Wasatch Photonics Educational Raman Spectrometer

Total Page:16

File Type:pdf, Size:1020Kb

Wasatch Photonics Educational Raman Spectrometer WASATCH PHOTONICS EDUCATIONAL RAMAN SPECTROMETER GARY BEASLEY, CENTRAL CAROLINA CC – NSF ATE LASER-TEC CO-PI CHRYSANTHOS PANAYIOTOU, INDIAN RIVERS SC – NSF ATE LASER-TEC PI CCCC & LASER-TEC HI-TEC CONFERENCE PRESENTATION, JULY 2019 1 ABOUT LASER-TEC National Science Foundation Advanced 36 PARTNER COLLEGES Technological Center for Laser & Fiber Optics Education Association of community and state colleges, universities, high schools and technical centers, trade associations, and laser and fiber optic companies CCCC & LASER-TEC HI-TEC CONFERENCE PRESENTATION, JULY 2019 LASER-TEC MISSION Develop a sustainable pipeline of qualified laser & fiber optics technicians to meet the industry demand across the nation. CCCC & LASER-TEC HI-TEC CONFERENCE PRESENTATION, JULY 2019 LASER-TEC GOALS 1. Increase and strengthen LFO academic programs to meet the industry demand. 2. Create and offer LFO professional development programs for secondary school teachers, college faculty, and incumbent workers. 3. Develop LFO curriculum materials for secondary schools, colleges, and industry. 4. Develop, promote, and deliver outreach and awareness programs to secondary STEM teachers, advisors, counselors, administrators, and the general public. 5. Develop strategies and materials for recruiting and retaining underrepresented groups and to promote diversity in LFO programs. CCCC & LASER-TEC HI-TEC CONFERENCE PRESENTATION, JULY 2019 CCCC LASER PROGRAM BRIEF • Established in 1987 • Located at the Lillington, NC Campus • Two Year Associate Degree in Laser & Photonics Technology • 1st Year – Electronics Focus • 2nd Year – Photonics Focus • LASER-TEC CO-PI CCCC & LASER-TEC HI-TEC CONFERENCE PRESENTATION, JULY 2019 CCCC LPT PROGRAM FOCUS WITH LASER-TEC GRANT • LASER-TEC Grant Focus at CCCC • Recruitment • Part-Time Recruiter • Laser Workshops • School Students, Teachers, and Educators • Preparation • New Course Development • Materials & Supplies • Placement • Strong Industry Partner Network CCCC & LASER-TEC HI-TEC CONFERENCE PRESENTATION, JULY 2019 SPECTROSCOPY “Spectroscopy” is considered the analysis of material, substance or matter through the observance of how it responds to different wavelengths. The response may be reflection, absorption, scattering, etc. Visible and near-infrared spectroscopy is growing at a very fast pace in many fields including forestry, medical, agriculture, defense, homeland security, and food safety. There are many different types of Spectroscopy. CCCC & LASER-TEC HI-TEC CONFERENCE PRESENTATION, JULY 2019 TYPES OF SPECTROSCOPY Types of spectroscopy are distinguished by specific applications or implementations: (https://en.wikipedia.org/wiki/Spectroscopy) Acoustic resonance spectroscopy is based on sound waves primarily in the audible and ultrasonic regions Auger spectroscopy is a method used to study surfaces of materials on a micro-scale. It is often used in connection with electron microscopy. Cavity ring down spectroscopy Circular Dichroism spectroscopy Coherent anti-Stokes Raman spectroscopy (CARS) is a recent technique that has high sensitivity and powerful applications for in vivo spectroscopy and imaging.[4] Cold vapour atomic fluorescence spectroscopy Correlation spectroscopy encompasses several types of two-dimensional NMR spectroscopy. Deep-level transient spectroscopy measures concentration and analyzes parameters of electrically active defects in semiconducting materials Dual polarisation interferometry measures the real and imaginary components of the complex refractive index Electron phenomenological spectroscopy measures physicochemical properties and characteristics of electronic structure of multicomponent and complex molecular systems. EPR spectroscopy Force spectroscopy Fourier transform spectroscopy is an efficient method for processing spectra data obtained using interferometers. Fourier transform infrared spectroscopy (FTIR) is a common implementation of infrared spectroscopy. NMR also employs Fourier transforms. Hadron spectroscopy studies the energy/mass spectrum of hadrons according