A Novel All-Solid-State Laser Source for Lithium Atoms and Three-Body Recombination in the Unitary Bose Gas Ulrich Eismann

Total Page:16

File Type:pdf, Size:1020Kb

A Novel All-Solid-State Laser Source for Lithium Atoms and Three-Body Recombination in the Unitary Bose Gas Ulrich Eismann A novel all-solid-state laser source for lithium atoms and three-body recombination in the unitary Bose gas Ulrich Eismann To cite this version: Ulrich Eismann. A novel all-solid-state laser source for lithium atoms and three-body recombination in the unitary Bose gas. Quantum Gases [cond-mat.quant-gas]. Université Pierre et Marie Curie - Paris VI, 2012. English. tel-00702865 HAL Id: tel-00702865 https://tel.archives-ouvertes.fr/tel-00702865 Submitted on 31 May 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DÉPARTEMENT DE PHYSIQUE DE L’ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER-BROSSEL THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS VI Spécialité : Physique Quantique présentée par Ulrich Eismann Pour obtenir le grade de Docteur de l’Université Pierre et Marie Curie (Paris VI) A novel all-solid-state laser source for lithium atoms and three-body recombination in the unitary Bose gas Soutenue le 3 Avril 2012 devant le jury composé de : Isabelle Bouchoule Rapporteuse Frédéric Chevy Directeur de Thèse Francesca Ferlaino Examinatrice AndersKastberg Rapporteur Arnaud Landragin Examinateur Christophe Salomon Membre invité Jacques Vigué Examinateur Contents General introduction 11 I High power 671-nm laser system 13 1 Introduction to Part I 15 1.1 Applications of 671-nm light sources ................... 16 1.2 Currently available 671-nm laser sources ................. 20 1.3 Alternative sources at 1342 nm ....................... 22 1.4 General design of the laser source and outline of Part I ......... 26 2 Diode-pumped all-solid-state Nd:YVO4 laser source 29 2.1 The Nd:YVO4 gain medium ........................ 31 2.1.1 Crystal strucure ........................... 31 2.1.2 Absorption ............................. 32 2.1.3 Emission ............................... 33 2.2 Laser theory ................................. 35 2.2.1 Hermite-Gaussian beams ...................... 35 2.2.2 Laser output power ......................... 38 2.2.3 Thermal effects in solid-state lasers ................ 39 2.2.4 Laser cavity design ......................... 41 2.3 Single-frequency operation and tunability ................. 45 2.3.1 Faraday rotation and unidirectional operation .......... 45 2.3.2 Etalons as frequency-dependent filters .............. 46 2.3.3 Etalon walk-off loss ......................... 47 2.3.4 Etalon choice and operation .................... 48 2.3.5 Etalon temperature tuning ..................... 50 2.3.6 Output spectrum .......................... 51 2.4 Output power ................................ 52 2.5 Spatial mode ................................ 55 2.6 Summary .................................. 57 3 Second harmonic generation 59 3.1 Theory of frequency doubling ....................... 60 3.1.1 Nonlinear conversion ........................ 60 3.1.2 Quasi-phase matching ....................... 61 3.1.3 Thermal effects and related dynamics ............... 62 i ii CONTENTS 3.2 Choice of the nonlinear medium ...................... 63 3.3 Single-pass measurements ......................... 65 3.4 Doubling cavity design ........................... 68 3.4.1 Mode matching and intra-cavity loss ............... 69 3.4.2 Impedance matching ........................ 71 3.5 Second harmonic output power and limitations .............. 72 3.5.1 Cavity characterization ....................... 72 3.5.2 Measurements of thermal effect and further optimization . 75 3.6 Summary .................................. 76 4 Frequency stabilization, characterization and implementation 77 4.1 Lock system ................................. 78 4.1.1 Cavity length actuation ...................... 78 4.1.2 Doubling cavity lock ........................ 79 4.1.3 Saturated absorption spectroscopy and laser lock ........ 80 4.1.4 Alternative locking schemes .................... 81 4.2 Characterization .............................. 