest naturally occurring mineral known, it Silicon constitutes 28% of the mass of the earth’s is extensively used as an abrasive and cutting mate- mantle and is the second most abundant element in rial where a very high resistance to wear is required. the mantle, exceeded only by oxygen. Silicon does not Graphite, however, is the stable form of carbon at occur as the free element in nature; it occurs primar- ordinary temperatures and pressures. It exists as a solid at a higher temperature than any other material ily as silicon dioxide, SiO2(s) and in numerous sili- cates.
    [Show full text]
  • Syllabus of Biochemistry (Hons.)
    Syllabus of Biochemistry (Hons.) for SEM-I & SEM-II under CBCS (to be effective from Academic Year: 2017-18) The University of Burdwan Burdwan, West Bengal 1 1. Introduction The syllabus for Biochemistry at undergraduate level using the Choice Based Credit system has been framed in compliance with model syllabus given by UGC. The main objective of framing this new syllabus is to give the students a holistic understanding of the subject giving substantial weight age to both the core content and techniques used in Biochemistry. The ultimate goal of the syllabus is that the students at the end are able to secure a job. Keeping in mind and in tune with the changing nature of the subject, adequate emphasis has been given on new techniques of mapping and understanding of the subject. The syllabus has also been framed in such a way that the basic skills of subject are taught to the students, and everyone might not need to go for higher studies and the scope of securing a job after graduation will increase. It is essential that Biochemistry students select their general electives courses from Chemistry, Physics, Mathematics and/or any branch of Life Sciences disciplines. While the syllabus is in compliance with UGC model curriculum, it is necessary that Biochemistry students should learn “Basic Microbiology” as one of the core courses rather than as elective while. Course on “Concept of Genetics” has been moved to electives. Also, it is recommended that two elective courses namely Nutritional Biochemistry and Advanced Biochemistry may be made compulsory. 2 Type of Courses Number of Courses Course type Description B.
    [Show full text]
  • GANPAT UNIVERSITY FACULTY of SCIENCE TEACHING and EXAMINATION SCHEME Programme Bachelor of Science Branch/Spec
    GANPAT UNIVERSITY FACULTY OF SCIENCE TEACHING AND EXAMINATION SCHEME Programme Bachelor of Science Branch/Spec. Microbiology Semester I Effective from Academic Year 2015- Effective for the batch Admitted in June 2015 16 Teaching scheme Examination scheme (Marks) Subject Subject Name Credit Hours (per week) Theory Practical Code Lecture(DT) Practical(Lab.) Lecture(DT) Practical(Lab.) CE SEE Total CE SEE Total L TU Total P TW Total L TU Total P TW Total UMBA101FOM FUNDAMENTALS 04 - 04 - - - 04 - 04 - - - 40 60 100 - - - OF MICROBIOLOGY UCHA101GCH GENERAL 04 - 04 - - - 04 - 04 - - - 40 60 100 - - - CHEMISTRY-I UPHA101GPH GENERAL 04 - 04 - - - 04 - 04 - - - 40 60 100 - - - PHYSICS-I UENA101ENG ENGLISH-I 02 - 02 - - - 02 - 02 - - - 40 60 100 - - - OPEN SUBJECT – 1 02 - 02 - - - 02 - 02 - - - 40 60 100 - - - UPMA101PRA PRACTICAL - - - 02 - 02 - - - 04 - 04 - - - - 50 50 MODULE-I UPCA101PRA PRACTICAL - - - 02 - 02 - - - 04 - 04 - - - - 50 50 MODULE-I UPPA101PRA PRACTICAL - - - 02 - 02 - - - 04 - 04 - - - - 50 50 MODULE-I Total 16 - 16 06 - 06 16 - 16 12 - 12 200 300 500 - 150 150 GANPAT UNIVERSITY FACULTY OF SCIENCE Programme Bachelor of Science Branch/Spec. Microbiology Semester I Version 1.0.1.0 Effective from Academic Year 2015-16 Effective for the batch Admitted in July 2015 Subject code UMBA 101 Subject Name FUNDAMENTALS OF MICROBIOLOGY FOM Teaching scheme Examination scheme (Marks) (Per week) Lecture(DT) Practical(Lab.) Total CE SEE Total L TU P TW Credit 04 -- -- -- 04 Theory 40 60 100 Hours 04 -- -- -- 04 Practical -- -- -- Pre-requisites: Students should have basic knowledge of Microorganisms and microscopy of 10+2 level. Learning Outcome: The course will help the student to understand basic fundamentals of Microbiology and history of Microbiology.
    [Show full text]
  • Chemistry in One Dimension Pierre-Fran¸Coisloos,1, A) Caleb J
    Chemistry in One Dimension Pierre-Fran¸coisLoos,1, a) Caleb J. Ball,1 and Peter M. W. Gill1, b) Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia We report benchmark results for one-dimensional (1D) atomic and molecular sys- tems interacting via the Coulomb operator jxj−1. Using various wavefunction-type approaches, such as Hartree-Fock theory, second- and third-order Møller-Plesset per- turbation theory and explicitly correlated calculations, we study the ground state of atoms with up to ten electrons as well as small diatomic and triatomic molecules containing up to two electrons. A detailed analysis of the 1D helium-like ions is given and the expression of the high-density correlation energy is reported. We report the total energies, ionization energies, electron affinities and other interesting properties of the many-electron 1D atoms and, based on these results, we construct the 1D analog of Mendeleev's periodic table. We find that the 1D periodic table contains only two groups: the alkali metals and the noble gases. We also calculate the dissociation + 2+ 3+ curves of various 1D diatomics and study the chemical bond in H2 , HeH , He2 , + 2+ H2, HeH and He2 . We find that, unlike their 3D counterparts, 1D molecules are + primarily bound by one-electron bonds. Finally, we study the chemistry of H3 and we discuss the stability of the 1D polymer resulting from an infinite chain of hydrogen atoms. PACS numbers: 31.15.A-, 31.15.V-, 31.15.xt Keywords: one-dimensional atom; one-dimensional molecule; one-dimensional polymer; helium-like ions arXiv:1406.1343v1 [physics.chem-ph] 5 Jun 2014 a)Electronic mail: Corresponding author: [email protected] b)Electronic mail: [email protected] 1 I.
