Acp-12-437-2012-Supplement.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Acp-12-437-2012-Supplement.Pdf 1 List of Figures Figure A1: O3 trends of monthly mean characterised by loess regression....................3 Figure A2: Seasonal cycles of O3 (ppbv) for the period 1996-2005 inclusive...............11 Figure B1: Loess trends of CHIMERE simulated monthly mean O3............................45 2 List of Tables Table A1: Characterisation and categorisation of O3 time series by loess..................19 Table A2: Quantification of trends in O3 monthly mean 1996-2005...........................20 th Table A3: Quantification of trends in O3 monthly 5 percentiles 1996-2005.............24 th Table A4: Quantification of trends in O3 monthly 95 percentiles 1996-2005...........28 Table A5: Quantification of trends in seasonal mean O3 1996-2005...........................32 th Table A6: Quantification of trends in seasonal O3 5 percentiles 1996-2005.............36 th Table A7: Quantification of trends in seasonal O3 95 percentiles 1996-2005...........40 Table B1: Quantification of annual CHIMERE model trends in mean O3 1996-2005..53 th Table B2: Quantification of annual CHIMERE model trends in O3 5 percentiles 1996- 2005............................................................................................................................57 th Table B3: Quantification of annual CHIMERE model trends in O3 95 percentiles 1996-2005....................................................................................................................61 Table C1: Sites used in this study and their categorisation........................................66 1 3 Observed annual and seasonal trends A compilation of loess trends of monthly mean O3 for all stations in this study are th th given in Figure ?? and Table ?? in addition to annual 5 and 95 percentiles of O3. 75% coverage of monthly data was required to calculate statistics. Trend tables summarising trends in annual mean, 5th and 95th percentiles for 158 European measurement sites are give in Tables ?? - ??, respectively. A compilation th th of seasonal cycles from daily mean, 5 , and 95 percentiles of O3 for all stations in this study are given in Figure ??. Trend tables summarising trends in seasonal (winter [DJF], spring [MAM], summer [JJA] and autumn [SON]) mean, 5th and 95th percentiles for 158 European measurement sites are give in Tables ?? - ??, respectively. 2 80 80 60 60 3 40 3 40 monthly mean O O annual 5th percentile 20 20 annual 95th percentile 0 0 AT0002R AT0004R loess trend of mean 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 AT0005R AT0034R AT0044A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 AT0052A AT0054A AT0058A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 AT0064A AT0069A AT0073A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 AT0079A AT0080A AT0086A 1996 1998 2000 2002 2004 1998 2000 2002 2004 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 AT0089A AT0094A AT0095A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 AT0096A AT0101A AT0102A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year Figure A1: O3 trends of monthly mean characterised by loess regression 3 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 AT0103A AT0105A AT0108A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 AT0111A AT0115A AT0121A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 AT0122A AT0124A AT0128A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 AT0134A AT0141A AT0143A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 AT0146A AT0149A AT0153A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 AT0154A AT0162A AT0164A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 AT0166A AT0167A AT0175A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year Figure A1: continued. O3 trends of monthly mean characterised by loess regression 4 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 AT0176A AT0180A BE0032R 1996 1998 2000 2002 2004 1998 2000 2002 2004 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 BE0033R BE0035R BE0211A 1998 2000 2002 2004 1996 1998 2000 2002 2004 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 BE0238A BE0294A BE0298A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 BE0302A BE0304A BE0311A 1998 2000 2002 2004 1996 1998 2000 2002 2004 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 BE0345A CH0001R CH0002R 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 CH0003R CH0004R CH0005R 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 CH0019A CH0024A CH0033A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year Figure A1: continued. O3 trends of monthly mean characterised by loess regression 5 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 CMN CZ0001R CZ0003R 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 CZ0017A CZ0030A CZ0041A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 CZ0045A CZ0049A CZ0051A 1998 2000 2002 2004 1996 1998 2000 2002 2004 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 CZ0055A CZ0057A CZ0062A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 DE0003R DE0007R DE0008R 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 DE0009R DE0035R DE0422A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 DE0510A DE0514A DE0556A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year Figure A1: continued. O3 trends of monthly mean characterised by loess regression 6 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 DE0649A DE0651A DE0674A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 DE0679A DE0680A DE0684A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 DE0685A DE0686A DE0687A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 DE0688A DE0699A DE0719A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 DE0732A DE0735A DE0737A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 DE0738A DE0739A DE0754A 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year 80 80 80 60 60 60 3 40 3 40 3 40 O O O 20 20 20 0 0 0 DE0844A DE0874A DE0907A 1996 1998 2000 2002 2004 1998 2000 2002 2004 1996 1998 2000 2002 2004 year year year Figure A1: continued.