82 4.2.1 Relative intensity noise ....................... 82 4.2.2 Linewidth .............................. 83 4.2.3 Spatial mode quality ........................ 84 4.2.4 Long-term stability and every-day operation ........... 84 4.3 Implementation in the current lithium experiment ............ 85 4.3.1 EOM sideband creation ...................... 86 4.3.2 Additional frequencies and light delivery ............. 88 4.3.3 Operation of Zeeman slower and MOT .............. 90 4.4 Summary .................................. 92 5 Conclusion to Part I 93 II Three-body loss in the unitary Bose gas 97 6 Introduction to Part II 99 7 Experimental setup 103 7.1 The 7Li atom ................................ 104 7.1.1 Energy level scheme ........................ 104 7.1.2 Hyperfine-ground-state energies .................. 105 7.1.3 The 737.8-G magnetic Feshbach resonance ............ 106 7.2 Experimental procedure .......................... 107 7.2.1 Zeeman slower, MOT and CMOT ................. 107 7.2.2 Quadrupolar magnetic trapping and transport .......... 109 7.2.3 Ioffe-Pritchard trap ......................... 109 7.3 Hybrid dipolar-magnetic trap ....................... 110 7.3.1 Trap frequency calibration 1: axial direction ........... 111 7.3.2 Trap frequency calibration 2: radial direction .......... 112 7.4 Imaging ................................... 113 CONTENTS iii 7.5 Creating strongly-interacting Bose gases ................. 114 7.5.1 Magnetic field sweeps ........................ 115 7.5.2 RF transfers ............................. 115 7.5.3 Magnetic field stability ....................... 116 7.6 Summary .................................. 118 8 The unitary Bose gas: Results and discussion 119 8.1 Three-body loss in the unitary Bose gas ................. 120 8.1.1 Experimental procedure ...................... 120 8.1.2 Decay rate equations ........................ 121 8.1.3 Suppression of N = 3-order loss .................. 122 8.1.4 Temperature-dependent results .................. 124 8.1.5 A criterion of collisional quasi-equilibrium ............ 127 8.2 Low-fugacity unitary Bose gas equation of state ............. 127 8.3 Summary .................................. 130 9 Conclusion to Part II 133 General conclusion 137 A A glance on theory 139 A.1 The N-body scattering problem ...................... 139 A.1.1 Two-body elastic scattering .................... 142 A.1.2 Unitarity-limited three-body loss ................. 143 A.2 Equation of state of the finite-temperature unitary Bose gas . 144 B Publications 147 Abstract In this thesis we present novel techniques for the study of ultracold gases of lithium atoms. In the first part of this thesis, we present the development of a narrow-linewidth laser source emitting 840 mW of output power in the vicinity of the lithium D-line resonances at 671 nm. The source is based on a diode-end-pumped unidirectional ring laser operating on the 1342-nm transition in Nd:YVO4, capable of producing 1.3 W of single-mode light delivered in a diffraction-limited beam. The output beam is subsequently frequency-doubled using periodically-poled potassium titanyl phosphate (ppKTP) in an external buildup cavity. We obtain doubling efficiencies of up to 86%. Tunability of the output frequency over more than 400 GHz and frequency-locking of the cavity ensemble with respect to the lithium D-line transitions are accomplished. +400 We measure the linewidth to be 200 200 kHz. − In the second part of this thesis, we employ the source in an experimental setup to produce to cool and trap lithium atoms. We realize samples of finite-temperature unitary Bose gases around the center of a Fano-Feshbach resonance, where interactions between the atoms are maximized. We present temperature-dependent measurements of the unitarity-limited three-body loss rate. The measured losses attain the limiting value imposed by quantum mechanics without adjustable parameters. This measure- ment allows for the introduction of a criterion for quasi-equilibrium. In this regime, by using technique based on in-situ imaging developed in our group, we provide a first measurement of the equation