to spin, parity, and other particle properties. Baryon spectroscopy and meson spectroscopy are both types of hadron spectroscopy. Hyperspectral imaging is a method to create a complete picture of the environment or various objects, each pixel containing a full visible, VNIR, NIR, or infrared spectrum. Inelastic electron tunneling spectroscopy (IETS) uses the changes in current due to inelastic electron-vibration interaction at specific energies that can also measure optically forbidden transitions. Inelastic neutron scattering is similar to Raman spectroscopy, but uses neutrons instead of photons. Laser-Induced Breakdown Spectroscopy (LIBS), also called Laser-induced plasma spectrometry (LIPS) Laser spectroscopy uses tunable lasers[5] and other types of coherent emission sources, such as optical parametric oscillators,[6] for selective excitation of atomic or molecular species. Mass spectroscopy is an historical term used to refer to mass spectrometry. Current recommendations[7] are to use the latter term. Use of the term mass spectroscopy originated in the use of phosphor screens to detect ions. Mössbauer spectroscopy probes the properties of specific isotopic nuclei in different atomic environments by analyzing the resonant absorption of gamma-rays. See also Mössbauer effect. Neutron spin echo spectroscopy measures internal dynamics in proteins and other soft matter systems Photoacoustic spectroscopy measures the sound waves produced upon the absorption of radiation. Photoemission spectroscopy Photothermal spectroscopy measures heat evolved upon absorption of radiation. Pump-probe spectroscopy can use ultrafast laser pulses to measure reaction intermediates in the femtosecond timescale. Raman optical activity spectroscopy exploits Raman scattering and optical activity effects to reveal detailed information on chiral centers in molecules. Raman spectroscopy Saturated spectroscopy Scanning tunneling spectroscopy Spectrophotometry Time-resolved spectroscopy measures the decay rate(s) of excited states using various spectroscopic methods. Time-Stretch Spectroscopy[8][9] Thermal infrared spectroscopy measures thermal radiation emitted from materials and surfaces and is used to determine the type of bonds present in a sample as well as their lattice environment. The techniques are widely used by organic chemists, mineralogists, and planetary scientists. Ultraviolet photoelectron spectroscopy (UPS) Video spectroscopy Vibrational circular dichroism spectroscopy X-ray photoelectron spectroscopy (XPS) CCCC & LASER-TEC HI-TEC CONFERENCE PRESENTATION, JULY 2019 SPECTROSCOPY ANALYSIS WITH LIGHT ENERGY Some types of “Spectroscopy” are used for material, or matter, analysis using light energy. Comparison analysis is performed through reflection, absorption, fluorescence, refraction or scattering of light from interaction with a material sample. Includes Raman https://en.wikipedia.org/wiki/User:Nathan_Johnson/photoemission_spectroscopy#/media/File:ARPESgeneral.png) CCCC & LASER-TEC HI-TEC CONFERENCE PRESENTATION, JULY 2019 RAMAN SPECTROSCOPY Raman Spectroscopy is the Focus of our Discussion A measure of Wavelengths of Light Energy Scattered from Molecules. The wavelengths are shifted from the Incident Light by the Energies of the Molecular Vibrations. Maybe used for Molecular Determination, including Qualitative, and Quantitative Analysis. Raman Scattering Amount is Very Weak Raman Spectroscopy Applications Biomedical – (Vital Signs Monitoring, Early Disease Detection, Glucose Monitoring, Imaging, Dental) Homeland Security (Poisonous Gas Detection, Bomb Detection) Geology Law Enforcement (Drug Identification) Food Industry (Contamination, Ripeness) Pharmaceutical Industry (Correct Prescription Refills, Trace Elements) CCCC & LASER-TEC HI-TEC CONFERENCE PRESENTATION, JULY 2019 RAMAN SPECTROSCOPY Raman spectroscopy is experiencing very strong growth, because it is noninvasive, highly sensitive, fast, and less sample preparation time required. This strong growth has resulted in increased spectrometer sales, and increased demand for photonics/laser technicians with a skill set in the field of spectroscopy. “Gold Nuggets” just waiting to be mined! 