United States Patent Office Patented June 8, 1965

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented June 8, 1965 3,188,304 United States Patent Office Patented June 8, 1965 2 3,188,304 Now, however, it has been found that mercaptain modi CBL RUBBER POLYMERZAION PRO CESSES fiers are not equivalent in “hot” and “cold' rubber emul USNG AMCXTURE OF DECYL AND UNECYL sion polymerization systems. Surprisingly, in accord with MERCAPANSAS MODEFERS this invention, significant improvements are obtained in Roland H. Goshon, Fort Washington, Harry E. Alert, "cold' polymerization recipes for a styrene-butadiene sys Lafayette Hil, Bernard Bachholz, Fiorigwin, and tem when a modifier is employed which is a mercaptain Alfred C. Whiton, Norristown, Pa., assignors to containing 9, 10 or 11 carbon atoms in its molecule (i.e., Penasalt Chemicals Corporation, Philadelphia, Pa., a nonyl, decyl, and undecyl mercaptans) and these improve corporation of Penasylvania ments result also when the modifier used is a mixture of No Drawing. Fied July 17, 1961, Ser. No. 24,318 O these mercaptains. 6 Clains. (C. 260-84.3) One particular advantage found in using nonyl, decyl This invention deals with the preparation of synthetic or undecyl mercaptain as a modifier in “cold' rubber. rubber as obtained from styrene and butadiene and is par polymerization recipes is that improved modifier efficiency ticularly concerned with the use of certain mercaptans as is obtained. Modifier efficiency can be empirically meas modifiers in those polymerization processes carried out 5 ured in a synthetic rubber polymerization system by meas below about 50 F. (e.g. cold rubber processes). uring the Mooney viscosity of the dry polymer produced It is old in the art to use mercaptans as modifiers in the from such a system. At a given concentration level in emulsion polymerization of olefinic monomers such as the System, a modifier which produces a soft (low Mooney styrene and butadiene to obtain elastomeric products. viscosity) polymer is classified as more efficient than a Such polymerization modifiers are substances which are 20 modifier which produces a stiff (high Mooney viscosity) included in a polymerization recipe to make possible the polymer. The processability of a polymer is dependent production of a plastic, workable polymer. With no mod upon its viscosity and an efficient modifier is desired in ifier present in the recipe a tough, unworkable polymer is Synthetic rubber recipes, since less of it will be required produced. The exact role which the modifier plays in a to produce a polymer of specified Mooney viscosity. An free-radical initiated polymerization has been the subject 25 of much study, especially in butadiene-styrene emulsion other specific advantage obtained from this invention is copolymerization systems and it has been established that that the use of the decyl and undecyl mercaptans or their the modifier functions primarily as a chain transfer agent mixture is not adversely affected by the presence of resid in a free radical mechanism, and in this manner it controls ual olefin which is often present in the mercaptain from the molecular weight (and hence the processability) of the 30 its process of manufacture. This is particularly important polymer. where unreacted styrene used in the “cold" rubber manu Wolthan, in his U.S. Patent 2,281,613, disclosed that facture is recycled for further polymerization with the control of the polymerization is provided and plasticity butadiene component. As this recycle occurs, the olefin of the polymers obtained by incorporating in the aqueous contaminant from the mercaptain builds up in the styrene emulsion an aliphatic mercaptain having at least six carbon 35 monomer. With dodecyl mercaptain, for example, the atoms in an aliphatic linkage. In U.S. 2,378,030 Olin dis presence of Small amounts of the olefin from which the closed his improvement in the use of aliphatic mercaptains mercaptain is derived can build up to an amount on the having between 8 and 16 