of state of the unitary Bose gas at low fugacities. Résumé Dans cette thèse, nous présentons des nouvelles techniques et leur application dans l’étude des gaz d’atomes de lithium ultrafroids. Dans la première partie de cette thèse, nous présentons le développement d’une nouvelle source laser de faible largeur spectrale, capable d’émettre 840 mW de puis- sance dans la gamme des longeurs d’ondes des raies D du lithium atomique à 671 nm. La source est basée sur un laser en anneau pompé par diode, fonctionnant sur la tran- sition à 1342 nm dans le Nd:YVO4, capable de produire 1.3 W de lumière monomode dans un faisceau limité par la diffraction. Le faisceau de sortie est ensuite doublé en fréquence dans un cristal de phosphate de potassium titanyl (ppKTP) périodiquement polarisé dans une cavité externe. Nous obtenons un rendement du doublage de 86%. Une accordabilité de la fréquence de sortie sur plus de 400 GHz et le verrouillage de l’ensemble des cavités par rapport aux raies D du lithium sont accomplis. Nous avons +400 mesuré la largeur de raie d’émission à 200 200 kHz. − Dans la deuxième
Recommended publications
  • Rietmann St., Biela J., Sensor Design for a Current Measurement System with High Bandwidth and High
    Sensor Design for a Current Measurement System with High Bandwidth and High Accuracy Based on the Faraday Effect St. Rietmann, J. Biela Power Electronic Systems Laboratory, ETH Zürich Physikstrasse 3, 8092 Zürich, Switzerland „This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of ETH Zürich’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional pur- poses or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document you agree to all provisions of the copyright laws protecting it.” Sensor Design for a Current Measurement System with High Bandwidth and High RIETMANN Stefan Accuracy Based on the Faraday Effect Sensor Design for a Current Measurement System with High Bandwidth and High Accuracy Based on the Faraday Effect Stefan Rietman and Jurgen¨ Biela Laboratory for High Power Electronic Systems, ETH Zurich, Switzerland Keywords Current Sensor, Sensor, Transducer, Frequency-Domain Analysis Abstract This paper presents the design of the optical system of a current sensor with a wide bandwidth and a high accuracy. The principle is based on the Faraday effect, which describes the effect of magnetic fields on linearly polarized light in magneto-optical material. To identify suitable materials for the optical system the main requirements and specification are determined. A theoretical description of the optical system shows a maximal applicable magnetic field frequency due to the finite velocity of light inside the material.
    [Show full text]
  • External Control of Electron Temperature in Ultra-Cold Plasmas
    Colby College Digital Commons @ Colby Honors Theses Student Research 2007 External Control of Electron Temperature in Ultra-cold Plasmas Roy O. Wilson Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Astrophysics and Astronomy Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Wilson, Roy O., "External Control of Electron Temperature in Ultra-cold Plasmas" (2007). Honors Theses. Paper 231. https://digitalcommons.colby.edu/honorstheses/231 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. External Control of Electron Temperature in Ultra-cold Plasmas Roy O.Wilson Honors Thesis Colby College Department of Physics and Astronomy May 2007 Abstract This thesis discusses progress towards achieving external control of the elec- tron temperature and the Coulomb coupling parameter of ultra-cold plasmas. Using a Littman dye laser, we create the plasma by partially photoionizing a dense, cold sample of rubidium atoms in a magneto-optical trap (MOT). At a controllable time delay, we excite neutral atoms in the plasma to a specific Ry- dberg state using a narrow bandwidth pulsed dye laser. We have made progress towards optimizing and quantifying the achievable Rydberg atom density by us- ing mm-wave spectroscopy to control the evolution of a cold dense Rydberg sam- ple to plasma and have also begun preliminary investigations of plasma electron temperature measurements.
