Quantum Mechanics for Beginners OUP CORRECTED PROOF – FINAL, 10/3/2020, Spi OUP CORRECTED PROOF – FINAL, 10/3/2020, Spi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bell Inequalities Made Simple(R): Linear Functions, Enhanced Quantum Violations, Post- Selection Loopholes (And How to Avoid Them)
Bell inequalities made simple(r): Linear functions, enhanced quantum violations, post- selection loopholes (and how to avoid them) Dan Browne: joint work with Matty Hoban University College London Arxiv: Next week (after Matty gets back from his holiday in Bali). In this talk MBQC Bell Inequalities random random setting setting vs • I’ll try to convince you that Bell inequalities and measurement-based quantum computation are related... • ...in ways which are “trivial but interesting”. Talk outline • A (MBQC-inspired) very simple derivation / characterisation of CHSH-type Bell inequalities and loopholes. • Understand post-selection loopholes. • Develop methods of post-selection without loopholes. • Applications: • Bell inequalities for Measurement-based Quantum Computing. • Implications for the range of CHSH quantum correlations. Bell inequalities Bell inequalities • Bell inequalities (BIs) express bounds on the statistics of spatially separated measurements in local hidden variable (LHV) theories. random random setting setting > ct Bell inequalities random A choice of different measurements setting chosen “at random”. A number of different outcomes Bell inequalities • They repeat their experiment many times, and compute statistics. • In a local hidden variable (LHV) universe, their statistics are constrained by Bell inequalities. • In a quantum universe, the BIs can be violated. CHSH inequality In this talk, we will only consider the simplest type of Bell experiment (Clauser-Horne-Shimony-Holt). Each measurement has 2 settings and 2 outcomes. Boxes We will illustrate measurements as “boxes”. s 0, 1 j ∈{ } In the 2 setting, 2 outcome case we can use bit values 0/1 to label settings and outcomes. m 0, 1 j ∈{ } Local realism • Realism: Measurement outcome depends deterministically on setting and hidden variables λ. -
Toward Quantum Simulation with Rydberg Atoms Thanh Long Nguyen
Study of dipole-dipole interaction between Rydberg atoms : toward quantum simulation with Rydberg atoms Thanh Long Nguyen To cite this version: Thanh Long Nguyen. Study of dipole-dipole interaction between Rydberg atoms : toward quantum simulation with Rydberg atoms. Physics [physics]. Université Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066695. tel-01609840 HAL Id: tel-01609840 https://tel.archives-ouvertes.fr/tel-01609840 Submitted on 4 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DÉPARTEMENT DE PHYSIQUE DE L’ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité : PHYSIQUE QUANTIQUE Study of dipole-dipole interaction between Rydberg atoms Toward quantum simulation with Rydberg atoms présentée par Thanh Long NGUYEN pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Soutenue le 18/11/2016 devant le jury composé de : Dr. Michel BRUNE Directeur de thèse Dr. Thierry LAHAYE Rapporteur Pr. Shannon WHITLOCK Rapporteur Dr. Bruno LABURTHE-TOLRA Examinateur Pr. Jonathan HOME Examinateur Pr. Agnès MAITRE Examinateur To my parents and my brother To my wife and my daughter ii Acknowledgement “Voici mon secret. -
Bell's Inequalities and Their Uses
The Quantum Theory of Information and Computation http://www.comlab.ox.ac.uk/activities/quantum/course/ Bell’s inequalities and their uses Mark Williamson [email protected] 10.06.10 Aims of lecture • Local hidden variable theories can be experimentally falsified. • Quantum mechanics permits states that cannot be described by local hidden variable theories – Nature is weird. • We can utilize this weirdness to guarantee perfectly secure communication. Overview • Hidden variables – a short history • Bell’s inequalities as a bound on `reasonable’ physical theories • CHSH inequality • Application – quantum cryptography • GHZ paradox Hidden variables – a short history • Story starts with a famous paper by Einstein, Podolsky and Rosen in 1935. • They claim quantum mechanics is incomplete as it predicts states that