55 Companies Found Let's look at the possible untapped market. CCCC & LASER-TEC HI-TEC CONFERENCE PRESENTATION, JULY 2019 RAMAN SPECTROSCOPY USA MANUFACTURERS Envco The Environmental Collective –ARKANSAS Aist-NTt, Inc. - Novato, CALIFORNIA APPLIED INSTRUMENT TECHNOLOGIES - Upland, CALIFORNIA Enhanced Spectrometry Inc. -San Jose, CALIFORNIA EnviroLogek Technologies - Culver City, CALIFORNIA EnviroSupply & Service Inc. - Irvine, CALIFORNIA Enviro-Tech Services - Martinez, CALIFORNIA EQUIPCO Rentals, Sales & Service -Concord, CALIFORNIA Hellma Axiom, Inc. - Tustin, CALIFORNIA Infrasign, LLC - Fremont, CALIFORNIA HORIBA Europe GmbH – CALIFORNIA S & N Labs - Santa Ana, CALIFORNIA Rigel Systems - Pls Vrds Pnsl, CALIFORNIA Sacher Lasertechnik, LLC - Buena Park, CALIFORNIA Seashell Technology, LLC - La Jolla, CALIFORNIA CCCC & LASER-TEC HI-TEC CONFERENCE PRESENTATION, JULY 2019 RAMAN SPECTROSCOPY USA MANUFACTURERS Avantes Inc. - Broomfield, COLORADO B&W Tek - Newark, DELAWARE Field Forensics, Inc. (FFI) - St. Petersburg, FLORIDA Laserpath Technologies - Oviedo, FLORIDA Metrohm AG - Riverview, FLORIDA Ocean Optics - a Halma Company - Dunedin, FLORIDA Spectrecology - Jasper, GEORGIA Spectrum Technologies, Inc. - Aurora, ILLINOIS
Recommended publications
  • Strongly Enhanced Raman Optical Activity in Molecules by Magnetic Response of Nanoparticles
    Strongly Enhanced Raman Optical Activity in Molecules by Magnetic Response of Nanoparticles Tong Wu1, Xiuhui Zhang2, Rongyao Wang1 and Xiangdong Zhang1* 1School of Physics and Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems,Beijing Institute of Technology, Beijing, 100081, China 2School of Chemistry and Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China ABSTRACT: An analytical theory for the surface-enhanced Raman optical activity (SEROA) with the magnetic response of the substrate particle has been presented. We have demonstrated that the SEROA signal is proportional to the magnetic polarizability of the substrate particle, which can be significantly enhanced due to the existence of the magnetic response. At the same time, a large circular intensity difference (CID) for the SEROA can also be achieved in the presence of the magnetic response. Taking Si nanoparticles as examples, we have found that the CID enhanced by a Si nanoparticle is 10 times larger than that of Au. Furthermore, when the molecule is located in the hotspot of a Si dimer, CID can be 60 times larger. The phenomena originate from large magnetic fields concentrated near the nanoparticle and boosted magnetic dipole emission of the molecule. The symmetric breaking of the electric fields caused by the magnetic dipole response of the nanoparticle also plays an important role. Our findings provide a new way to tailor the Raman optical activity by designing metamaterials with the strong magnetic response. I.INTRODUCTION Chirality plays a crucial role in modern biochemistry and the evolution of life.1 Many biologically active molecules are chiral, detection and quantification of chiral enantiomers of these biomolecules are of considerable importance.
    [Show full text]
  • Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: a Review
    polymers Review Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review Phuong Nguyen-Tri 1,2,*, Payman Ghassemi 2, Pascal Carriere 3, Sonil Nanda 4 , Aymen Amine Assadi 5 and Dinh Duc Nguyen 6,7 1 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam 2 Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada; [email protected] 3 Laboratoire MAPIEM (EA 4323), Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, CEDEX 9, 83041 Toulon, France; [email protected] 4 Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; [email protected] 5 ENSCR—Institut des Sciences Chimiques de Rennes (ISCR)—UMR CNRS 6226, Univ Rennes, 35700 Rennes, France; [email protected] 6 Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; [email protected] 7 Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea * Correspondence: [email protected]; Tel.: +819-376-5011 (ext. 4505) Received: 5 March 2020; Accepted: 13 May 2020; Published: 17 May 2020 Abstract: Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science.
