Ijmp.Jor.Br V
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Use of Solvents for Pahs Extraction and Enhancement of the Pahs Bioremediation in Coal- Tar-Contaminated Soils Pak-Hing Lee Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal- tar-contaminated soils Pak-Hing Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Environmental Engineering Commons Recommended Citation Lee, Pak-Hing, "Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal-tar-contaminated soils " (2000). Retrospective Theses and Dissertations. 13912. https://lib.dr.iastate.edu/rtd/13912 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quaiity of the copy submitted. Broken or indistinct print colored or poor quality illustrations and photographs, print bleedthrough, substeindard margins, and improper alignment can adversely affect reproduction. In the unlilcely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
2. Molecular Stucture/Basic Spectroscopy the Electromagnetic Spectrum
2. Molecular stucture/Basic spectroscopy The electromagnetic spectrum Spectral region fooatocadr atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, Addison-Wesley Publishing Company,1987 Per-Erik Bengtsson Spectral regions Mo lecu lar spec troscopy o ften dea ls w ith ra dia tion in the ultraviolet (UV), visible, and infrared (IR) spectltral reg ions. • The visible region is from 400 nm – 700 nm • The ultraviolet region is below 400 nm • The infrared region is above 700 nm. 400 nm 500 nm 600 nm 700 nm Spectroscopy: That part of science which uses emission and/or absorption of radiation to deduce atomic/molecular properties Per-Erik Bengtsson Some basics about spectroscopy E = Energy difference = c /c h = Planck's constant, 6.63 10-34 Js ergy nn = Frequency E hn = h/hc /l E = h = hc / c = Velocity of light, 3.0 108 m/s = Wavelength 0 Often the wave number, , is used to express energy. The unit is cm-1. = E / hc = 1/ Example The energy difference between two states in the OH-molecule is 35714 cm-1. Which wavelength is needed to excite the molecule? Answer = 1/ =35714 cm -1 = 1/ = 280 nm. Other ways of expressing this energy: E = hc/ = 656.5 10-19 J E / h = c/ = 9.7 1014 Hz Per-Erik Bengtsson Species in combustion Combustion involves a large number of species Atoms oxygen (O), hydrogen (H), etc. formed by dissociation at high temperatures Diatomic molecules nitrogen (N2), oxygen (O2) carbon monoxide (CO), hydrogen (H2) nitr icoxide (NO), hy droxy l (OH), CH, e tc. -
Book of Abstracts
THE PHYSICS AND CHEMISTRY OF THE INTERSTELLAR MEDIUM Celebrating the first 40 years of Alexander Tielens' contribution to Science Book of Abstracts Palais des Papes - Avignon - France 2-6 September 2019 CONFERENCE PROGRAM Monday 2 September 2019 Time Speaker 10:00 Registration 13:00 Registration & Welcome Coffee 13:30 Welcome Speech C. Ceccarelli Opening Talks 13:40 PhD years H. Habing 13:55 Xander Tielens and his contributions to understanding the D. Hollenbach ISM The Dust Life Cycle 14:20 Review: The dust cycle in galaxies: from stardust to planets R. Waters and back 14:55 The properties of silicates in the interstellar medium S. Zeegers 15:10 3D map of the dust distribution towards the Orion-Eridanus S. Kh. Rezaei superbubble with Gaia DR2 15:25 Invited Talk: Understanding interstellar dust from polariza- F. Boulanger tion observations 15:50 Coffee break 16:20 Review: The life cycle of dust in galaxies M. Meixner 16:55 Dust grain size distribution across the disc of spiral galaxies M. Relano 17:10 Investigating interstellar dust in local group galaxies with G. Clayton new UV extinction curves 17:25 Invited Talk: The PROduction of Dust In GalaxIES C. Kemper (PRODIGIES) 17:50 Unravelling dust nucleation in astrophysical media using a L. Decin self-consistent, non steady-state, non-equilibrium polymer nucleation model for AGB stellar winds 19:00 Dining Cocktail Tuesday 3 September 2019 08:15 Registration PDRs 09:00 Review: The atomic to molecular hydrogen transition: a E. Roueff major step in the understanding of PDRs 09:35 Invited Talk: The Orion Bar: from ALMA images to new J. -