have bizarre properties contrary to any `reasonable’ complete physical theory. • Einstein in particular believed that quantum mechanics was an approximation to a local, deterministic theory. • Analogy: Classical statistical mechanics approximation of deterministic, local classical physics of large numbers of systems. EPRs argument used the peculiar properties of states permitted in quantum mechanics known as entangled states. Schroedinger says of entangled states: E. Schroedinger, Discussion of probability relations between separated systems. P. Camb. Philos. Soc., 31 555 (1935). Entangled states • Observation: QM has states where the spin directions of each particle are always perfectly anti-correlated. Einstein, Podolsky and Rosen (1935) EPR use the properties of an entangled state of two particles a and b to engineer a paradox between local, realistic theories and quantum mechanics Einstein, Podolsky and Rosen Roughly speaking : If a and b are two space-like separated particles (no causal connection between the particles), measurements on particle a should not affect particle b in a reasonable, complete physical theory. -
Axioms 2014, 3, 153-165; Doi:10.3390/Axioms3020153 OPEN ACCESS Axioms ISSN 2075-1680
Axioms 2014, 3, 153-165; doi:10.3390/axioms3020153 OPEN ACCESS axioms ISSN 2075-1680 www.mdpi.com/journal/axioms/ Article Bell Length as Mutual Information in Quantum Interference Ignazio Licata 1,* and Davide Fiscaletti 2,* 1 Institute for Scientific Methodology (ISEM), Palermo, Italy 2 SpaceLife Institute, San Lorenzo in Campo (PU), Italy * Author to whom correspondence should be addressed; E-Mails: [email protected] (I.L.); [email protected] (D.F.). Received: 22 January 2014; in revised form: 28 March 2014 / Accepted: 2 April 2014 / Published: 10 April 2014 Abstract: The necessity of a rigorously operative formulation of quantum mechanics, functional to the exigencies of quantum computing, has raised the interest again in the nature of probability and the inference in quantum mechanics. In this work, we show a relation among the probabilities of a quantum system in terms of information of non-local correlation by means of a new quantity, the Bell length. Keywords: quantum potential; quantum information; quantum geometry; Bell-CHSH inequality PACS: 03.67.-a; 04.60.Pp; 03.67.Ac; 03.65.Ta 1. Introduction For about half a century Bell’s work has clearly introduced the problem of a new type of “non-local realism” as a characteristic trait of quantum mechanics [1,2]. This exigency progressively affected the Copenhagen interpretation, where non–locality appears as an “unexpected host”. Alternative readings, such as Bohm’s one, thus developed at the origin of Bell’s works. In recent years, approaches such as the transactional one [3–5] or the Bayesian one [6,7] founded on a “de-construction” of the wave function, by focusing on quantum probabilities, as they manifest themselves in laboratory. -
The Hydrogen Atom (Finite Difference Equation/Discrete Wave Vectors/Bohr-Rydberg Formula) FREDERICK T
Proc. Natl. Acad. Sci. USA Vol. 83, pp. 5753-5755, August 1986 Chemistry Discrete wave mechanics: The hydrogen atom (finite difference equation/discrete wave vectors/Bohr-Rydberg formula) FREDERICK T. WALL Department of Chemistry, B-017, University of California at San Diego, La Jolla, CA 92093 Contributed by Frederick T. Wall, March 31, 1986 ABSTRACT The quantum mechanical problem of the hy- its wave vector energy counterpart.* If V is small compared drogen atom is treated by use of a finite difference equation in to mc2, then V and l9 are substantially the same, but for large place of Schrodinger's differential equation. The exact solu- negative values of V, the two can be significantly different. tion leads to a wave vector energy expression that is readily The next question to be answered is how the potential en- converted to the Bohr-Rydberg formula. (The calculations ergy is introduced into the finite difference equation. In our here reported are limited to spherically symmetric states.) The problem, we shall write that wave vectors reduce to the familiar solutions of Schrodinger's equation as c -- w. The internal consistency and limiting be- O(r - A) - 2(X + V/mc2)4(r) + /(r + A) = 0, [2] havior provide support for the view that the equations em- ployed could well constitute an approach to a relativistic for- with mulation of wave mechanics. X = = (1 - 26/E)"2 [3] In an earlier paper (1), I set forth a simple difference equa- EI/E tion for the wave mechanical description of a free particle. This was accompanied by a postulatory basis for interpreting where & is the wave vector energy, and certain parameters related to the energy, thus appearing to provide a possible connection to relativity. -