Recommended publications
  • LIFE Country Overview Germany 2018
    Germany Overview This document provides an overview of LIFE in Germany. It showcases key data and some of the latest LIFE projects. You will also find contact details and other useful resources and a full list of current and recently-finished LIFE projects. Every year calls for project proposals are launched covering the LIFE programme’s priority areas. ABOUT LIFE The LIFE programme is the EU's funding instrument for the environment and climate action. It has been running since 1992 and has co-financed more than 4 500 projects across the EU and in third countries, mobilising over €9 billion and contributing more than €4 billion to the protection of the environment and climate. The budget for the LIFE programme for 2014–2020 is set at €3.4 billion in current prices, with a sub-programme for environment and a sub-programme for climate action. Types of LIFE project: Other types of LIFE funding: Traditional (Environment and Resource Efficiency; Nature NGO operating grants and Biodiversity; Environmental Governance and Natural Capital Financing Facility (NCFF) Information; Climate Change Mitigation; Climate Change Private Finance for Energy Efficiency (PF4EE) Adaptation; Climate Governance and Information). Integrated (Environment, Nature or Climate Action) NCFF and PF4EE are joint initiatives with the European Preparatory Investment Bank, which manages the two funds. Capacity-building For more information visit: http://ec.europa.eu/life Last update: 4/06/18 European Commission/EASME (http://ec.europa.eu/life/) – Page 1 – LIFE Environment and Resource Efficiency This LIFE priority area is aimed at developing, testing and demonstrating best practices, solutions and integrated approaches to environmental challenges, as well as improving the related knowledge base.
    [Show full text]
  • LIFE Country Overview Germany 2020
    Germany Overview This document provides an overview of LIFE in Germany. It showcases key data and some of the latest LIFE projects. You will also find contact details and other useful resources and a full list of current and recently- finished LIFE projects. Every year calls for project proposals are launched covering the LIFE programme’s priority areas. ABOUT LIFE The LIFE programme is the EU's funding instrument for the environment and climate action. It has been running since 1992 and has co-financed more than 4 500 projects across the EU and in third countries, mobilising over €9 billion and contributing more than €4 billion to the protection of the environment and climate. The budget for the LIFE programme for 2014–2020 is set at €3.4 billion in current prices, with a sub-programme for environment and a sub-programme for climate action. Types of LIFE project: Other types of LIFE funding: Traditional (Environment and Resource Efficiency; Nature NGO operating grants and Biodiversity; Environmental Governance and Natural Capital Financing Facility (NCFF) Information; Climate Change Mitigation; Climate Change Private Finance for Energy Efficiency (PF4EE) Adaptation; Climate Governance and Information). Integrated (Environment, Nature or Climate Action) NCFF and PF4EE are joint initiatives with the European Preparatory Investment Bank, which manages the two funds. Capacity-building For more information visit: http://ec.europa.eu/life Last update: 01/12/20 European Commission/EASME (http://ec.europa.eu/life/) – Page 1 – LIFE Environment and Resource Efficiency This LIFE priority area is aimed at developing, testing and demonstrating best practices, solutions and integrated approaches to environmental challenges, as well as improving the related knowledge base.