    [Show full text]
  • Quantum Limit in Subnanometre-Gap Tip-Enhanced Nanoimaging of Few
    Quantum limit in subnanometre-gap tip-enhanced nanoimaging of few-layer MoS2 Yingchao Zhang1,2*, Dmitri V. Voronine1,3*#, Shangran Qiu1,2, Alexander M. Sinyukov1, Mary Hamilton3, Alexei V. Sokolov1,3, Zhenrong Zhang3 and Marlan O. Scully1,3,4# 1Texas A&M University, College Station, TX 77843, USA 2Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China 3Baylor University, Waco, TX 76798, USA 4Princeton University, Princeton, New Jersey 08544, USA Two-dimensional (2D) materials beyond graphene such as transition metal dichalcogenides (TMDs) have unique mechanical, optical and electronic properties with promising applications in flexible devices, catalysis and sensing. Optical imaging of TMDs using photoluminescence and Raman spectroscopy can reveal the effects of structure, strain, doping, defects, edge states, grain boundaries and surface functionalization. However, Raman signals are inherently weak and so far have been limited in spatial resolution in TMDs to a few hundred nanometres which is much larger than the intrinsic scale of these effects. Here we overcome the diffraction limit by using resonant tip-enhanced Raman scattering (TERS) of few-layer MoS2, and obtain nanoscale optical images with ~ 20 nm spatial resolution. This becomes possible due to electric field enhancement in an optimized subnanometre-gap resonant tip-substrate configuration. We investigate the limits of signal enhancement by varying the tip-sample gap with sub-Angstrom precision and observe a quantum quenching behavior, as well as a Schottky-Ohmic transition, for subnanometre gaps, which enable surface mapping based on this new contrast mechanism. This quantum regime of plasmonic gap-mode enhancement with a few nanometre thick MoS2 junction may be used for designing new quantum optoelectronic devices and sensors.
    [Show full text]
  • Curved-Mechanical Characteristic Measurements of Transparent Conductive Film-Coated Polymer Substrates Using Common-Path Optical Interferometry
    coatings Article Curved-Mechanical Characteristic Measurements of Transparent Conductive Film-Coated Polymer Substrates Using Common-Path Optical Interferometry Bor-Jiunn Wen * and Jui-Jen Hsu Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; [email protected] * Correspondence: [email protected] Abstract: This study proposes a method for measuring curved-mechanical characteristics based on a whole-folding test for transparent conductive film-coated polymer substrates using common- path optical interferometry. Accordingly, 80-, 160-, and 230-nm indium tin oxide films coated on 40 × 40 mm 125-µm-thick polyethylene terephthalate (PET) substrates, and monolayer graphene films coated on 40 × 40 mm 250-µm-thick PET substrates are inspected and analyzed under the curving conditions of 50-, 30-, 20-, and 10-mm radii before and after an 11,000 whole-folding cycle test based on a 10-mm folding radius. This study utilizes the changes in the phase retardations of transparent conductive film-coated polymer substrates under different curving conditions before and after 11,000 whole-folding cycles to analyze the substrates’ residual stress characteristics that were the direct result of manufacturing process parameters. The results from this study of curved-mechanical characteristic measurements of flexible transparent conductive substrates can provide designers Citation: Wen, B.-J.; Hsu, J.-J. Curved-Mechanical Characteristic with improved product development and can assist manufacturers in improving the manufacturing Measurements of Transparent design of enhanced coating processes. Conductive Film-Coated Polymer Substrates Using Common-Path Keywords: curved-mechanical characteristic measurements; whole-folding test; transparent Optical Interferometry. Coatings 2021, conductive film-coated polymer substrate; common-path optical interferometry 11, 766.
