Experimental Progress in Positronium Laser Physics David B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Positronium and Positronium Ions from T
674 Nature Vol. 292 20 August 1981 antigens, complement allotyping and Theoretically the reasons for expecting of HLA and immunoglobulin allotyping additional enzyme markers would clarify HLA and immunoglobulin-gene linked data together with other genetic markers the point. associations with immune response in and environmental factors should allow Although in the face of the evidence general and autoimmune disease in autoimmune diseases to be predicted presented one tends to think of tissue particular are overwhelming: HLA-DR exactly. However, there is still a typing at birth (to predict the occurrence of antigens (or antigens in the same considerable amount of analysis of both autoimmune disease) or perhaps even chromosome area) are necessary for H LA-region genes and lgG-region genes to before one goes to the computer dating antigen handling and presentation by a be done in order to achieve this goal in the service, there are practical scientific lymphoid cell subset; markers in this region general population. reasons for being cautious. For example, (by analogy with the mouse) are important In Japanese families, the occurrence of Uno et a/. selected only 15 of the 30 for interaction ofT cells during a response; Graves' disease can be exactly predicted on families studied for inclusion without immunoglobulin genes are also involved in the basis of HLA and immunoglobulin saying how or why this selection was made. T-cell recognition and control; HLA-A,-B allotypes, but it is too early to start wearing Second, lgG allotype frequencies are very and -C antigens are important at the "Are you my H LA type?" badges outside different in Caucasoid and Japanese effector arm of the cellular response; and Japan. -
First Search for Invisible Decays of Ortho-Positronium Confined in A
First search for invisible decays of ortho-positronium confined in a vacuum cavity C. Vigo,1 L. Gerchow,1 L. Liszkay,2 A. Rubbia,1 and P. Crivelli1, ∗ 1Institute for Particle Physics and Astrophysics, ETH Zurich, 8093 Zurich, Switzerland 2IRFU, CEA, University Paris-Saclay F-91191 Gif-sur-Yvette Cedex, France (Dated: March 20, 2018) The experimental setup and results of the first search for invisible decays of ortho-positronium (o-Ps) confined in a vacuum cavity are reported. No evidence of invisible decays at a level Br (o-Ps ! invisible) < 5:9 × 10−4 (90 % C. L.) was found. This decay channel is predicted in Hidden Sector models such as the Mirror Matter (MM), which could be a candidate for Dark Mat- ter. Analyzed within the MM context, this result provides an upper limit on the kinetic mixing strength between ordinary and mirror photons of " < 3:1 × 10−7 (90 % C. L.). This limit was obtained for the first time in vacuum free of systematic effects due to collisions with matter. I. INTRODUCTION A. Mirror Matter The origin of Dark Matter is a question of great im- Mirror matter was originally discussed by Lee and portance for both cosmology and particle physics. The Yang [12] in 1956 as an attempt to preserve parity as existence of Dark Matter has very strong evidence from an unbroken symmetry of Nature after their discovery cosmological observations [1] at many different scales, of parity violation in the weak interaction. They sug- e.g. rotational curves of galaxies [2], gravitational lens- gested that the transformation in the particle space cor- ing [3] and the cosmic microwave background CMB spec- responding to the space inversion x! −x was not the trum. -
Collision of a Positron with the Capture of an Electron from Lithium and the Effect of a Magnetic Field on the Particles Balance