    [Show full text]
  • Raubsaurier Und Krokodile Im Wiehengebirge
    suchungen in rein jurassischen Sedimentge- Samenvatting steinen durchgeführt worden. Die aktuelle In de zomer van 2013 werd door een verzame- Grube schließt im Südwesten auch den Über- laar in een leemgroeve in Warburg-Bonen- gang vom ältesten Jura in das Liegende auf, burg het skelet van een zwemsauriër gevon- also die oberste Trias mit dem sogenannten den. Het fossiel uit de tijd van het boventrias Rhät. Die Trias-Jura-Grenze liegt bei ca. 200 werd compleet in één blok gesteente geborgen Mio. Jahren vor heute. Der geologische Bau en naar het LWL-Museum für Naturkunde des östlichen Egge-Vorlandes ist sehr stark Münster getransporteerd. Na het uitprepare- durch Störungstektonik geprägt, was sich im ren werd de zwemsauriër, die vooral vanwege Kleinen auch in der Tongrube bemerkbar zijn hoge ouderdom interessant is, wetenschap- macht. Jedoch scheint im Südwesten der kon- pelijk onderzocht door experts van de Üniver- kordante Übergang Rhät-Lias sicher zu sein. sität Bonn. Die Fundstelle liegt also, stratigrasch gese- AUSGRABUNGEN UND FUNDE UND FUNDE AUSGRABUNGEN hen, unter dieser Grenze. Literatur Da vollständig erhaltene Schwimmsauri- Hans Stille/Adolf Mestwerdt, Erläuterungen zu Blatt Pe- er-Skelette bisher in Schichten des Unter-Jura ckelsheim Nr. 2515. Geologische Karte von Preussen und benachbarten deutschen Ländern (Berlin 1935). – Britta (Lias) gefunden worden sind (Süddeutschland, Niermeyer, Litho- und Biostratigraphie der Tongrube England), könnte dem Fund von Bonenburg Bonenburg. Geologie und Paläontologie in Westfalen 45 eine besondere Bedeutung beikommen. Man (Münster 1996). – Leonie Schwermann/Martin Sander, darf interessante Ergebnisse der wissenschaft- Osteologie und Phylogenie von Westfaliasaurus simon- lichen Untersuchungen erwarten. sensii: Ein neuer Plesiosauride (Sauropterygia) aus dem Unteren Jura (Pliensbachium) von Sommersell (Kreis Höx- ter), Nordrhein-Westfalen, Deutschland.
    [Show full text]
  • Referee Comments
    GENERAL AUTHOR RESPONSE Here we have tried to identify the main points raised in the five reviews and explain in general terms how we dealt with them. Responses to all individual reviewer comments are contained in the file “Author Response to Individual Comments” Restructure the manuscript Following the reviewers´ suggestions we have moved all workflow-related text to the respective chapter. Similarly we have tried to move all interpretation to the Discussion section. We have retained the subchapters in the Results section because we feel that maintaining a separation between data sources and workflow enhances reader-friendliness and makes the electronic publication more navigable through hyperlinks. We did not follow the suggestion to present the balanced cross section before the forward model for the following reason: The idea that the observed Zechstein slivers were created by inversion was conceived during field work. The forward model served to test the general geometric viability of the concept. The line-length balanced cross-sections were constructed in a second step to create more detailed structure models that closely conform to surface data. Thus, the manuscript structure follows the actual work flow. Choice of cross-section locations, additional sections The two balanced section locations were chosen such that the best available data could be used. Section A (Mühlberg) was chosen to include the previously described (Schröder 1925), once easily accessible, outcrop along the train tracks near Sontra. To our knowledge this is the only location where a Zechstein sliver with its hanging wall and footwall was ever exposed. The second traverse was chosen for its proximity to the shallow well demonstrating Muschelkalk underlying a Zechstein sliver, contrasting with the Mühlberg section.