carbon atoms and pointed out order of 0.1 to 0.2 part per hundred parts of monomer the particular advantage of achieving high efficiency in and this significantly reduces modifier efficiency and causes the use of tertiary-dodecyl mercaptain as obtained by con 40 the rubber obtained to be stiff and undesirable. On the densation of triisobutylene with hydrogen sulfide. Addi other hand, use of decyl and undecyl mercaptains contam tional study in the use of mercaptan modifiers resulted in inated with starting, unreacted olefin (e.g. decenes and additional advances. For example, Crouch and Mashofer described in U.S. Patents 2,549,961 and 2,549,962 the ad undecenes) causes no adverse effects and actually results vantage of using blends of tertiary alkyl mercaptains hav 45 in a slight improvement in efficiency. ing 8 to 16 carbon atoms per molecule. In all of the above Still another unexpected advantage in the use of nonyl, disclosures the research was directed to and the disclosures decyl and undecyl mercaptains or their mixtures is that they are specific to the use of such mercaptain modifiers in enable a high conversion rate to be achieved. It has been styrene-butadiene polymerization recipes carried out at observed that the conversion rate is adversely affected about 50° C. or higher. 50 When certain mercaptans (particularly those containing Immediately after World War II, however, it was less than nine carbon atoms) are used in “cold" rubber learned that rubber having improved properties for tire polymerization recipes. treads was obtained when polymerization was carried out In order to facilitate discussion of the mercaptains they at temperatures of about 50 F. or lower and in the pres Will be referred to as C. mercaptains where C refers to a ence of an organic peroxide or hydroperoxide initiator. 55 hydrocarbon radical and x is the number of carbon atoms This development lead to the well-known “cold' rubber per molecule. Thus, Co is nonyl mercaptan, Co is decyl of commerce. In using modifiers for the cold polymeriza mercaptan, C11 is undecyl mercaptan, etc. The C, Co, tion recipes the industry logically used the same mercaptain and C11 mercaptains used in accord with the invention modifiers employed for the previously known “hot” rubber 60 have highly branched alkyl chains and are predominantly recipes and these were found to work quite well. Of Secondary and tertiary mercaptains. These compounds are particular value and predominantly used were tertiary readily prepared in accord with the known methods for dodecyl mercaptain and a mixture of tertiary mercaptains the addition of H2S to olefins. Because mixtures of olefins containing 12, 14 and 16 carbon atoms. are normally used for the HS addition, rectification of 3,188,804 s 3 A. the mercaptain mixture is carried out to isolate the C9, In the actual polymerization procedure, normal polym Co, and C1 mercaptains. Reference is made to U.S. erization ingredients and the usual operating techniques 2,392,554 for details of the mercaptain preparation process. will be employed except that the mercaptain modifier will In that patent it is pointed out that these mercaptain mix be a C9, Co, or C11, or a mixture of these mercaptains. tures are made by the method which comprises the re As indicated, peroxides or hydroperoxides will be used action of hydrogen sulfide with an olefinic polymer selected as catalysts (e.g. p-menthane hydroperoxide, cumene hy from the group consisting of polymers of propylene, butyl droperoxide, phenylcyclohexyl hydroperoxide, etc.) and ene, amylene and their mixtures. such recipes for “cold' rubber recipes are discussed by it will be understood that the C3, Co, and C1 mer G. S. Whitby in his book "Synthetic Rubber, John Wiley captains are not discrete compounds, but comprise isomer 0 & Sons, 1954. The amount of modifier used will be in mixtures. As indicated above, however, the compounds accord with usual practice and will vary from about are predominantly secondary and tertiary mercaptains and 0.05-0.50 