    [Show full text]
  • Bibliography on Atomic Energy Levels and Spectra, July 1975 Through
    T F ,<* ° Co NBS SPECIAL PUBLICATION 363 SUPPLEMENT 2 U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards Bibliography on Atomic Energy Levels and Spectra July 1975 through June 1979 NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act ot Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system ot physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and
    [Show full text]
  • High Resolution Laser Spectroscopy of Cesium and Rubidium
    HIGH RESOLUTION LASER SPECTROSCOPY OF CESIUM AND RUBIDIUM MOLECULES WITH OPTICALLY INDUCED COHERENCE A Dissertation by HUI CHEN Submitted to the O±ce of Graduate Studies of Texas A&M University in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2006 Major Subject: Physics HIGH RESOLUTION LASER SPECTROSCOPY OF CESIUM AND RUBIDIUM MOLECULES WITH OPTICALLY INDUCED COHERENCE A Dissertation by HUI CHEN Submitted to the O±ce of Graduate Studies of Texas A&M University in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Co-Chairs of Committee, Marlan O. Scully M. Suhail Zubairy Committee Members, George R. Welch Vladimir A. Sautenkov Goong Chen Head of Department, Edward Fry August 2006 Major Subject: Physics iii ABSTRACT High Resolution Laser Spectroscopy of Cesium and Rubidium Molecules with Optically Induced Coherence. (August 2006) Hui Chen, B.S.; M.S., University of Science and Technology of China; M.S., Texas A&M University Co{Chairs of Advisory Committee: Dr. Marlan O. Scully Dr. M. Suhail Zubairy This work is devoted to the study of the quantum coherent e®ects in diatomic molecu- lar systems by using high resolution laser spectroscopy. In particular, we have studied the rubidium diatomic molecular gaseous medium's absorption spectrum with high resolution single mode laser spectroscopy. The derived electronic and rotational vi- brational constants were used in the backward Raman ampli¯cation experiment of Rb diatomic molecule. Both experimental results and theoretical calculation con- ¯rms that there is strong backward directionally dependent radiation. This e®ect can further be utilized in remote detection of chemical material.
    [Show full text]
  • Faraday Rotator Based on TSAG Crystal with <001> Orientation
    Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS 15486 Faraday rotator based on TSAG crystal with <001> orientation 1* 2 2 RYO YASUHARA, ILYA SNETKOV, ALEKSEY STAROBOR, ЕVGENIY 2 2 MIRONOV, AND OLEG PALASHOV 1National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu 509-5292, Japan 2Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod, 603950, Russia *[email protected] Abstract: A Faraday isolator (FI) for high-power lasers with kilowatt-level average power and 1-µm wavelength was demonstrated using a terbium scandium aluminum garnet (TSAG) with its crystal axis aligned in the <001> direction. Furthermore, no compensation scheme for thermally induced depolarization in a magnetic field was used. An isolation ratio of 35.4 dB (depolarization ratio γ of 2.9 × 10−4) was experimentally observed at a maximum laser power of 1470 W. This result for room-temperature FIs is the best reported, and provides a simple, practical solution for achieving optical isolation in high-power laser systems. ©2016 Optical Society of America OCIS codes: (160.3820) Magneto-optical materials; (140.6810) Thermal effects. References and links 1. D. J. Gauthier, P. Narum, and R. W. Boyd, “Simple, compact, high-performance permanent-magnet Faraday isolator,” Opt. Lett. 11(10), 623–625 (1986). 2. R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, “A compact tunable 60dB Faraday optical isolator for the near infrared,” Rev. Sci. Instrum. 63(12), 5586–5590 (1992). 3. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C.