    [Show full text]
  • THE CONQUEST of SAXONY AD 782–785 Charlemagne’S Defeat of Widukind of Westphalia
    THE CONQUEST OF SAXONY AD 782–785 Charlemagne’s defeat of Widukind of Westphalia DAVID NICOLLE ILLUSTRATED BY GRAHAM TURNER © Osprey Publishing • www.ospreypublishing.com CAMPAIGN 271 THE CONQUEST OF SAXONY AD 782–785 Charlemagne’s defeat of Widukind of Westphalia DAVID NICOLLE ILLUSTRATED BY GRAHAM TURNER Series editor Marcus Cowper © Osprey Publishing • www.ospreypublishing.com CONTENTS INTRODUCTION: FRANKS AND SAXONS 5 CHRONOLOGY 19 OPPOSING COMMANDERS 22 Carolingian commandersSaxon commanders OPPOSING FORCES 32 Carolingian forcesSaxon forces OPPOSING PLANS 42 Carolingian plansSaxon plans THE CAMPAIGN 46 Carolingian defeat in the Süntel Hills, AD 782The Saxon defeat AFTERMATH 79 A continuing struggleImpact on the SaxonsImpact on the Carolingians THE BATTLEFIELDS TODAY 91 FURTHER READING 93 INDEX 95 © Osprey Publishing • www.ospreypublishing.com The Carolingian kingdom and its neighbours, c. AD 782 N 1. Willebrord of Northumbria’s mission to 7. Southern provinces of the Lombard the Frisians (c. ad 690–739). Kingdom of Italy divided between the 2. Boniface of Wessex’s mission to the Duchy of Spoleto (nominally Papal) and Frisians and Hessians (c. AD 716–754). the Lombard Principality of Benevento). 3. Willehad of Northumbria’s mission to the 8. March of Friuli established in AD 776. Saxons (AD 780–789). 9. Against Lombard Kingdom of Italy in 4. Territory south of the Teutoburger Wald AD 773–74. KINGDOM lost by Franks to Saxons in AD 695, 10. Against rebel Lombard Duke of Friuli reconquered AD 722–804. later in AD 776. OF THE 5. Bavaria under Carolingian overlordship 11. Against Saragossa in AD 778. SCOTTISH KINGDOMS PICTS from AD 778.
    [Show full text]
  • To Love and Regenerate the Earth: Further Perspectives On
    To Love And Regenerate The Earth: Further Perspectives On Written and Compiled by Don Weaver, Co-Author of FERTILE GROUND by Rob Schouten ã 1995 To Love And Regenerate The Earth: Further Perspectives on The Survival of Civilization. Written and compiled by Don Weaver. Copyright 2002 by Don Weaver, to protect the wholeness and integrity of this work. Communications may be addressed to: Don Weaver Earth Health Regeneration POB 620478 Woodside, CA 94062-0478 e-mail: [email protected] The purpose of this book is to offer the world's responsible people a non-commercial gift of potentially world-transforming information, ideas, and insights on the social, ecological and climatic problems now threatening the future of humanity and the whole Biosphere. Also, to offer potential solutions which respond to the causes of these problems, and which might empower us to wisely regenerate the Biosphere and restore health and balance to the sociosphere. The author/editor is an independent (and interdependent) volunteer researcher hoping to encourage humanity's continued awakening, as well as "the progress of Science and useful Arts," one of the Constitutionally stated purposes of copyright law. In quoting from a broad spectrum of journals, websites, and books, I did not intend to substitute for them nor discourage careful, open-minded study of the entirety of them, nor do I in any way discourage their purchase if for sale. I found very helpful, as you may, the information and guidelines on the Fair Use privilege in books and websites on the topic. Especially comprehensive is the Fifth Edition (Feb.