chemosensors Article Collision of a Positron with the Capture of an Electron from Lithium and the Effect of a Magnetic Field on the Particles Balance Elena V. Orlenko 1,* , Alexandr V. Evstafev 1 and Fedor E. Orlenko 2 1 Theoretical Physics Department, Institute of Physics, Nanotechnology and Telecommunication, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia; [email protected] 2 Scientific and Educational Center for Biophysical Research in the Field of Pharmaceuticals, Saint Petersburg State Chemical Pharmaceutical University (SPCPA), 197376 St. Petersburg, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-911-762-7228 Abstract: The processes of scattering slow positrons with the possible formation of positronium play an important role in the diagnosis of both composite materials, including semiconductor materials, and for the analysis of images obtained by positron tomography of living tissues. In this paper, we consider the processes of scattering positrons with the capture of an electron and the formation of positronium. When calculating the cross-section for the capture reaction, exchange effects caused by the rearrangement of electrons between colliding particles are taken into account. Comparison of the results of calculating the cross-section with a similar problem of electron capture by a proton showed that the mass effect is important in such a collision process. The loss of an electron by a lithium atom is more effective when it collides with a positron than with a proton or alpha particles. The dynamic equilibrium of the formation of positronium in the presence of a strong magnetic Citation: Orlenko, E.V.; Evstafev, A.V.; field is considered. -
Particle Nature of Matter
Solved Problems on the Particle Nature of Matter Charles Asman, Adam Monahan and Malcolm McMillan Department of Physics and Astronomy University of British Columbia, Vancouver, British Columbia, Canada Fall 1999; revised 2011 by Malcolm McMillan Given here are solutions to 5 problems on the particle nature of matter. The solutions were used as a learning-tool for students in the introductory undergraduate course Physics 200 Relativity and Quanta given by Malcolm McMillan at UBC during the 1998 and 1999 Winter Sessions. The solutions were prepared in collaboration with Charles Asman and Adam Monaham who were graduate students in the Department of Physics at the time. The problems are from Chapter 3 The Particle Nature of Matter of the course text Modern Physics by Raymond A. Serway, Clement J. Moses and Curt A. Moyer, Saunders College Publishing, 2nd ed., (1997). Coulomb's Constant and the Elementary Charge When solving numerical problems on the particle nature of matter it is useful to note that the product of Coulomb's constant k = 8:9876 × 109 m2= C2 (1) and the square of the elementary charge e = 1:6022 × 10−19 C (2) is ke2 = 1:4400 eV nm = 1:4400 keV pm = 1:4400 MeV fm (3) where eV = 1:6022 × 10−19 J (4) Breakdown of the Rutherford Scattering Formula: Radius of a Nucleus Problem 3.9, page 39 It is observed that α particles with kinetic energies of 13.9 MeV or higher, incident on copper foils, do not obey Rutherford's (sin φ/2)−4 scattering formula. • Use this observation to estimate the radius of the nucleus of a copper atom. -
Toward Quantum Simulation with Rydberg Atoms Thanh Long Nguyen
Study of dipole-dipole interaction between Rydberg atoms : toward quantum simulation with Rydberg atoms Thanh Long Nguyen To cite this version: Thanh Long Nguyen. Study of dipole-dipole interaction between Rydberg atoms : toward quantum simulation with Rydberg atoms. Physics [physics]. Université Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066695. tel-01609840 HAL Id: tel-01609840 https://tel.archives-ouvertes.fr/tel-01609840 Submitted on 4 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DÉPARTEMENT DE PHYSIQUE DE L’ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité : PHYSIQUE QUANTIQUE Study of dipole-dipole interaction between Rydberg atoms Toward quantum simulation with Rydberg atoms présentée par Thanh Long NGUYEN pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Soutenue le 18/11/2016 devant le jury composé de : Dr. Michel BRUNE Directeur de thèse Dr. Thierry LAHAYE Rapporteur Pr. Shannon WHITLOCK Rapporteur Dr. Bruno LABURTHE-TOLRA Examinateur Pr. Jonathan HOME Examinateur Pr. Agnès MAITRE Examinateur To my parents and my brother To my wife and my daughter ii Acknowledgement “Voici mon secret. -
The Hydrogen Atom (Finite Difference Equation/Discrete Wave Vectors/Bohr-Rydberg Formula) FREDERICK T