part per hundred parts of monomer. Less than the purity of the rectified fractions will be on the order this annount of modifier results in too stiff a polymer of 90-100% mercaptain by weight. It will also be under product whereas more than about 0.50 phm. causes too stood, for example, that the term "Co mercaptan' re 5 great a softening of the polymer. Preferably, from about fers to a fraction consisting essentially of decyl mer 0.10 to 0.3 phin. will be used. captan, but there will also be present small amounts of C11 mercaptain and probably traces of other mercaptains. EXAMPLE 1. Likewise the term 'C mercaptain” refers to a fraction Butadiene-styrene copolymers were prepared by polym consisting essentially of undecyl mercaptain with decyl 20 erization at 43 F. according to the following SBR-1500 and other mercaptains present in small amounts. "Ca recipe. mercaptain' is likewise predominantly nonyl mercaptain ingredients: Parts by weight with trace amounts of other mercaptains. The C9, C10 and Butadiene --------------------------- 72 C1 mercaptain mixtures will also be of a comparable purity Styrene ----------------------------- 28 and will contain the C9, C10, and C11 mercaptain com 25 Water ------------------------------ 200 ponents in weight ratios ranging from about 10:90 to Mercaptain -------------------------- Variable 90:10 for two component systems and for three com Rosin soap ("iDresinate” 214) ---------- 4.50 ponent systems the lowest concentration of a single con Sodium sulfonate dispersant ("Daxad' ponent will be about 5% by weight. Because of avail 11) ------------------------------ 0.10 ability, the preferred modifier will be a Co and C11 mix 30 Sequestrant (Versene Fea Specific) ------ 0.04 ture which will consist essentially of approximately equal FeSO47H2O ------------------------ 0.12 amounts by weight of Co and C11 mercaptan. When K4P2O7 ----------------------------- 0.15 using the C component, it will be used preferably in a Na3PO4'12H2O ---------------------- 0.30 mixture with the Co and/or C11 mercaptain because of p-Menthane hydroperoxide ------------ 0.04 its tendency to lower conversion rates.
Recommended publications
  • United States Patent (19) (11) 4,161,455 Wason 45) Jul
    United States Patent (19) (11) 4,161,455 Wason 45) Jul. 17, 1979 (54) NOVEL PRECIPITATED SILICEOUS 57 ABSTRACT PRODUCTS AND METHODS FORTHER A method for producing a precipitated silicon dioxide USE AND PRODUCTION having a new combination of physical and chemical Satish K. Wason, Havre de Grace, properties is disclosed. The pigments are produced by 75 Inventor: acidulating a solution of an alkali metal silicate with an Md. acid under controlled precipitation conditions. The 73) Assignee: J. M. Huber Corporation, Locust, aqueous reaction medium comprising the precipitated N.J. silica is then post-conditioned by introducing a second silicate solution into the reaction vessel and thereafter 21) Appl. No.: 911,003 adding additional acid to react with the said second 22 Filed: May 30, 1978 silicate solution. By varying the amount of the silicate employed in the post-conditioning step, a product is Related U.S. Application Data obtained which has a unique combination of physical and chemical properties including reduced wet cake 60) Continuation of Ser. No. 796,913, is a division of Ser. moisture content, high surface areas and oil absorptions, No. 557,707, Mar. 12, 1975, abandoned. improved surface activity, friability, wetting character (51) Int. Cl’............................................... C11D 3/08 istics, and the like. The product has particular utility for (52) U.S. C. ............................... 252/174.25; 252/135; use as a rubber reinforcing agent because of its in 252/140; 106/288 B; 423/339 creased surface activity and oil absorption, etc. The (58) Field of Search ......................... 252/89, 135, 140; product, however, may be used in paints, paper, deter 423/339; 106/288B gents, dentifrice compositions, molecular sieves, and polymeric compositions.