    [Show full text]
  • EGGE-WESER, Band 3, 1986, 130-133, GERKEN, Aus
    EGGE-WESER 1986 Band 3 / Heft 3 130-133 AUS DEM LEHRGEBIET TIERÖKOLOGIE IM STUDIENGANG LANDESPFLEGE DER UNIVERSITÄT-GESAMTHOCHSCHULE PADERBORN / ABT. HÖXTER - 2. Mitteilung - von Bernd Gerken Mit Erscheinen dieses Hefts von "Egge-Weser" besteht das Lehrgebiet Tierökologie im Studiengang Landespflege der Uni-GH Paderborn drei Jahre. Lehre, Sammlung und Lehrpark Das Lehrprogramm verläuft im wesentlichen unverändert wie bei GERKEN (1984)beschrieben. Ergänzend wurde ein Vorlesungsteil 'Hydrobiologie' eingebaut, der zugleich als Serviceleistung für Studenten des Studiengangs Wasserwirtschaft jeweils im Wintersemester angeboten wird. Teile unserer im Aufbau befindlichen Lehrsammlung werden zur Zeit für eine allgemein zugängliche Ausstellung aufbereitet, der auch ein größeres Aquaterrarium angegliedert sein wird. Der Auf- und Ausbau der Sammlung wird wesentlich von Spendengeldern (vor allem Höxteraner Firmen) getragen. Im Lehrpark wurden die Arbeiten zur Herrichtung verschiedener Kleingewässer fortgesetzt, wozu unter anderem Spenden von Ton, Kalkmergel und Buntsandsteinbruch wertvolle Hilfe leisteten. An Kleingewässern stehen somit im Rohausbau je ein Buntsandstein-, Kalkmergel-, Lehm- und Hilston-Teich zur Verfügung. Nach Möglichkeit soll 1986 ein Torfschlamm-Teich hinzukommen. Die Pflege der Teiche erfolgt durch Mitarbeiter der Ökologischen Arbeitsgemeinschaft unserer Hochschule. Ein bis zu fünf Meter breiter Streifen um die Teiche ist spontan ankommender Vegetation 'reserviert'. Das übrige Umfeld wird als l-2 -schürige Extensivwiese gepflegt.
    [Show full text]
  • Die Weser Und Ihr Gewässereinzugsgebiet in Westfalen
    B6_Layout 1 14.04.16 12:06 Seite 1 Stand: 2017 Die Weser und ihr Gewässereinzugsgebiet in Westfalen Die Weser ist der größte, in Westfa- (14.–17. Jh.) die heutigen Flüsse reicht hier das Gewässereinzugsge- len fließende Fluss (Strom) mit einer Werra und Weser mit einer Gesamt- biet der Weser keilförmig bis weit ins Gesamtlänge von 451 km und einem länge von 751 km als ein Fluss galten Sauer- und Siegerland hinein. Einzugsgebiet von rd. 46000 km2. und somit die Fulda als Ne benfluss Außer dem südlichen Teil des Sie entsteht durch die beiden Quell- der Weser betrachtet wurde. Kreises Siegen-Wittgenstein wird so - flüsse Werra und Fulda, die ihre Die im Vergleich zur Werra (300 mit der gesamte östliche Bereich Quellen im Thüringer Wald bzw. in km) mit einer Länge von 220 km West falens über die Weser zur der Rhön haben und sich in Hanno- vermeindlich kleinere Fulda führt Nordsee entwässert. Das sind die versch Münden zur ab hier durch- aufgrund ihres größeren Ge wässer - gesamten Kreise Minden-Lübbecke, gängig schiffbaren Weser vereinigen. ein zugsgebietes mit einer mittleren Herford und Höxter sowie Teile der Naturraum Sie wird unterteilt in Oberweser (bis Ab flussmenge von 67 m3 mehr Was- kreisfreien Stadt Bielefeld, der Kreise zur Porta Westfalica bzw. bis zum ser zur Weser als die Werra (51 m3) Gütersloh und Lippe, des Hochsau- Wasserstraßenkreuz in Minden), Mit- und ist deshalb hydrologisch be - erlandkreises sowie des Kreises Sie- telweser (bis Bremen), Unterweser trachtet der eigentliche Hauptfluss. gen-Wittgenstein. (bis Bremerhaven) und Außen weser. Der längste Nebenfluss der Weser Weitgehend in ihrem natürlichen Bett ist mit 214 km die in der Magdebur- Eder fließend, ist sie jedoch bis heute ger Börde entspingende Aller vor Die Eder entspringt 621 m ü.