    [Show full text]
  • Chemical Element
    Федеральное государственное бюджетное образовательное учреждение высшего образования «Иркутский государственный медицинский университет» Министерства здравоохранения Российской Федерации Кафедра иностранных языков с курсами латинского языка и русского как иностранного М.О. Наймушина CHEMICAL ELEMENT Учебное пособие Иркутск ИГМУ 2017 УДК 615.011 (075.8)=111 ББК 24.12я73 Н 12 Рекомендовано ЦКМС ФГБОУ ВО ИГМУ Минздрава России в качестве учебного пособия для обучающихся по основным профессиональным образовательным программам высшего образования по специальности «Фармация», при изучении дисциплины «Иностранный (английский) язык» (протокол № 1 от 12.10.2017) М.О. Наймушина - старший преподаватель кафедры иностранных языков с курсами латинского языка и русского как иностранного ФГБОУ ВО ИГМУ Минздрава России Рецензенты: Е.Г. Горячкина – канд. фарм. наук, доцент кафедры фармакогнозии и ботаники ФГБОУ ВО ИГМУ Минздрава России В.В. Литвиненко - к.филол.н., доцент кафедры общеобразовательных дисциплин Байкальского гуманитарного института Наймушина, М.О. Н 12 Chemical Element: учебное пособие / М.О. Наймушина; ФГБОУ ВО ИГМУ Минздрава России, кафедра иностранных языков с курсами латинского языка и русского как иностранного. – Иркутск: ИГМУ, 2017. – 50 с. Учебное пособие включает в себя сокращенные адаптированные тексты на английском языке, сопровождаемые системой лексико-грамматических упражнений и коммуникативных заданий, предназначено для развития навыков различных видов чтения, перевода, аннотирования статей, а также для развития умений монологического
    [Show full text]
  • Laser Cooling and Slowing of a Diatomic Molecule John F
    Abstract Laser cooling and slowing of a diatomic molecule John F. Barry 2013 Laser cooling and trapping are central to modern atomic physics. It has been roughly three decades since laser cooling techniques produced ultracold atoms, leading to rapid advances in a vast array of fields and a number of Nobel prizes. Prior to the work presented in this thesis, laser cooling had not yet been extended to molecules because of their complex internal structure. However, this complex- ity makes molecules potentially useful for a wide range of applications. The first direct laser cooling of a molecule and further results we present here provide a new route to ultracold temperatures for molecules. In particular, these methods bridge the gap between ultracold temperatures and the approximately 1 kelvin temperatures attainable with directly cooled molecules (e.g. with cryogenic buffer gas cooling or decelerated supersonic beams). Using the carefully chosen molecule strontium monofluoride (SrF), decays to unwanted vibrational states are suppressed. Driving a transition with rotational quantum number R=1 to an excited state with R0=0 eliminates decays to unwanted ro- tational states. The dark ground-state Zeeman sublevels present in this specific scheme are remixed via a static magnetic field. Using three lasers for this scheme, a given molecule should undergo an average of approximately 100; 000 photon absorption/emission cycles before being lost via un- wanted decays. This number of cycles should be sufficient to load a magneto-optical trap (MOT) of molecules. In this thesis, we demonstrate transverse cooling of an SrF beam, in both Doppler and a Sisyphus-type cooling regimes.
    [Show full text]
  • AP Chemistry!!! Summer Assignment Inside This Packer You Will Find A
    Welcome to AP Chemistry!!! Mr. Seck Summer Assignment Inside this packer you will find a summary of chapters 1, 2 and 3 of your textbook. Please read the summary of each topic before answering the questions that follow in each chapter and check your answers in the packer. A good understanding of these topics will help you in further topics. Enjoy working on your summer packet. Have a wonderful summer!!! Thank you 1 Introduction: Matter and Measurement ​ Most of this material was probably learned in first-year chemistry. Quickly review the differences between elements, compounds and mixtures. The separation of mixtures based on their physical properties is important and so are SI units for measurement. Significant figures and dimensional analysis are also introduced here. Pay particular attention to these sections: 1.2 Classification of Matter 1.3 Properties of Matter 1.4 Units of Measurement 1.5 Uncertainty in Measurement 1.6 Dimensional Analysis Classification of Matter Section 1.2 Matter is classified as pure substances or mixtures. ​ Pure substances are either elements or compounds. ​ An element is a substance all of whose atoms contain the same number of protons. ​ ​ A compound is a relatively stable combination of two or more chemically bonded ​ ​ elements in a specific ratio. Mixtures consist of two or more substances. ​ Homogeneous mixtures are uniform throughout. Air, sea water and a nickel coin ​ (a mixture of copper and nickel metals called an alloy) are examples. Heterogeneous mixtures vary in texture and appearance throughout the sample. ​ Rocks, wood, polluted air and muddy water are examples. 2 Section 1.3 Properties of Matter Physical properties can be measured without changing the identity or ​ composition of the substance.
    [Show full text]