Note to 8.13 Students
Note to 8.13 students: Feel free to look at this paper for some suggestions about the lab, but please reference/acknowledge me as if you had read my report or spoken to me in person. Also note that this is only one way to do the lab and data analysis, and there are nearly an infinite number of other things to do that would be better. I made some mistakes doing this lab. Here are a couple I found (and some more tips): Use a smaller step and get more precise data than what we had. Then fit • a curve, don’t just pick out a peak. The Hg calibration is actually something like a sin wave instead of a cubic. • Also don’t follow the old version of Melissionos word for word. They use an optical system with a prism oppose to a diffraction grating. We took data strategically so we could use unweighted fits • The mystery tube was actually N, whoops my bad. We later found a • drawer full of tubes and compared the colors. It was obviously N. Again whoops, it was our first experiment okay?! 1 Optical Spectroscopy Rachel Bowens-Rubin∗ MIT Department of Physics (Dated: July 12, 2010) The spectra of mercury, hydrogen, deuterium, sodium, and an unidentified mystery tube were measured using a monochromator to determine diffrent properties of their spectra. The spectrum of mercury was used to calibrate for error due to optics in the monochronomator. The measurements of the Balmer series lines were used to determine the Rydberg constants for hydrogen and deuterium, 7 7 1 7 7 1 Rh =1.0966 10 0.0002 10 m− and Rd=1.0970 10 0.0003 10 m− . -
Quantum Mechanics
Quantum Mechanics Richard Fitzpatrick Professor of Physics The University of Texas at Austin Contents 1 Introduction 5 1.1 Intendedaudience................................ 5 1.2 MajorSources .................................. 5 1.3 AimofCourse .................................. 6 1.4 OutlineofCourse ................................ 6 2 Probability Theory 7 2.1 Introduction ................................... 7 2.2 WhatisProbability?.............................. 7 2.3 CombiningProbabilities. ... 7 2.4 Mean,Variance,andStandardDeviation . ..... 9 2.5 ContinuousProbabilityDistributions. ........ 11 3 Wave-Particle Duality 13 3.1 Introduction ................................... 13 3.2 Wavefunctions.................................. 13 3.3 PlaneWaves ................................... 14 3.4 RepresentationofWavesviaComplexFunctions . ....... 15 3.5 ClassicalLightWaves ............................. 18 3.6 PhotoelectricEffect ............................. 19 3.7 QuantumTheoryofLight. .. .. .. .. .. .. .. .. .. .. .. .. .. 21 3.8 ClassicalInterferenceofLightWaves . ...... 21 3.9 QuantumInterferenceofLight . 22 3.10 ClassicalParticles . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 25 3.11 QuantumParticles............................... 25 3.12 WavePackets .................................. 26 2 QUANTUM MECHANICS 3.13 EvolutionofWavePackets . 29 3.14 Heisenberg’sUncertaintyPrinciple . ........ 32 3.15 Schr¨odinger’sEquation . 35 3.16 CollapseoftheWaveFunction . 36 4 Fundamentals of Quantum Mechanics 39 4.1 Introduction .................................. -
Nonlocal Single Particle Steering Generated Through Single Particle Entanglement L