Guidelines for Drinking-Water Quality, Fourth Edition
12 Chemical fact sheets A conceptual framework for Introduction implementing the Guidelines (Chapter 1) (Chapter 2) he background docu- FRAMEWORK FOR SAFE DRINKING-WATER SUPPORTING Tments referred to in INFORMATION this chapter (as the princi- Health-based targets Public health context Microbial aspects pal reference for each fact (Chapter 3) and health outcome (Chapters 7 and 11) sheet) may be found on Water safety plans Chemical aspects (Chapter 4) (Chapters 8 and 12) the Water, Sanitation, Hy- System Management and Radiological Monitoring giene and Health web site assessment communication aspects at http://www.who.int/ (Chapter 9) Acceptability Surveillance water_sanitation_health/ aspects (Chapter 5) dwq/chemicals/en/index. (Chapter 10) html. A complete list of r eferences cited in this Application of the Guidelines in specic circumstances chapter, including the (Chapter 6) background documents Climate change, Emergencies, Rainwater harvesting, Desalination for each c hemical, is pro- systems, Travellers, Planes and vided in Annex 2. ships, etc. 12.1 Chemical contaminants in drinking-water Acrylamide Residual acrylamide monomer occurs in polyacrylamide coagulants used in the treat- ment of drinking-water. In general, the maximum authorized dose of polymer is 1 mg/l. At a monomer content of 0.05%, this corresponds to a maximum theoretical concen- tration of 0.5 µg/l of the monomer in water. Practical concentrations may be lower by a factor of 2–3. This applies to the anionic and non-ionic polyacrylamides, but residual levels from cationic polyacrylamides may be higher. Polyacrylamides are also used as grouting agents in the construction of drinking-water reservoirs and wells. -
Silanes for Powerful Connections
Creating tomorrow’s solutions SILANES I ORGANOFUNCTIONAL FOR POWERFUL CONNECTIONS You’ve never worked like this WITH SILANES OUR GENIOSIL® TRADEMARK WACKER organofunctional silanes, WACKER has been actively researching Contents marketed under the trademark and developing organofunctional silanes GENIOSIL®, include our established for decades. Chemically and technologi- The GENIOSIL® Trademark 3 standard silanes as well as numerous cally, they are closely related to silicones, Organofunctional Silanes 4 specialty silanes that will be of use which have always constituted one of Chemical Bonding to in a variety of new application areas. our core businesses. Our experience in Organic Polymers 6 these fields, together with our expertise The “a Effect” 8 We encounter industrial products con- in organic fine chemicals, enables us GENIOSIL® für Adhesives and taining organofunctional silanes every to continuously develop innovative Sealants 12 day, and without them, the world as processes and products in these key Product Overview GENIOSIL® we know it would be hard to imagine. technologies. Organofunctional Silanes 16 As an important component of paints Product Overview and varnishes, organofunctional silanes Today, WACKER produces a broad range Non-functional Silanes 18 ensure that they adhere to a variety of organofunctional silanes and markets WACKER at a Glance 19 of substrates and last for many years. them under the GENIOSIL® trademark. Adhesives containing silanes can replace The product portfolio includes not only rivets and bolts, while silane-modified the established, standard products, but fillers and glass fibers reinforce plastics, also novel molecules with unrivaled prop- thus making them suitable for a huge erties. These open up completely new range of applications. -
Chemical Formulas the Elements