    [Show full text]
  • External Control of Electron Temperature in Ultra-Cold Plasmas
    Colby College Digital Commons @ Colby Honors Theses Student Research 2007 External Control of Electron Temperature in Ultra-cold Plasmas Roy O. Wilson Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Astrophysics and Astronomy Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Wilson, Roy O., "External Control of Electron Temperature in Ultra-cold Plasmas" (2007). Honors Theses. Paper 231. https://digitalcommons.colby.edu/honorstheses/231 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. External Control of Electron Temperature in Ultra-cold Plasmas Roy O.Wilson Honors Thesis Colby College Department of Physics and Astronomy May 2007 Abstract This thesis discusses progress towards achieving external control of the elec- tron temperature and the Coulomb coupling parameter of ultra-cold plasmas. Using a Littman dye laser, we create the plasma by partially photoionizing a dense, cold sample of rubidium atoms in a magneto-optical trap (MOT). At a controllable time delay, we excite neutral atoms in the plasma to a specific Ry- dberg state using a narrow bandwidth pulsed dye laser. We have made progress towards optimizing and quantifying the achievable Rydberg atom density by us- ing mm-wave spectroscopy to control the evolution of a cold dense Rydberg sam- ple to plasma and have also begun preliminary investigations of plasma electron temperature measurements.
    [Show full text]
  • Polymer Characterization with the Atomic Force Microscope
    Chapter 4 Polymer Characterization with the Atomic Force Microscope U. Maver, T. Maver, Z. Peršin, M. Mozetič, A. Vesel, M. Gaberšček and K. Stana-Kleinschek Additional information is available at the end of the chapter http://dx.doi.org/10.5772/51060 1. Introduction 1.1. Atomic force microscopy Atomic force microscopy is a powerful characterization tool for polymer science, capable of revealing surface structures with superior spatial resolution [1]. The universal character of repulsive forces between the tip and the sample, which are employed for surface analysis in AFM, enables examination of even single polymer molecules without disturbance of their integrity [2]. Being initially developed as the analogue of scanning tunneling microscopy (STM) for the high-resolution profiling of non-conducting surfaces, AFM has developed into a multifunctional technique suitable for characterization of topography, adhesion, mechanical, and other properties on scales from tens of microns to nanometers [3]. 1.2. The technique A schematic representation of the basic AFM setup is shown in Figure 1. Using atomic force microscopy (AFM), a tip attached to a flexible cantilever will move across the sample surface to measure the surface morphology on the atomic scale. The forces between the tip and the sample are measured during scanning, by monitoring the deflection of the cantilever [1]. This force is a function of tip sample separation and the material properties of the tip and the sample. Further interactions arising between the tip and the sample can be used to investigate other characteristics of the sample, the tip, or the medium in-between [4]. 1.2.1.
    [Show full text]
  • Construction of a New Forward and Backward Scat-Tering Raman Optical
    D´epartement de Chimie Universit´ede Fribourg (Suisse) Construction of a New Forward and Backward Scattering Raman Optical Activity Spectrometer and Graphical Analysis of Measured and Calculated Spectra for 2 2 2 (R)-[ H1, H2, H3]-Neopentane these` pr´esent´ee `ala facult´edes Sciences de l’Universit´e de Fribourg (Suisse) pour l’obtention du grade de Doctor rerum naturalium JACQUES HAESLER de Lutschental¨ (BE) Th`ese N° 1509 Imprimerie St-Paul, Fribourg 2006 Accept´ee par la Facult´edes Sciences de l’Universit´ede Fribourg (Suisse) sur la proposition du jury compos´ede MM. Composition du Jury : Prof. Dr. T. A. Jenny, Universit´ede Fribourg, pr´esident du jury, Prof. Dr. W. Hug, Universit´ede Fribourg, D´epartement de Chimie, directeur de th`ese, rapporteur, Prof. Dr. A. Weis, Universit´ede Fribourg, D´epartement de Physique, corapporteur, Prof. Dr. B. Champagne, Facult´es Universitaires Notre-Dame de la Paix, Laboratoire de Chimie Th´eorique Appliqu´ee, Namur (Belgique), corapporteur. Fribourg, le 16 mars 2006. Le Directeur de th`ese Le Doyen Prof. Dr. Werner Hug Prof. Marco Celio A` Marcel, parti trop tˆot. Table of Contents Table of Contents i Acknowledgments v R´esum´e vii Abstract ix I Introduction 1 1 Introduction to Raman Optical Activity 3 1.1 Optical Activity and Chirality ................... 3 1.2 Chirality in Everyday Life ..................... 6 1.3 Raman and ROA in Short ..................... 8 1.3.1 Vibrational Raman Scattering ............... 8 1.3.2 Raman Optical Activity (ROA) .............. 10 1.3.3 Theoretical Aspects ..................... 11 1.3.4 Experimental Aspects ................... 12 1.3.5 Computational Aspects ..................