    [Show full text]
  • Role and Applications of Synchrotron Removal from Raman Spectra For
    Vol. 1, No. 1, pp. 57-96, (October 2020) Aswan University Journal of Environmental Studies (AUJES) Online ISSN: 2735-4237, Print ISSN: 2735-4229 Journal homepage: http://aujes.aswu.edu.eg/ E-mail: [email protected] Original research Role and Applications of Synchrotron Removal from Raman Spectra for Quantitative Analysis of Cancer Tissues Alireza Heidari1,2* 1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA 2American International Standards Institute, Irvine, CA 3800, USA Received: 28/8/2020 Accepted: 12/9/2020 © Unit of Environmental Studies and Development, Aswan University Abstract: In the current paper, the effect of presence and absence of synchrotron on quantitative analysis of sample is investigated using Fourier transform filters method. Using Raman spectroscopy on cancer tissues sample, which is one of the most important herbs, quantitative and qualitative analyses are performed. DNA/RNA of cancer cells was detected in the sample and the performance of Raman arrangement for measuring DNA/RNA of cancer cells concentration was evaluated at two parts using calibration graph. In the first part, spectra are containing synchrotron while in the second part, spectra are filtered and synchrotron are removed. Keywords: Quantitative Analysis, Cancer Tissues, Raman Spectroscopy, Calibration Graph, DNA/RNA, Synchrotron 1- INTRODUCTION Raman spectroscopy is a fast, cheap and inoffensive method for analyzing various types of solid, liquid and gas samples. One of the Raman spectroscopy problems about biological samples is presence of synchrotron in spectra. For removing synchrotron, there are various applied methods such as changing the laser wavelength or using Fourier transform arrangement and some theories such as shifted spectra and Fast Fourier Transform Filters [1–23].
    [Show full text]
  • Enhancing the Raman Scattering for Diagnosis and Treatment of Human Cancer Cells, Tissues and Tumors Using Cadmium Oxide (Cdo) Nanoparticles
    ISSN: 2572-4061 Heidari. J Toxicol Risk Assess 2018, 4:012 DOI: 10.23937/2572-4061.1510012 Volume 4 | Issue 1 Journal of Open Access Toxicology and Risk Assessment RESEARCH ARTICLE Enhancing the Raman Scattering for Diagnosis and Treatment of Hu- man Cancer Cells, Tissues and Tumors Using Cadmium Oxide (CdO) Nanoparticles Alireza Heidari* Check for Faculty of Chemistry, California South University, USA updates *Corresponding author: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA hancement Factor (EF) of Raman signal can reaches up Abstract to 1015 times. The main mechanism that affects EF of In the current paper, the Localized Surface Plasmon Res- onance (LSPR) effect induced by Cadmium Oxide (CdO) signal is electromagnetic mechanism and is induced by nanoparticles is used to observe Raman spectrum of hu- enhancing the scattered light by the Localized Surface man cancer cells, tissues and tumors. The diagnosis and Plasmon Resonance (LSPR) of metallic nanoparticles or treatment of human cancer cells, tissues and tumors in sam- in sharp points and other curvatures of Plasmon struc- ple is investigated through Nanomaterial Surface Energy tures. In this method, molecule should be placed at dis- Transfer (NSET) process from human cancer cells, tissues and tumors to the surface of nanoparticles, and Surface tance lower than 10 (nm) from the surface of nanopar- Enhanced Raman Scattering (SERS) process, as effective ticle [28-43]. factors for Raman spectrum detection. For interaction of hu- man cancer cells, tissues and tumors with Cadmium Oxide In recent years, a considerable attention has been (CdO) nanoparticles, colloidal state and Self-Assembled paid to pair and enhance the surface Plasmon fields in Monolayer (SAM) methods were used.