www.nature.com/scientificreports OPEN Nonlocal single particle steering generated through single particle entanglement L. M. Arévalo Aguilar In 1927, at the Solvay conference, Einstein posed a thought experiment with the primary intention of showing the incompleteness of quantum mechanics; to prove it, he employed the instantaneous nonlocal efects caused by the collapse of the wavefunction of a single particle—the spooky action at a distance–, when a measurement is done. This historical event preceded the well-know Einstein– Podolsk–Rosen criticism over the incompleteness of quantum mechanics. Here, by using the Stern– Gerlach experiment, we demonstrate how the instantaneous nonlocal feature of the collapse of the wavefunction together with the single-particle entanglement can be used to produce the nonlocal efect of steering, i.e. the single-particle steering. In the steering process Bob gets a quantum state depending on which observable Alice decides to measure. To accomplish this, we fully exploit the spreading (over large distances) of the entangled wavefunction of the single-particle. In particular, we demonstrate that the nonlocality of the single-particle entangled state allows the particle to “know” about the kind of detector Alice is using to steer Bob’s state. Therefore, notwithstanding strong counterarguments, we prove that the single-particle entanglement gives rise to truly nonlocal efects at two faraway places. This opens the possibility of using the single-particle entanglement for implementing truly nonlocal task. Einstein eforts to cope with the challenge of the conceptual understanding of quantum mechanics has been a source of inspiration for its development; in particular, the fact that the quantum description of physical reality is not compatible with causal locality was critically analized by him. -
Simulation of the Bell Inequality Violation Based on Quantum Steering Concept Mohsen Ruzbehani
www.nature.com/scientificreports OPEN Simulation of the Bell inequality violation based on quantum steering concept Mohsen Ruzbehani Violation of Bell’s inequality in experiments shows that predictions of local realistic models disagree with those of quantum mechanics. However, despite the quantum mechanics formalism, there are debates on how does it happen in nature. In this paper by use of a model of polarizers that obeys the Malus’ law and quantum steering concept, i.e. superluminal infuence of the states of entangled pairs to each other, simulation of phenomena is presented. The given model, as it is intended to be, is extremely simple without using mathematical formalism of quantum mechanics. However, the result completely agrees with prediction of quantum mechanics. Although it may seem trivial, this model can be applied to simulate the behavior of other not easy to analytically evaluate efects, such as defciency of detectors and polarizers, diferent value of photons in each run and so on. For example, it is demonstrated, when detector efciency is 83% the S factor of CHSH inequality will be 2, which completely agrees with famous detector efciency limit calculated analytically. Also, it is shown in one-channel polarizers the polarization of absorbed photons, should change to the perpendicular of polarizer angle, at very end, to have perfect violation of the Bell inequality (2 √2 ) otherwise maximum violation will be limited to (1.5 √2). More than a half-century afer celebrated Bell inequality 1, nonlocality is almost totally accepted concept which has been proved by numerous experiments. Although there is no doubt about validity of the mathematical model proposed by Bell to examine the principle of the locality, it is comprehended that Bell’s inequality in its original form is not testable. -
Quantum Physics (UCSD Physics 130)
Quantum Physics (UCSD Physics 130) April 2, 2003 2 Contents 1 Course Summary 17 1.1 Problems with Classical Physics . .... 17 1.2 ThoughtExperimentsonDiffraction . ..... 17 1.3 Probability Amplitudes . 17 1.4 WavePacketsandUncertainty . ..... 18 1.5 Operators........................................ .. 19 1.6 ExpectationValues .................................. .. 19 1.7 Commutators ...................................... 20 1.8 TheSchr¨odingerEquation .. .. .. .. .. .. .. .. .. .. .. .. .... 20 1.9 Eigenfunctions, Eigenvalues and Vector Spaces . ......... 20 1.10 AParticleinaBox .................................... 22 1.11 Piecewise Constant Potentials in One Dimension . ...... 22 1.12 The Harmonic Oscillator in One Dimension . ... 24 1.13 Delta Function Potentials in One Dimension . .... 