    [Show full text]
  • Bibliography on Atomic Energy Levels and Spectra, July 1975 Through
    T F ,<* ° Co NBS SPECIAL PUBLICATION 363 SUPPLEMENT 2 U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards Bibliography on Atomic Energy Levels and Spectra July 1975 through June 1979 NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act ot Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system ot physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and
    [Show full text]
  • High Resolution Laser Spectroscopy of Cesium and Rubidium
    HIGH RESOLUTION LASER SPECTROSCOPY OF CESIUM AND RUBIDIUM MOLECULES WITH OPTICALLY INDUCED COHERENCE A Dissertation by HUI CHEN Submitted to the O±ce of Graduate Studies of Texas A&M University in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2006 Major Subject: Physics HIGH RESOLUTION LASER SPECTROSCOPY OF CESIUM AND RUBIDIUM MOLECULES WITH OPTICALLY INDUCED COHERENCE A Dissertation by HUI CHEN Submitted to the O±ce of Graduate Studies of Texas A&M University in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Co-Chairs of Committee, Marlan O. Scully M. Suhail Zubairy Committee Members, George R. Welch Vladimir A. Sautenkov Goong Chen Head of Department, Edward Fry August 2006 Major Subject: Physics iii ABSTRACT High Resolution Laser Spectroscopy of Cesium and Rubidium Molecules with Optically Induced Coherence. (August 2006) Hui Chen, B.S.; M.S., University of Science and Technology of China; M.S., Texas A&M University Co{Chairs of Advisory Committee: Dr. Marlan O. Scully Dr. M. Suhail Zubairy This work is devoted to the study of the quantum coherent e®ects in diatomic molecu- lar systems by using high resolution laser spectroscopy. In particular, we have studied the rubidium diatomic molecular gaseous medium's absorption spectrum with high resolution single mode laser spectroscopy. The derived electronic and rotational vi- brational constants were used in the backward Raman ampli¯cation experiment of Rb diatomic molecule. Both experimental results and theoretical calculation con- ¯rms that there is strong backward directionally dependent radiation. This e®ect can further be utilized in remote detection of chemical material.
    [Show full text]
  • Detection of Some Elements in Sand (Reddish Orange and Black) By
    Sudan University of Science and Technology College of Graduate Studies Detection of Some Elements in Sand (Reddish Orange and Black) by Using X-Ray Fluorescence Device الكشف عن بعض العناصر في الرمل )البرتقالي المحمر واﻷسود( بإستخدام جهاز اﻷشعة السينية المتوهجة Thesis submitted in partial fulfillment for requirement of the degree of master in physics By Ghada Osman khalf Allah Ahmed Supervisor Dr. Rawia Abdelgani Eobaid Mohammed January 2020 1 اﻵية ﭧﭐﭨﭐ ﱡﭐ ﲻ ﲼ ﲾﲽ ﲿ ﳀ ﳁ ﳂ ﳃ ﳄ ﳅ ﳆ ﳇ ﳈ ﳉ ﳊ ﱠ صدق اهلل العظيم سورة اﻹسراء I Dedication To the precious spirit … my mother To my continues supporter … my father To everyone who stood beside me and extended a helping, to my brothers, sisters and friends II Acknowledgement My great Thank and my love to Allah who helps me to prepare this research. I would like to thank the supervisor, Dr. Rawia Abdelgani Alobaid. I offer all Thanks, appreciation and respect to Mr. Mohammed Abdelaziz Mohammed Elhassan for his benevolence and patience. III Abstract This research deals with one of the applications of spectroscopy, which is the detection of some components of sand and the concentrations of these elements using X-ray fluorescence technology and comparison between them. Where sand samples were taken from Bara north Kordofan region (red-orange, black) from surface and depth (30cm, 70cm). It was found that the elements present on the surface of the red-orange sample are: Silicon (Si), Zirconium (Zr), Thorium (Th), Titanium (Ti), and their concentrations respectively (18.5%- 3.1%- 4.8%- 6.2%).