    [Show full text]
  • Noise Spectroscopy with Large Clouds of Cold Atoms Samir Vartabi Kashanian
    Noise spectroscopy with large clouds of cold atoms Samir Vartabi Kashanian To cite this version: Samir Vartabi Kashanian. Noise spectroscopy with large clouds of cold atoms. Other [cond-mat.other]. COMUE Université Côte d’Azur (2015 - 2019), 2016. English. NNT : 2016AZUR4059. tel- 01382855v2 HAL Id: tel-01382855 https://tel.archives-ouvertes.fr/tel-01382855v2 Submitted on 18 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE DE NICE-SOPHIA ANTIPOLIS UFR Sciences Ecole Doctorale Sciences Fondamentales et Appliqu´ees THESE pour obtenir le titre de Docteur en Sciences de l’Universit´ede Nice - Sophia Antipolis Discipline : PHYSIQUE pr´esent´ee et soutenue par Samir Vartabi Kashanian Noise Spectroscopy with Large Clouds of Cold Atoms Th`esedirig´eepar: Robin Kaiser Michel Lintz soutenue le 16 Septembre 2016 Jury : Dr. Robin Kaiser -Directeurdeth`ese Pr. Farrokh Vakili -Pr´esidentdujury Pr. Frank Scheffold -Rapporteur Dr. Christoph Westbrook -Rapporteur Dr. Caroline Champenois -Examinateur Pr. Gian-Luca Lippi -Examinateur Abstract: In this thesis, I present some measurements of fluctuations of light after interaction with a cloud of laser-cooled rubidium atoms. These measure- ments can provide useful information on the source itself as well as on the medium in which light propagates.
    [Show full text]
  • Terbium Gallium Garnet - TGG
    Terbium Gallium Garnet - TGG Terbium Gallium Garnet (TGG) is a crystal material for optical isolator devices. Optical isolator devices make use of the non-reciprocal Faraday effect in TGG. The Faraday effect is the rotation of the plane of polarization of a light beam as it is transmitted through a material in the presence of an external magnetic field coaxial with the light. The polarization rotation is in the same sense regardless of the direction of propagation of the light. An optical isolator is a Faraday rotator combined with suitably aligned polarizers which allows light to pass in one direction only. Advantages Of TGG Include: Superior to terbium-doped glasses TGG has twice the Verdet constant of a Terbium-doped glass. The thermal conductivity of crystalline TGG is an order of magnitude greater than a typical glass. Optical losses are lower for TGG than Tb-doped glasses. The combination of the above factors make TGG better suited to high average power applications. The principal limiting factor is thermally induced beam distortion. Beam distortion is less for TGG than Tb-doped glasses under the same power loading level. Comparison of TGG & Tb-Doped Glass Properties @ 1064 nm TGG Tb-Glass Verdet Constant, V: @1064 nm -40 -20 RadT-1 m-1 @ 632 nm -134 -70 RadT-1 m-1 Absorption Coefficient, 0.0015 0.003 cm-1 Thermal Conductivity 7.4 0.7 Wm -1K-1 Refractive index, n 1.95 - - -13 Nonlinear Index, n2 8.0 2.45 10 esu Figure of Merit(1), V/ 27 7 - (2) Figure of Merit , V/n2 5 8 - SYNOPTICS Standard Rod Specifications Material Parameters
    [Show full text]
  • Okadaic Acid Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy © 2019 Heidari A, Et Al
    InternationalJournal of VIBGYOR Analytical and Bioanalytical Methods Okadaic Acid Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Original Article: Open Access Coupling Structure in Vibrational Spectra Analysis Alireza Heidari1,2*, Jennifer Esposito1 and Angela Caissutti1 1Faculty of Chemistry, California South University, USA 2American International Standards Institute, USA Abstract Okadaic acid, C44H68O13, is a toxin produced by several species of dinoflagellates, and is known to accumulate in both marine sponges and shellfish. One of the primary causes of diarrhetic shellfish poisoning, Okadaic acid is a potent inhibitor of specific protein phosphatases and is known to have a variety of negative effects on cells. A polyketide, polyether derivative of a C38 fatty acid, Okadaic acid and other members of its family have shined light upon many biological processes both with respect to dinoflagellate polyketide synthesis as well as the role of protein phosphatases in cell growth. Parameters such as FT -IR and Raman vibrational wavelengths and intensities for single crystal Okadaic Acid are calculated using density functional theory and were compared with empirical results. The investigation about vibrational spectrum of cycle dimers in crystal with carboxyl groups from each molecule of acid was shown that it leads to create Hydrogen bonds for adjacent molecules. The current study aimed to investigate the possibility of simulating the empirical values. Analysis of vibrational spectrum of Okadaic Acid is performed based on theoretical simulation and FT-IR empirical spectrum and Raman empirical spectrum using density functional theory in levels of HF/6-31G*, HF/6-31++G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31++G**, B3LYP/6-31G and B3LYP6-31-HEG**.