    [Show full text]
  • TECH Tire Repair Chemicals for Best Results, Tech Nail Hole Repairs Should Be Used with These Tech Chemical Products
    epair orld Leader in Tire R The W TECH INTERNATIONAL TIRE REPAIR CATALOG www.techtirerepairs.com TRUST TECH Table of Contents TIRE REPAIR PRODUCTS & REPAIR CHARTS Pages 3 – 25 Uni-Seal Ultra Repairs . 3 – 4 Uni-Seal 2-piece Stems & Repairs . 5 – 7 Centech Radial Repairs for Shoulder Injuries . 6 Radial Section Repairs . 8 – 10 Bias Ply Tire Repairs. 11 – 13 Radial OTR Repairs . 14 – 18 Tech Off Road (TOR) Bias Repairs . 19 – 21 Repair Rubber and Chemicals . 22 – 24 2-Way Tube Repairs & All-Purpose Repairs. 25 NAILHOLE INSERTS & REPAIR KITS Pages 26 – 28 Permacure Repairs & Kits . 26 Flow-Seal Inserts & Self-Vulcanizing Repairs . 27 Repair Kits . 28 CABINETS & REPAIR TOOLS Pages 29 – 31 Cabinets & Tool Stations. 29 Hand Tools and Knives, Extruder Guns . 30 – 31 & Branding Irons PRODUCT PAGES Pages 32 – 33 Tire Inspection & Marking Tools . 32 – 33 Anti-Seize Compound. 33 SAFETY, PROTECTION & HAND CLEANING PRODUCTS Page 34 AIR TOOLS & ACCESSORIES Pages 35 – 41 Drills, Buffers & Air Hammers . 35 Cutters, Burrs, Grinding Stones, Wheels & Rasps . 36 – 39, 41 Wire Brushes, Buffing Stones. 40 Gouges & Cut-Off Wheels . 41 MONAFLEX VULCANIZING EQUIPMENT & SPOTTERS Pages 42 – 47 TIRE & WHEEL SERVICE LUBRICANTS Pages 48 – 49 TIRE IDENTIFICATION Page 50 Radio Frequency Identification Data Tags (RFID) . 50 Tire Identification Logos . 50 TIRE SPREADERS Page 51 Tech International Tire Repair Catalog TIRE BALANCING & SEALANT PRODUCTS Pages 52 – 53 Balance Pads, Tools & Chemicals . 52 Balancing Compound & Tire Sealant . 53 TPMS SOLUTIONS Pages 54 – 57 VALVES & VALVE HARDWARE Pages 58 – 73 AIR SERVICE PRODUCTS Pages 74 – 78 Gauges . 74 Automatic Tire Inflators. 76 Chucks & Chuck Repair Kits.
    [Show full text]
  • Modern Rubber Chemicals, Compounds and Rubber Goods Technology
    MODERN RUBBER CHEMICALS, COMPOUNDS AND RUBBER GOODS TECHNOLOGY Click to enlarge DescriptionAdditional ImagesReviews (0)Related Books The book covers Natural Rubber, Basic Concepts of Synthetic Rubber, Styrene Butadiene Rubber, Polybutadiene, Polychloroprene and Polyisoprene Rubbers, Butyl and Nitrile Rubber, Miscellaneous Rubbers, Latex Product Manufacturing Technology, Foam Products Manufacturing Technology, Plasticisers, Factice and Blowing Agents, Moulding and Finishing of Rubber Components, Compounding Ingredients and Compound Design, Footwear Technology, Conveyor Belt Technology, V-Belt and Fan Belt Manufacturing Technology, Hose Technology, Rubber Sports Goods Manufacturing Technology, Cable Technology, Rubber-To-Metal Bonding Components, Rubber-Covered Rolls, Sealing Technology, Nitrile Rubber and Its Application in Construction Industry, Rubber-Resin Pressure Sensitive Adhesive Tape Technology, Test Methods in Rubber Industry, Recycling of Wastes from Rubbers and Plastics. MODERN RUBBER CHEMICALS, COMPOUNDS AND RUBBER GOODS TECHNOLOGY NATURAL RUBBER Introduction Sources and the Plantation Economy Tapping of Natural Rubber (NR) Latex Recovery of Natural Rubber from Latex Coagulation, Processing of the Coagulate, Sheets, and Crepe Smoked Sheets Pale Crepe Special Grades Oil Extended Natural Rubber (OE-NR) Deproteinated Natural Rubber (DP/NR) Heveaplus MG Grades Epoxidised Natural Rubber (ENR) Thermoplastic NR Depolymerised NR Powdered or Particulate NR Peptised NR Classification of Hevea Rubber (TSR) Technically Classified NR (TC)
    [Show full text]
  • Polymer Chemistry Sem-6, Dse-B3 Part-3, Ppt-3