Proc. Natl. Acad. Sci. USA Vol. 83, pp. 5753-5755, August 1986 Chemistry Discrete wave mechanics: The hydrogen atom (finite difference equation/discrete wave vectors/Bohr-Rydberg formula) FREDERICK T. WALL Department of Chemistry, B-017, University of California at San Diego, La Jolla, CA 92093 Contributed by Frederick T. Wall, March 31, 1986 ABSTRACT The quantum mechanical problem of the hy- its wave vector energy counterpart.* If V is small compared drogen atom is treated by use of a finite difference equation in to mc2, then V and l9 are substantially the same, but for large place of Schrodinger's differential equation. The exact solu- negative values of V, the two can be significantly different. tion leads to a wave vector energy expression that is readily The next question to be answered is how the potential en- converted to the Bohr-Rydberg formula. (The calculations ergy is introduced into the finite difference equation. In our here reported are limited to spherically symmetric states.) The problem, we shall write that wave vectors reduce to the familiar solutions of Schrodinger's equation as c -- w. The internal consistency and limiting be- O(r - A) - 2(X + V/mc2)4(r) + /(r + A) = 0, [2] havior provide support for the view that the equations em- ployed could well constitute an approach to a relativistic for- with mulation of wave mechanics. X = = (1 - 26/E)"2 [3] In an earlier paper (1), I set forth a simple difference equa- EI/E tion for the wave mechanical description of a free particle. This was accompanied by a postulatory basis for interpreting where & is the wave vector energy, and certain parameters related to the energy, thus appearing to provide a possible connection to relativity. -
Note to 8.13 Students
Note to 8.13 students: Feel free to look at this paper for some suggestions about the lab, but please reference/acknowledge me as if you had read my report or spoken to me in person. Also note that this is only one way to do the lab and data analysis, and there are nearly an infinite number of other things to do that would be better. I made some mistakes doing this lab. Here are a couple I found (and some more tips): Use a smaller step and get more precise data than what we had. Then fit • a curve, don’t just pick out a peak. The Hg calibration is actually something like a sin wave instead of a cubic. • Also don’t follow the old version of Melissionos word for word. They use an optical system with a prism oppose to a diffraction grating. We took data strategically so we could use unweighted fits • The mystery tube was actually N, whoops my bad. We later found a • drawer full of tubes and compared the colors. It was obviously N. Again whoops, it was our first experiment okay?! 1 Optical Spectroscopy Rachel Bowens-Rubin∗ MIT Department of Physics (Dated: July 12, 2010) The spectra of mercury, hydrogen, deuterium, sodium, and an unidentified mystery tube were measured using a monochromator to determine diffrent properties of their spectra. The spectrum of mercury was used to calibrate for error due to optics in the monochronomator. The measurements of the Balmer series lines were used to determine the Rydberg constants for hydrogen and deuterium, 7 7 1 7 7 1 Rh =1.0966 10 0.0002 10 m− and Rd=1.0970 10 0.0003 10 m− . -
Quantum Mechanics for Beginners OUP CORRECTED PROOF – FINAL, 10/3/2020, Spi OUP CORRECTED PROOF – FINAL, 10/3/2020, Spi
OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi Quantum Mechanics for Beginners OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi Quantum Mechanics for Beginners with applications to quantum communication and quantum computing M. Suhail Zubairy Texas A&M University 1 OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © M. Suhail Zubairy 2020 The moral rights of the author have been asserted First Edition published in 2020 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing -
Quantum Mechanics
Quantum Mechanics Richard Fitzpatrick Professor of Physics The University of Texas at Austin Contents 1 Introduction 5 1.1 Intendedaudience................................ 5 1.2 MajorSources .................................. 5 1.3 AimofCourse .................................. 6 1.4 OutlineofCourse ................................ 6 2 Probability Theory 7 2.1 Introduction ................................... 7 2.2 WhatisProbability?.............................. 7 2.3 CombiningProbabilities. ... 7 2.4 Mean,Variance,andStandardDeviation . ..... 9 2.5 ContinuousProbabilityDistributions. ........ 11 3 Wave-Particle Duality 13 3.1 Introduction ................................... 13 3.2 Wavefunctions.................................. 13 3.3 PlaneWaves ................................... 14 3.4 RepresentationofWavesviaComplexFunctions . ....... 