Chemical Formulas A chemical formula gives the numbers and types of atoms that are found in a substance. When the substance is a discrete molecule, then the chemical formula is also its molecular formula. Fe (iron) is a chemical formula Fe2O3 is a molecular formula The Elements The chemical formulas of most of the elements are simply their elemental symbol: Na (sodium) Fe (iron) He (helium) U (uranium) These chemical formulas are said to be monatomic—only an atom in chemical formula 1 The Elements There are seven elements that occur naturally as diatomic molecules—molecules that contain two atoms: H2 (hydrogen) N2 (nitrogen) O2 (oxygen) F2 (fluorine) Cl2 (chlorine) Br2 (bromine) I2 (iodine) The last four elements in this list are in the same family of the Periodic Table Binary Compounds A binary compound is one composed of only two different types of atoms. Rules for binary compound formulas 1. Element to left in Periodic Table comes first except for hydrogen: KCl PCl3 Al2S3 Fe3O4 2 Binary Compounds 2. Hydrogen comes last unless other element is from group 16 or 17: LiH, NH3, B2H4, CH4 3. If both elements are from the same group, the lower element comes first: SiC, BrF3 Other Compounds For compounds with three or more elements that are not ionic, if it contains carbon, this comes first followed by hydrogen. Other elements are then listed in alphabetical order: C2H6O C4H9BrO CH3Cl C8H10N4O2 3 Other Compounds However, the preceding rule is often ignored when writing organic formulas (molecules containing carbon, hydrogen, and maybe other elements) in order to give a better idea of how the atoms are connected: C2H6O is the molecular formula for ethanol, but nobody ever writes it this way—instead the formula is written C2H5OH to indicate one H atom is connected to the O atom. -
Syllabus of Biochemistry (Hons.)
Syllabus of Biochemistry (Hons.) for SEM-I & SEM-II under CBCS (to be effective from Academic Year: 2017-18) The University of Burdwan Burdwan, West Bengal 1 1. Introduction The syllabus for Biochemistry at undergraduate level using the Choice Based Credit system has been framed in compliance with model syllabus given by UGC. The main objective of framing this new syllabus is to give the students a holistic understanding of the subject giving substantial weight age to both the core content and techniques used in Biochemistry. The ultimate goal of the syllabus is that the students at the end are able to secure a job. Keeping in mind and in tune with the changing nature of the subject, adequate emphasis has been given on new techniques of mapping and understanding of the subject. The syllabus has also been framed in such a way that the basic skills of subject are taught to the students, and everyone might not need to go for higher studies and the scope of securing a job after graduation will increase. It is essential that Biochemistry students select their general electives courses from Chemistry, Physics, Mathematics and/or any branch of Life Sciences disciplines. While the syllabus is in compliance with UGC model curriculum, it is necessary that Biochemistry students should learn “Basic Microbiology” as one of the core courses rather than as elective while. Course on “Concept of Genetics” has been moved to electives. Also, it is recommended that two elective courses namely Nutritional Biochemistry and Advanced Biochemistry may be made compulsory. 2 Type of Courses Number of Courses Course type Description B. -
Laboratory Spectroscopy Techniques to Enable Observations of Interstellar Ion Chemistry
REVIEWS Laboratory spectroscopy techniques to enable observations of interstellar ion chemistry Brett A. McGuire 1,2,3 ✉ , Oskar Asvany 4, Sandra Brünken 5 and Stephan Schlemmer 4 ✉ Abstract | Molecular ions have long been considered key intermediates in the evolution of molecular complexity in the interstellar medium. However, owing to their reactivity and transient nature, ions have historically proved challenging to study in terrestrial laboratory experiments. In turn, their detection and characterization in space is often contingent upon advances in the laboratory spectroscopic techniques used to measure their spectra. In this Review, we discuss the advances over the past 50 years in laboratory methodologies for producing molecular ions and probing their rotational, vibrational