    POLYMER CHEMISTRY SEM-6, DSE-B3 PART-3, PPT-3 Dr. Kalyan Kumar Mandal Associate Professor St. Paul’s C. M. College Kolkata Polymer Chemistry Part-3 Contents • Styrene Based Copolymers • Poly(Vinyl Chloride): A Thermoplastic Polymer Styrene Based Copolymers Styrene-Acrylonitrile (SAN) Copolymers and ABS Resins • To obtain a styrene-based polymer of higher impact strength and higher heat distortion temperature at the same time, styrene is copolymerized with 20-30% acrylonitrile. Such copolymers have better chemical and solvent resistance, and much better resistance to stress cracking and crazing while retaining the transparency of the homopolymer at the same time. In many respects SAN copolymers are also better than poly(methyl methacrylate) and cellulose acetate, two other transparent thermoplastics. • ABS resins are terpolymers of acrylonitrile, butadiene and styrene, prepared by interpolymerization (grafting) of styrene and acrylonitrile on polybutadiene or through blending of SAN copolymers with butadiene–acrylonitrile (Nitrile) rubber. Impact improvement is far better if the rubber in the blend is lightly cross-linked. The impact resistance of ABS resins may be as high as 6-7 ft lb. per inch of notch. This Lecture is prepared by Dr. K. K. Mandal, SPCMC, Kolkata Styrene-Acrylonitrile (SAN) Copolymers • Styrene acrylonitrile resin is a copolymer plastic consisting of styrene (Ph-CH=CH2) and acrylonitrile (CH2=CH-CN). It is also known as SAN. It is widely used in place of polystyrene owing to its greater thermal resistance. • The chains of between 70 and 80% by weight styrene and 20 to 30% acrylonitrile. Larger acrylonitrile content improves mechanical properties and chemical resistance, but also adds a yellow tint to the normally transparent plastic.
    [Show full text]
  • Sumitomo Rubber Produces Truck, Motorcycle and Automobile Tires and Is Located at 10 Sheridan Drive in the Town of Tonawanda, Erie County
    Facility DEC ID: 9146400030 PERMIT Under the Environmental Conservation Law (ECL) IDENTIFICATION INFORMATION Permit Type: Air Title V Facility Permit ID: 9-1464-00030/00199 Effective Date: 01/23/2018 Expiration Date: 01/22/2023 Permit Issued To:SUMITOMO RUBBER USA, LLC PO BOX 1109 BUFFALO, NY 14240-1109 Contact: MARK R CRAFT SUMITOMO RUBBER USA LLC PO BOX 1109 BUFFALO, NY 14240-1109 (716) 879-8497 Facility: SUMITOMO RUBBER USA LLC 10 Sheridan Dr Tonawanda, NY 14150 Contact: MARK R CRAFT SUMITOMO RUBBER USA, LLC PO BOX 1109 BUFFALO, NY 14240-1109 (716) 879-8497 Description: Sumitomo Rubber produces truck, motorcycle and automobile tires and is located at 10 Sheridan Drive in the Town of Tonawanda, Erie County. The ownership changed from Goodyear Dunlop Tires North America, Ltd. to Sumitomo Rubber USA, LLC during the first half of 2016, and the facility is now called Sumitomo Rubber. The facility produces about 12,000 tires a day. The facility consists of 1.9 million square feet of manufacturing and warehousing on 130+ acres of land. This permit includes a multiyear project to increase production. The facility mixes all the ingredients together to make rubber, extrudes rubbers into shapes, combines metal and fabric into rubber strips (calendaring), assembles tires, vulcanizes and cures tires, shapes finished tires, and performs quality assurance and quality control on the final products which are then stored in a large warehouse on site. Five boilers generate process steam and heat at for the facility. Four boilers are dual fuel, natural gas and residual oil. One boiler burns only natural gas.