15 3.5 ClassicalLightWaves ............................. 18 3.6 PhotoelectricEffect ............................. 19 3.7 QuantumTheoryofLight. .. .. .. .. .. .. .. .. .. .. .. .. .. 21 3.8 ClassicalInterferenceofLightWaves . ...... 21 3.9 QuantumInterferenceofLight . 22 3.10 ClassicalParticles . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 25 3.11 QuantumParticles............................... 25 3.12 WavePackets .................................. 26 2 QUANTUM MECHANICS 3.13 EvolutionofWavePackets . 29 3.14 Heisenberg’sUncertaintyPrinciple . ........ 32 3.15 Schr¨odinger’sEquation . 35 3.16 CollapseoftheWaveFunction . 36 4 Fundamentals of Quantum Mechanics 39 4.1 Introduction .................................. -
External Control of Electron Temperature in Ultra-Cold Plasmas
Colby College Digital Commons @ Colby Honors Theses Student Research 2007 External Control of Electron Temperature in Ultra-cold Plasmas Roy O. Wilson Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Astrophysics and Astronomy Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Wilson, Roy O., "External Control of Electron Temperature in Ultra-cold Plasmas" (2007). Honors Theses. Paper 231. https://digitalcommons.colby.edu/honorstheses/231 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. External Control of Electron Temperature in Ultra-cold Plasmas Roy O.Wilson Honors Thesis Colby College Department of Physics and Astronomy May 2007 Abstract This thesis discusses progress towards achieving external control of the elec- tron temperature and the Coulomb coupling parameter of ultra-cold plasmas. Using a Littman dye laser, we create the plasma by partially photoionizing a dense, cold sample of rubidium atoms in a magneto-optical trap (MOT). At a controllable time delay, we excite neutral atoms in the plasma to a specific Ry- dberg state using a narrow bandwidth pulsed dye laser. We have made progress towards optimizing and quantifying the achievable Rydberg atom density by us- ing mm-wave spectroscopy to control the evolution of a cold dense Rydberg sam- ple to plasma and have also begun preliminary investigations of plasma electron temperature measurements. -
Bibliography on Atomic Energy Levels and Spectra, July 1975 Through
T F ,<* ° Co NBS SPECIAL PUBLICATION 363 SUPPLEMENT 2 U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards Bibliography on Atomic Energy Levels and Spectra July 1975 through June 1979 NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act ot Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system ot physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and -
High Resolution Laser Spectroscopy of Cesium and Rubidium
HIGH RESOLUTION LASER SPECTROSCOPY OF CESIUM AND RUBIDIUM MOLECULES WITH OPTICALLY INDUCED COHERENCE A Dissertation by HUI CHEN Submitted to the O±ce of Graduate Studies of Texas A&M University in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2006 Major Subject: Physics HIGH RESOLUTION LASER SPECTROSCOPY OF CESIUM AND RUBIDIUM MOLECULES WITH OPTICALLY INDUCED COHERENCE A Dissertation by HUI CHEN Submitted to the O±ce of Graduate Studies of Texas A&M University in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Co-Chairs of Committee, Marlan O. Scully M. Suhail Zubairy Committee Members, George R. Welch Vladimir A. Sautenkov Goong Chen Head of Department, Edward Fry August 2006 Major Subject: Physics iii ABSTRACT High Resolution Laser Spectroscopy of Cesium and Rubidium Molecules with Optically Induced Coherence. (August 2006) Hui Chen, B.S.; M.S., University of Science and Technology of China; M.S., Texas A&M University Co{Chairs of Advisory Committee: Dr. Marlan O. Scully Dr. M. Suhail Zubairy This work is devoted to the study of the quantum coherent e®ects in diatomic molecu- lar systems by using high resolution laser spectroscopy. In particular, we have studied the rubidium diatomic molecular gaseous medium's absorption spectrum with high resolution single mode laser spectroscopy. The derived electronic and rotational vi- brational constants were used in the backward Raman ampli¯cation experiment of Rb diatomic molecule. Both experimental results and theoretical calculation con- ¯rms that there is strong backward directionally dependent radiation. This e®ect can further be utilized in remote detection of chemical material.