and electronic spectra. + We largely focus this discussion around the widespread H3 cation and the ionic products originating from its reaction with carbon atoms. Finally, we discuss the current frontiers in this research and the technical advances required to address the spectroscopic challenges that they represent. More than 200 molecular species are now known to The primary initiator in this network is the simple + + be present in the interstellar medium (ISM), but only polyatomic cation H3 . The importance of H3 in initia- slightly more than 15% of these are ionic: either posi- ting ion–molecule chemistry has long been recognized, 1 + tively or negatively charged . Yet these charged species and H3 has been invoked as a key intermediate in have a substantial role in driving chemical evolution in reaction networks for decades2,4,5. Although laboratory space, where low densities and temperatures present knowledge of its spectrum dates back to 1980 (REF.6), considerable obstacles to reactivity. -
GANPAT UNIVERSITY FACULTY of SCIENCE TEACHING and EXAMINATION SCHEME Programme Bachelor of Science Branch/Spec
GANPAT UNIVERSITY FACULTY OF SCIENCE TEACHING AND EXAMINATION SCHEME Programme Bachelor of Science Branch/Spec. Microbiology Semester I Effective from Academic Year 2015- Effective for the batch Admitted in June 2015 16 Teaching scheme Examination scheme (Marks) Subject Subject Name Credit Hours (per week) Theory Practical Code Lecture(DT) Practical(Lab.) Lecture(DT) Practical(Lab.) CE SEE Total CE SEE Total L TU Total P TW Total L TU Total P TW Total UMBA101FOM FUNDAMENTALS 04 - 04 - - - 04 - 04 - - - 40 60 100 - - - OF MICROBIOLOGY UCHA101GCH GENERAL 04 - 04 - - - 04 - 04 - - - 40 60 100 - - - CHEMISTRY-I UPHA101GPH GENERAL 04 - 04 - - - 04 - 04 - - - 40 60 100 - - - PHYSICS-I UENA101ENG ENGLISH-I 02 - 02 - - - 02 - 02 - - - 40 60 100 - - - OPEN SUBJECT – 1 02 - 02 - - - 02 - 02 - - - 40 60 100 - - - UPMA101PRA PRACTICAL - - - 02 - 02 - - - 04 - 04 - - - - 50 50 MODULE-I UPCA101PRA PRACTICAL - - - 02 - 02 - - - 04 - 04 - - - - 50 50 MODULE-I UPPA101PRA PRACTICAL - - - 02 - 02 - - - 04 - 04 - - - - 50 50 MODULE-I Total 16 - 16 06 - 06 16 - 16 12 - 12 200 300 500 - 150 150 GANPAT UNIVERSITY FACULTY OF SCIENCE Programme Bachelor of Science Branch/Spec. Microbiology Semester I Version 1.0.1.0 Effective from Academic Year 2015-16 Effective for the batch Admitted in July 2015 Subject code UMBA 101 Subject Name FUNDAMENTALS OF MICROBIOLOGY FOM Teaching scheme Examination scheme (Marks) (Per week) Lecture(DT) Practical(Lab.) Total CE SEE Total L TU P TW Credit 04 -- -- -- 04 Theory 40 60 100 Hours 04 -- -- -- 04 Practical -- -- -- Pre-requisites: Students should have basic knowledge of Microorganisms and microscopy of 10+2 level. Learning Outcome: The course will help the student to understand basic fundamentals of Microbiology and history of Microbiology. -
Subhra Bhattacharya, Eric Oliver, Deva H. Puranam and Stephen C
GCMS IMPURITY PROFILING OF METHYLENE CHLORIDE – A SOLVENT WIDELY USED IN PHARMACEUTICAL, ENVIRONMENTAL AND CHEMICAL INDUSTRIES Subhra Bhattacharya, Eric Oliver, Deva H. Puranam and Stephen C. Roemer Thermo Fisher Scientific – Global Chemicals, One Reagent Lane, Fair Lawn, NJ ABSTRACT Figure 1. Schematic of Dedicated Distillation Unit (1000 gal capacity) Figure 3. Supplier #1 Raw Material February 2012 – Extracted Ion Chromatogram of m/z 140 and m/z 12 Figure 6. Supplier #2 Raw Material and Purified Product February 2013 Figure 10. EIC of m/z 104, Mass Spectra and NIST Result • Gas chromatography mass spectrometry (GCMS) has gained broad usage in pharmaceutical, environmental, and chemical research because the technique supports qualitative and quantitative applications with low limits of detection. Methylene chloride is commonly used as an extraction solvent for trace analysis of organic molecules by GCMS. Production of ultrapure methylene chloride has become a challenge due to instrumentation advances leading to ever-lower analyte detection