    [Show full text]
  • Modelling the Evolution of Tyre Performance in a Motorsport Application Analysis of Effects on Vehicle Performance in a Real-Time Simulation Environment
    Modelling the Evolution of Tyre Performance in a Motorsport Application Analysis of Effects on Vehicle Performance in a Real-Time Simulation Environment Master’s thesis in Automotive Engineering Håkan Richardson Department of Applied Mechanics CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2017 Acknowledgment This thesis was made possible by Cyan Racing through guidance by Mikael Mohlin, organisation by Erik Olofsson, track support from Per Blomberg and simulator support from Christoffer Routledge, but also valuable input from the entire engineering staff. Having the opportunity to utilise the simulator facility in collaboration with their driver, Nicky Catsburg, offered an extraordinary way to evaluate the model and discuss subjective aspects of tyre performance. Chalmers University of Technology have provided a robust academic framework with Bengt Jacobson as examiner and Anton Albinsson as supervisor. This has been a valuable source of knowledge and a great forum for discussing modelling challenges. MASTER’S THESIS IN AUTOMOTIVE ENGINEERING Modelling the Evolution of Tyre Performance in a Motorsport Application Analysis of Effects on Vehicle Performance in a Real-Time Simulation Environment Håkan Richardson Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics group CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2017 Modelling the Evolution of Tyre Performance in a Motorsport Application Analysis of Effects on Vehicle Performance in a Real-Time Simulation Environment Håkan
    [Show full text]
  • Tech International Tire Repair Catalog
    The World Leader in Tire Repair The World TECH INTERNATIONAL TIRE REPAIR CATALOG www.techtirerepairs.com TRUST TECH Table of Contents TIRE REPAIR PRODUCTS & REPAIR CHARTS Pages 3 – 25 Uni-Seal Ultra Repairs . 3 – 4 Uni-Seal 2-piece Stems & Repairs . 5 – 7 Centech Radial Repairs for Shoulder Injuries . 6 Radial Section Repairs . 8 – 10 Bias Ply Tire Repairs. 11 – 13 Radial OTR Repairs . 14 – 18 Tech Off Road (TOR) Bias Repairs . 19 – 21 Repair Rubber and Chemicals . 22 – 24 2-Way Tube Repairs & All-Purpose Repairs. 25 NAILHOLE INSERTS & REPAIR KITS Pages 26 – 28 Permacure Repairs & Kits . 26 Flow-Seal Inserts & Self-Vulcanizing Repairs . 27 Repair Kits . 28 CABINETS & REPAIR TOOLS Pages 29 – 31, 113 Cabinets & Tool Stations. 29 Hand Tools and Knives, Extruder Guns & Branding Irons . 30 – 31 Regroovers, Blades & Accessories. 113 PRODUCT PAGES Pages 32 – 33 Tire Inspection & Marking Tools . 32 – 33 Anti-Seize Compound. 33 SAFETY, PROTECTION & HAND CLEANING PRODUCTS Page 34 AIR TOOLS & ACCESSORIES Pages 35 – 41 Drills, Buffers & Air Hammers . 35 Cutters, Burrs, Grinding Stones, Wheels & Rasps . 36 – 39, 41 Wire Brushes, Buffing Stones. 40 Gouges & Cut-Off Wheels . 41 MONAFLEX VULCANIZING EQUIPMENT & SPOTTERS Pages 42 – 47 TIRE & WHEEL SERVICE LUBRICANTS Pages 48 – 49 TIRE IDENTIFICATION Page 50 Radio Frequency Identification Data Tags (RFID) . 50 Tire Identification Logos . 50 TIRE SPREADERS Page 51 Tech International Tire Repair Catalog TIRE BALANCING & SEALANT PRODUCTS Pages 52 – 53 Balance Pads, Tools & Chemicals . 52 Balancing Compound & Tire Sealant . 53 TPMS SOLUTIONS Pages 54 – 57 VALVES & VALVE HARDWARE Pages 58 – 73 AIR SERVICE PRODUCTS Pages 74 – 78 Gauges . 74 Automatic Tire Inflators.