    [Show full text]
  • (ATR–FTIR) Spectroscopy, Micro–Attenuated Total Reflectance Fourier
    Organic and Medicinal Chemistry International Journal ISSN 2474-7610 Image Article Organic & Medicinal Chem IJ Volume 6 Issue 1 - March 2018 Copyright © All rights are reserved by Alireza Heidari DOI: 10.19080/OMCIJ.2018.06.555677 Fourier Transform Infrared (FTIR) Spectroscopy, Attenuated Total Reflectance Fourier Transform Infrared (ATR–FTIR) Spectroscopy, Micro–Attenuated Total Reflectance Fourier Transform Infrared (Micro–ATR–FTIR) Spectroscopy, Macro–Attenuated Total Reflectance Fourier Transform Infrared (Macro–ATR–FTIR) Spectroscopy, Two–Dimensional Infrared Correlation Spectroscopy, Linear Two–Dimensional Infrared Spectroscopy, Non–Linear Two– Dimensional Infrared Spectroscopy, Atomic Force Microscopy Based Infrared (AFM–IR) Spectroscopy, Infrared Photodissociation Spectroscopy, Infrared Correlation Table Spectroscopy, Near– Infrared Spectroscopy (NIRS), Mid–Infrared Spectroscopy (MIRS), Nuclear Resonance Vibrational Spectroscopy, Thermal Infrared Spectroscopy and Photothermal Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time Alireza Heidari* Faculty of Chemistry, California South University, USA Submission: February 26, 2018; Published: March 29, 2018 *Corresponding author: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, Email: Abbreviations: FTIR : Fourier Transform Infrared; ATR-FTIR: Attenuated Total Reflectance Fourier Transform Infrared; Micro-ATR-FTIR: Micro- Attenuated
    [Show full text]
  • Role and Applications of Synchrotron Removal from Raman Spectra For
    Vol. 1, No. 1, pp. 57-96, (October 2020) Aswan University Journal of Environmental Studies (AUJES) Online ISSN: 2735-4237, Print ISSN: 2735-4229 Journal homepage: http://aujes.aswu.edu.eg/ E-mail: [email protected] Original research Role and Applications of Synchrotron Removal from Raman Spectra for Quantitative Analysis of Cancer Tissues Alireza Heidari1,2* 1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA 2American International Standards Institute, Irvine, CA 3800, USA Received: 28/8/2020 Accepted: 12/9/2020 © Unit of Environmental Studies and Development, Aswan University Abstract: In the current paper, the effect of presence and absence of synchrotron on quantitative analysis of sample is investigated using Fourier transform filters method. Using Raman spectroscopy on cancer tissues sample, which is one of the most important herbs, quantitative and qualitative analyses are performed. DNA/RNA of cancer cells was detected in the sample and the performance of Raman arrangement for measuring DNA/RNA of cancer cells concentration was evaluated at two parts using calibration graph. In the first part, spectra are containing synchrotron while in the second part, spectra are filtered and synchrotron are removed. Keywords: Quantitative Analysis, Cancer Tissues, Raman Spectroscopy, Calibration Graph, DNA/RNA, Synchrotron 1- INTRODUCTION Raman spectroscopy is a fast, cheap and inoffensive method for analyzing various types of solid, liquid and gas samples. One of the Raman spectroscopy problems about biological samples is presence of synchrotron in spectra. For removing synchrotron, there are various applied methods such as changing the laser wavelength or using Fourier transform arrangement and some theories such as shifted spectra and Fast Fourier Transform Filters [1–23].
    [Show full text]