    [Show full text]
  • EGGE-WESER Band 14 (2001), Seiten 59-68, Kommentierte
    Kommentierte Artenliste der Heuschrecken des Kreises Höxter (Westf.) unter besonderer Berücksichtigung der Sichelschrecke Phaneroptera falcata (Poda, 1761) Benjamin T. Hill & Burkhard Beinlich EGGE-WESER Band 14 Seiten 059-068 12/2001 Zusammenfassung Die Heuschreckenfauna des Kreises Höxter wird mit Angaben zu Lebensraumansprüchen und regionaler Verbreitung vorgestellt. Insgesamt sind bislang 25 Arten nachgewiesen, von denen nur 10 Arten regelmäßig auftreten. Bemerkenswert ist der Erstnachweis der Sichelschrecke (Phaneroptera falcata) auf einem gehölzreichen Kalk- Magerrasen bei Ottbergen (NSG „Mühlenberg“). Dies stellt einen Neufund für das Weserbergland dar. Einleitung Heuschrecken zählen zu den bekannteren Insekten - ihre Gesänge sind fester Bestandteil des Sommers. In Deutschland wurden bisher 79 Arten nachgewiesen. 35 Arten zählen zu den Langfühlerschrecken (Ensifera), 44 zu den Kurzfühlerschrecken (Caelifera). Weiterhin ist in Deutschland noch eine Vertreterin der Fangschrecken anzutreffen, die Gottesanbeterin (Mantis religiosa). Besonders artenreich ist der kontinentaler geprägte Süddeutsche Raum, nach Norden hin nimmt die Artenzahl ab. In Nordrhein-Westfalens wurden bisher 52 Arten nachgewiesen (VOLPERS & AK HEUSCHRECKEN 1999). Der Erstnachweis der Sichelschrecke (Phaneroptera falcata) für das Weserbergland im Jahr 2001 ist Anlass, einen Überblick über die im Kreis Höxter bekannt gewordenen Arten und deren regionale Verbreitung zu geben. Die allgemeinen Angaben zu Habitatpräferenzen und zur Verbreitung in Deutschland wurden, soweit
    [Show full text]
  • Exotic Zechstein Slivers Sontra Graben-2021-01-08-JAKOB
    Emplacement of “exotic” Zechstein slivers along the inverted Sontra Graben (northern Hessen, Germany): clues from balanced cross- sections and geometrical forward modelling Jakob Bolz1, Jonas Kley1 5 1Department for Structural Geology & Geodynamics, Geoscience Centre, Georg-August-University, Göttingen, 37077, Germany Correspondence to: Jonas Kley ([email protected]) Abstract. Lens-shaped slivers of Permian (Zechstein) amid Triassic units appearing along the main boundary fault of the Sontra Graben in central Germany on the southern margin of the Central European Basin System (CEBS) were studied by 10 means of detailed map analysis, a semi-quantitative forward model and two balanced cross-sections. We show how partial reactivation of the graben’s main normal fault and shortcut thrusting in the footwall during inversion, combined with a specific fault geometry involving flats in low shear-strength horizons, can produce the observed slivers of “exotic” Zechstein. This conceptual model implies that the Sontra Graben was created by about 1200 m of extension followed by some 1000 m of contraction, resulting in the few hundred meters of net extension observed today. Gentle dips and comparatively extensive 15 exposure of some slivers suggest they are backthrust onto the reactivated normal fault´s hanging wall, an interpretation corroborated in one location by shallow drilling. Backthrusting appears to have wedged some Zechstein slivers into incompetent Triassic units of the hanging wall. Based on regional correlation, extension most likely occurred in Late Triassic to Early Cretaceous time while the contraction is almost certainly of Late Cretaceous age. The main aim of this paper is to describe an uncommon structural feature that we interpret to originate from inversion tectonics in an evaporite-bearing 20 succession with multiple detachment horizons but without the presence of thick salt.