    [Show full text]
  • Energy Laboratory Massachusetts Institute of Technology Cambridge
    Energy Laboratory Massachusetts Institute of Technology Cambridge, Massachusetts 02139 THE U.S. GOVERNMENT SYNTHETIC RUBBER PROGRAM 1941-1955 An Examination in Search of Lessons For Current Energy Technology Commercialization Projects by Paul R. Samuelson Working Paper MIT-EL 76-027WP November, 1976 PREPARED FOR THE UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION Under Contract No. E(49-18) 2295 Task Order 6 "This report was prepared as an account of work sponsored by the United States government. Neither the United States nor the United States ERDA, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights." i PREFACE This paper was written as a background paper in support of the M.I.T. Energy Policy Study Group's report, "Government Support for the Commerciali- zation of New Energy Technologies; An Analysis and Exploration of the Issues" (M.I.T. Energy Laboratory Report MIT-EL 76-009, October, 1976). Like the other background papers, it examines a specific government program, historical or current, to draw lessons for present energy policies. ii TABLE OF CONTENTS PREFACE . * . i ii TABLE OF CONTENTS .................... * . ii 1. THE ESSENTIAL FACTS ABOUT THE SYNTHETIC RUBBER PROGRAM * . 3 2. GOAL FORMULATION . * . 9 3. IMPLEMENTATION ................... 12 4. FINANCING SCHEMES AND COST ACCOUNTING PROCEDURES . 16 5. INCENTIVE SCHEMES TO ENCOURAGE OPERATING EFFICIENCY AND SALE OF PLANTS ................. 18 6.
    [Show full text]
  • New Joint Sealants. Criteria, Design and Materials
    DOCUMENT RESUME EF 002 627 ED 028 602 New Joint Sealants. Criteria,Design and Materials. Budding kesearch Inst., inc.,Washington. D.C. Report No- BR I PUB -1006 Pub Date 62 Note-252p.; Report of a program held as partof the BRI SpringConference, 1962 Institute,1725 De SalesStreet, N. Available from-ExecutiveVice-President,Building Research Washington, D. C. (S12.00). EDRS Price MF-S1.00 HC-S12.70 Construction (Process),Criteria. Design. Descriptors -*Adhesives, ArchitecturalElements, *Building Materials, Glass, *Glossaries, *Sealers,*Specifications (2) sealing glassand metal joints, Contents include--(1) sealingconcrete joints, (4) a theory of (3) metal and glass jointsealants from afabricator's viewpoint, (5) geometry ofsimple joint sealsunder strain, (6) joint adhesion for joint sealants, sealant requirements sealant specificationsfrom a manufacturer'sviewpoint, (7) joint (8) causes of jointsealant failures, (9)polysulfide joint from an applicator's viewpoint, (12) sealants, (10) silicone jointsealants, (11) pdlyethylenesealing compounds, compounds, and(14) epoxy joint polyurethane joint sealants,(13) butyl sealing of terms for sealants. A review ofspecifications for sealants,and a glossary adhesives, cdatings, andsealants are also included.(RH) 1. 5.02, '-w7"N7,,'Invw;1,741r4577-17,7f7.715,71T17777-0,,,,zwr,!,vp , ^ sre. 0', WI' AA,. 41, U 2. 8 6 Crr imareoresibb .140,P4CWHIMAIMMILINOOMMIA Building Research Institute Board of Directors 1962-63 OFFICERS President and Chairman of Executive Committee LEON CHATELAIN, JR. FAIA Chatelain, Gauger & Nolan Vice President and Vice Chairman of Executive Committee OTTO L. NELSON, JR; Vice President for Housing New York Life Insurance Company Vice President Secretary Treasurer PETER B. GORDON MILTON C. COON, JR. GRAYSON GILL Vice President Executive Vice President President Wolff and Munier, Inc.