    [Show full text]
  • College of Science
    COLLEGE OF SCIENCE 1 COLLEGE OF SCIENCE Academic Programs Established in 1977/1978, the college of science offers programs leading to the B.Sc. degree with majors in Mathematics, Physics, Physics and Electronics, Chemistry, Applied Chemistry, Biology and Biotechnology, Medical Laboratory Sciences, and Statistics. The Faculties of Mathematics, Chemistry, Biology and Physics offer graduate programs leading to M.Sc. degree, and the Faculty of Chemistry offers a program leading to Ph.D. degree. Teaching is conducted through lecture and laboratory participation by highly qualified teaching staff, including a number of highly distinguished professors, who continue to positively affect students’ academic achievement and improve the quality of both applied and basic scientific research in the college. In addition to well equipped modern teaching laboratories, a number of research laboratories and facilities are available for faculty and students. Stack rooms, workshops (including glass blowing and electronics), clean rooms, dark rooms, exhibition rooms and a conference room are available on site. Credit hours Hours per week Course # Course title Prerequisite Theory Lab. 21101 Calculus I 3 3 - - 22102 Calculus II 3 3 - 21101 22101 General Physics I 3 3 - - 22107 Practical General Physics I 1 - 2 22101, or concurrent 22102 General Physics II 3 3 - 22101, 22107, or with both 22108 Practical General Physics II 1 - 2 22102 or concurrent 23101 General Chemistry I 3 3 - - 23107 Practical General Chemistry I 1 - 2 23101 or concurrent 23102 General Chemistry
    [Show full text]
  • High Resolution Laser Spectroscopy of Cesium and Rubidium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&amp;M Repository HIGH RESOLUTION LASER SPECTROSCOPY OF CESIUM AND RUBIDIUM MOLECULES WITH OPTICALLY INDUCED COHERENCE A Dissertation by HUI CHEN Submitted to the O±ce of Graduate Studies of Texas A&M University in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2006 Major Subject: Physics HIGH RESOLUTION LASER SPECTROSCOPY OF CESIUM AND RUBIDIUM MOLECULES WITH OPTICALLY INDUCED COHERENCE A Dissertation by HUI CHEN Submitted to the O±ce of Graduate Studies of Texas A&M University in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Co-Chairs of Committee, Marlan O. Scully M. Suhail Zubairy Committee Members, George R. Welch Vladimir A. Sautenkov Goong Chen Head of Department, Edward Fry August 2006 Major Subject: Physics iii ABSTRACT High Resolution Laser Spectroscopy of Cesium and Rubidium Molecules with Optically Induced Coherence. (August 2006) Hui Chen, B.S.; M.S., University of Science and Technology of China; M.S., Texas A&M University Co{Chairs of Advisory Committee: Dr. Marlan O. Scully Dr. M. Suhail Zubairy This work is devoted to the study of the quantum coherent e®ects in diatomic molecu- lar systems by using high resolution laser spectroscopy. In particular, we have studied the rubidium diatomic molecular gaseous medium's absorption spectrum with high resolution single mode laser spectroscopy. The derived electronic and rotational vi- brational constants were used in the backward Raman ampli¯cation experiment of Rb diatomic molecule.
    [Show full text]