    [Show full text]
  • Family Names from the Irish, Anglo-Saxon, Anglo-Norman and Scotch Considered in Relation to Their Etymology, with Brief Remarks
    >!> ^•' /> 1^ Presented to the LIBRARIES of the UNIVERSITY OF TORONTO by LEGISLATIVE LIBRARY OF ONTARIO Digitized by the Internet Archive in 2010 with funding from University of Toronto http://www.archive.org/details/familynamesfrdmiOOgent — Family Names ^.MJ FROM THE VlaM<a^ IRISH, ANGLO-SAXON, ANGLO-NORMAN AND SCOTCH Considered in Relation to their Etymology, Brief Remarks on the History and Languages —OF THE Peoples to Whom we are Indebted for their Origin. BY THOMAS G. GENTRY, Author of "Life-Histories of Birds of Eastern Pennsylvania," "The House Spakrow," " Nests and Eggs of Birds of the United States," etc. PHILADELPHIA: BURK & McFETRIDGE. 1892. y0^^'' <-. — NOV ) (( u iiouiJI Copyright, 1892, — BY THOMAS G. GENTRY PREFACE. In all ages and localities of the world names, implying some one or more characteristics of person, feature, faith, place or event, were conferred by people, especially by those of defective education and rude, unpolished manners. The nations of antiquity appear to have set the example, for the Hebrews had their "Adam," which meant " red earth," their " Elizabeth," "the oath of God," and the Greeks their " Theophilus," "the friend of God." Scriptural names, and those of a purely classical character, have been studied with less difficulty. Every Hebrew name has been fully discussed and exam- ined by the best scholars, and the Greek have received the same amount of careful consideration. Not so with the Latin. While much of value and interest have been gleaned through patient study and investigation, yet there is a great deal that must forever remain doubtful and inexplicable. Ripe German philologists have given full attention to the numerous race of German appellations, the Scandinavian class having been most ably treated in a series of articles to the Norsk Maandeskrifts from the pen of Prof.
    [Show full text]
  • Inversion Structures in Central Europe - Expressions and Reasons, an Open Discussion
    Netherlands Journal of Geosciences / Geologie en Mijnbouw 82 (4): 367-382 (2003) Inversion structures in Central Europe - Expressions and reasons, an open discussion F. Kockel1 1 Eiermarkt 12 B, D-30938 Burgwedel, Germany Manuscript received: January 2003; accepted: November 2003 S Abstract The diversity of morphological features of Mesozoic inversion structures in NW Germany as representatives of inversion structures in northern Europe is presented and their origin analysed and geologically dated. The particular role of salt in in­ verted basins and the re-shaping of pre-existing salt structures during the inversion act is demonstrated and the term 'salt wedge', a Zechstein salt intrusion into salt layers within the Triassic sedimentary pile, introduced. The leading theories on in­ version (continent-continent collision, re-activation Variscan features) are discussed and discarded, but no new comprehen­ sive theory was developed. The impact of inversion on HC prospectivity of sedimentary basins is debated and proposals for future interdisciplinary research are made. Keywords: Central Europe, inversion, NW Germany, hydrocarbon potential, salt structures Introduction (1957), Boigk (1968), Heybroek (1974, 1975), Burke (1977) andVanWijhe (1987). Voigt (1962a) defined Basin inversion is defined as the process where a re­ an inversion structure as a former trough, basin, half- versal occurs in the sense of tectonic movement, e.g. graben or graben, which later became uplifted uplift of a former depocentre and subsidence of the (aulacogene in the sense of Schatski). A comprehen­ highs bordering the basin (Voigt, 1962a). World-wide sive description of nearly all inverted basins in NW inverted basins contain significant amounts of hydro­ Europe and a first attempt to explain the phenome­ carbons and therefore since long these basins attract­ non on the base of plate tectonics, has been given by ed the attention of geologists.
    [Show full text]