limits. Analysis of raw materials and the corresponding purified solvents by GCMS generates relevant information regarding the nature of the impurities and help to explore new strategies for producing ultrapure methylene chloride. • In the current work, GCMS was used to evaluate the impurity profile of raw methylene chloride from different sources as well as the finished product in order to track the movement and accumulation of impurities in the solvent through the distillation and packaging processes. Rotary evaporation was used to concentrate the solvent, 1000-fold for raw material and 4000-fold for distilled product. GCMS data were collected using Thermo Scientific Trace GC Ultra-MSQ instrument. -
Methylene Chloride
Methylene Chloride Methylene Chloride (CH2Cl2) CAS 75-09-2; UN 1593 Synonyms include dichloromethane, methylene bichloride, methane dichloride, and methylene dichloride. • Persons exposed only to methylene chloride vapor do not pose risks of secondary contamination. Persons whose clothing or skin is contaminated with liquid methylene chloride can cause secondary contamination by direct contact or through off-gassing vapor. • Odor is not an adequate warning property for methylene chloride • Methylene chloride is a combustible liquid, but its vapor is flammable only when present in relatively high concentrations (14% to 22% in air). • Methylene chloride is absorbed readily after inhalation and ingestion. Skin absorption is slow but may contribute to total body burden. Description At room temperature, methylene chloride is a clear, colorless liquid with a pleasant odor. It is volatile, producing potentially toxic concentrations at room temperature. It is slightly soluble in water and miscible with most organic solvents. Routes of Exposure Inhalation Inhalation is the most important route of exposure and methylene chloride vapor is absorbed readily from the lungs. Odor is not an adequate warning property for methylene chloride, the odor threshold is 250 ppm, which is 10 times higher than the OSHA PEL (25 ppm). Olfactory fatigue may also occur at high concentrations. Methylene chloride is heavier than air and may cause asphyxiation in enclosed, poorly ventilated, or low-lying areas. Children exposed to the same levels of methylene chloride vapor as adults may receive larger doses because they have greater lung surface area:body weight ratios and increased minute volumes:weight ratios. In addition, they may be exposed to higher levels than adults in the same location because of their short stature and the higher levels of methylene chloride vapor found nearer to the ground. -
Sulfur and Selenium Ylide Bond Enthalpies Stacey A
Chemistry Publications Chemistry 9-29-2007 Sulfur and Selenium Ylide Bond Enthalpies Stacey A. Stoffregen Iowa State University Ryan D. McCulla Iowa State University Robert Wilson Iowa State University Samuel Cercone Iowa State University Jennifer Miller Iowa State University See next page for additional authors Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs Part of the Organic Chemistry Commons, Other Chemistry Commons, and the Polymer Chemistry Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ chem_pubs/156. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Sulfur and Selenium Ylide Bond Enthalpies Abstract The bond dissociation enthalpies (BDEs) of sulfur and selenium ylides have been estimated by applying MP2/6-311++G(3df,2p)//MP2/6-31G(d,p), G3, and other computational methods. Computed sulfoxide bond enthalpies were compared to experimental results to ensure the reliability of the computational methods before extending to related compounds. The examined ylides include the following: sulfoxides, sulfilimines, S,C-sulfonium ylides, and selenoxides. Selenoxides have BDEs about 10 kcal/mol smaller than the corresponding sulfoxides. N-H sulfilimines and CH2-S,C-sulfonium ylides have low BDEs, unless the sulfilimine or S,C-sulfonium ylide is stabilized by an electronegative substituent on N or C, respectively.