24 1.14 Harmonic Oscillator Solution with Operators . ...... 25 1.15 MoreFunwithOperators. .. .. .. .. .. .. .. .. .. .. .. .. .... 26 1.16 Two Particles in 3 Dimensions . .. 27 1.17 IdenticalParticles ................................. .... 28 1.18 Some 3D Problems Separable in Cartesian Coordinates . ........ 28 1.19 AngularMomentum.................................. .. 29 1.20 Solutions to the Radial Equation for Constant Potentials . .......... 30 1.21 Hydrogen........................................ .. 30 1.22 Solution of the 3D HO Problem in Spherical Coordinates . ....... 31 1.23 Matrix Representation of Operators and States . ........... 31 1.24 A Study of ℓ =1OperatorsandEigenfunctions . 32 1.25 Spin1/2andother2StateSystems . ...... 33 1.26 Quantum -
Einstein, Podolsky and Rosen Paradox, Bell Inequalities and the Relation to the De Broglie-Bohm Theory
Einstein, Podolsky and Rosen Paradox, Bell Inequalities and the Relation to the de Broglie-Bohm Theory Bachelor Thesis for the degree of Bachelor of Science at the University of Vienna submitted by Partener Michael guided by Ao. Univ. Prof. Dr. Reinhold A. Bertlmann Vienna, Dezember 2011 EPR - Bell Inequalities 2 Contents 1 Introduction3 2 Einstein Podolsky Rosen Paradox3 2.1 An Example to show Incompleteness.................5 2.2 Contributions from D. Bohm and Y. Aharonov............7 3 Bell's Inequality9 3.1 Experimental Verification....................... 12 4 A new Interpretation 12 4.1 Copenhagen Interpretation....................... 12 4.2 de Broglie-Bohm Theory........................ 15 4.3 Introduction to the de Broglie-Bohm Theory............. 16 4.4 The de Broglie-Bohm Theory and the Uncertainty Relation..... 18 4.5 Reality and Nonlocality in the de Broglie-Bohm Theory....... 20 5 Criticism of the de Broglie-Bohm Theory 21 5.1 Metaphysical Debate.......................... 21 5.1.1 Ockham's Razor......................... 21 5.1.2 Asymmetry in de Broglie-Bohm Theory............ 22 5.2 Theory Immanent Debate....................... 22 5.2.1 The \Surreal Trajectory" Objection.............. 22 6 Conclusion 24 7 Appendix 25 7.1 Appendix A............................... 25 EPR - Bell Inequalities 3 1 Introduction Is quantum mechanics incomplete? Are hidden variables needed? Does spooky interaction exist? Do we need a new interpretation for quantum mechanics? Is there an equivalent interpretation to the common Copenhagen interpretation? In this work, these questions will be raised and discussed. Quantum mechanics is known to be strange and describe phenomena which do not exist in the world of classical mechanics. The first main topic is about entanglement, a correlation between two separated systems which cannot interact with each other. -
Bell Inequalities and Density Matrix for Polarization Entangled Photons Out
Bell inequalities and density matrix for polarization entangled photons out of a two-photon cascade in a single quantum dot Matthieu Larqué, Isabelle Robert-Philip, Alexios Beveratos To cite this version: Matthieu Larqué, Isabelle Robert-Philip, Alexios Beveratos. Bell inequalities and density matrix for polarization entangled photons out of a two-photon cascade in a single quantum dot. Physical Review A, American Physical Society, 2008, 77, pp.042118. 10.1103/PhysRevA.77.042118. hal-00213464v2 HAL Id: hal-00213464 https://hal.archives-ouvertes.fr/hal-00213464v2 Submitted on 8 Apr 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Bell inequalities and density matrix for polarization entangled photons out of a two-photon cascade in a single quantum dot M. Larqu´e, I. Robert-Philip, and A. Beveratos CNRS - Laboratoire de Photonique et Nanostructures, Route de Nozay, F-91460 Marcoussis, FRANCE (Dated: April 9, 2008) We theoretically investigate the joint photodetection probabilities of the biexciton-exciton cascade in single semiconductor quantum dots and analytically derive the density matrix and the Bell’s inequalities of the entangled state. Our model includes different mechanisms that may spoil or even destroy entanglement such as dephasing, energy splitting of the relay excitonic states and incoherent population exchange between these relay levels.