    [Show full text]
  • Appendix RUBBER INFORMATION RESOURCES
    Appendix RUBBER INFORMATION RESOURCES RUTH MURRAY Rubber Division ACS Library The University of Akron Akron, Ohio The body of rubber literature continues to increase as new materials enter the picture and as old and new ones find new applications. It is difficult for the expert in the field to keep track of its many developments, while to one not so skilled in the art as the engineer or designer, the rubber literature can be ob­ scure. The references listed below are intended only to highlight the major sources of information. Books review the known and basic information; handbooks, dictionaries and directories point out the specific facts and data; periodicals keep one up-to-date on the relatively late information. The newest information is usually found in conference proceedings. Forming a little classification of their own are the books which cannot be included in the technical listing per se but which will appeal to the reader in­ terested in the history of the rubber industry and of rubber technology. GENERAL BOOKS K. W. Allen, ed., Adhesion 1-9, Applied Science Publishers, London, 1977-1985. The books contain papers that were given at the Annual Conferences on Adhesion and Adhesives at the City University in London. G. Alliger and I. J. Sjothun, Vulcanization of Elastomers, Reinhold, New York, 1964. A series of lectures presented by the Akron Rubber Group, edited and published in book fonn. J. C. Arthur, Jr., ed., Polymers for Fibers and Elastomers, American Chemical Society, Washington, DC 20036, 1984. 615 616 RUBBER TECHNOLOGY A state-of-the-art volume in fiber technology, based on a symposium sponsored by the Macromolecular Secretariat at the 186th Meeting of the ACS, 1983.
    [Show full text]
  • United States Patent Office
    3,514,423 United States Patent Office Patented May 26, 1970 2 cold rubbery SBR-type copolymer having a low Mooney 3,514,423 viscosity of 30 to 100 with 50 to 150 parts of such tacki TREAD END CEMENT FOR SYNTHETEC fying resinous materials as rosin, hydrogenated rosin or TRE TREADS esters of rosinous materials, 10 to 150 parts by weight Emmett B. Reinbold, Cuyahoga Falls, Ohio, assignar to The General Tire & Rubber Company, a corporation 5 of a plasticizer such as white mineral oil, 1 to 300 parts of Ohio by weight of a filler such as clay or SRF (Semi Reinforc No Drawing. Continuation-in-part of application Ser. No. ing Furnace) carbon black, together with 4 parts by 412,225, Nov. 18, 1964. This application May 3, 1968, weight of total curing agents. Before use, the resulting Ser. No. 726,596 composition is pre-cured at temperatures of 200 to 250 int. C. B29h 17/02; C08d 11/02 O F. in the present of added solvents, or at temperatures U.S. C. 260-33.6 1 Claim of about 300 F. in the absence of added solvents. The adhesive just described is not practical as a tread cement for oil-extended cold SBR-type rubber because the ABSTRACT OF THE DISCLOSURE Mooney viscosity of the SBR-copolymer in the adhesive A cement useful with synthetic treads comprises 100 5 is unduly low, the resinous tackifying materials are not parts by weight of a rubbery polymer composed primar at all suitable, and the types of fillers are not appro ily of SBR having a computed Mooney viscosity of be priate.
    [Show full text]
  • The Beckman Center for the History of Chemistry Paul S
    THE BECKMAN CENTER FOR THE HISTORY OF CHEMISTRY PAUL S. GREER Transcript of an Interview Conducted by Peter J. T. Morris in Chapel Hill, North Carolina on 13 November 1985 (With Subsequent Additions and Corrections) Upon Paul S. Greer’s death in 2006, this oral history was designated Free Access. One may view, quote from, cite, or reproduce the oral history with the permission of CHF. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation (CHF) Oral History Program to notify CHF of publication and credit CHF using the format below: Paul S. Greer, interview by Peter J. T. Morris at Chapel Hill, North Carolina, 13 November 1985 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0021). Chemical Heritage Foundation Oral History Program 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society. PAUL S. GREER 1904 Born in Braddock, Pennsylvania on 28 November Education 1925
    [Show full text]