Management Von Rotwild Auf Genetischer Gundlage Gentically
Total Page:16
File Type:pdf, Size:1020Kb
Wildlife Ecology and Management Management von Rotwild auf genetischer Gundlage Gentically based Red deer management Sven Herzog Anthropogenic influence on genetic structures in large mammals: examples • directed • undirected • habitat management • (re-)introductions • habitat destruction • captive breeding • habitat fragmentation • hunting/cropping • pollution • food supply • veterinary medicine Red deer (Cervus elaphus ): habitat fragmentation traffic ways as roads and motorways urban regions agriculture and forestry legislation Genetic consequences of anthropogenic influences on Red deer populations • selection • reduction of population size • genetic drift • „inbreeding“ • isolation • hybridization • change of genetic strutures • loss of genetic variation Characteristics of genetic struictures of red deer (Cervus elaphus ) low amount of genetic variation (Cameron und Vyse 1978, Gyllensten et al . 1983, Herzog 1988): δ Ha=1.2-4.6 (5.9) %, T*=2.7-5.2 (7.6) % differentiation by anthropogeneic barriers (Herzog 1988, Herzog et al . 1991, Ströhlein et al . 1995): d0 = 0-8 (12.6) % no or few differentiation as a consequence of natural barriers (Herzog 1988) fine-scale isolation of subpopulations (Kühn 1998, Herzog und Gehle in press) Genetic structure of red deer using the SOD gene locus as an example Rothemühl Heide Irland Solling Luzin Egge Harz Hybriden Wicklow Möhnesee Sikawild Möhnesee Rothaargebirge Sachsen Reinhardswald Spessart Fichtelgebirge N = 1499 Bayerischer Wald Grafenwöhr Vosges Isarauen Allele Donon Berchtesgaden Ammergebirge a b Österreich Ungarn Genort SOD Herzog 1988, Hartl et al. 1990, Ströhlein et al. 1991, Herzog and Gehle 2001, Kühn 1998, Gehle and Herzog, in press Is there evidence for hybridization between red deer and sika deer ? Background • Red deer and sika deer are known to hybridize under certain conditions (Ireland, China) •F1 hybrids are fertile and able to mate with sika deer as well as red deer • the differences in chromosome numbers (2n=68 in red deer and 2n=64 in sika deer) does not reduce the fitness of the offspring • in Germany there was no evidence for hybridization between introduced sika deer and red deer until today Herzog 1988 Hybridization in the genus Cervus Robertsonian Translocation C. elaphus C. nippon Red deer Sika deer 2n = 68 1+2 2n = 64 1 3 2 3+4 4 4 2 C. elaphus C. nippon 1+2 1 3 1 1+2 3 3+4 2 3+4 2 4 4 4 3 3 2 Hybrids 2n = 64, 65, 66, 67, 68 HERZOG, 1988 Genotypic profiles at the SOD (left) and 6-PGD (right) gene loci 1,0 relative frequency 1,0 relative frequency aa aa 72 56 23 202 72 23 202 0,5 ab 0,5 ab bb 0,0 0,0 bb sika deer sika deer red deer red deer sika deer red deer red deer Möhnesee Wicklow Möhnesee Germany Möhnesee Möhnesee Germany Allelic differentiation (Dj*) for different populations and for different marker loci IDH, SOD, 6-PGDH SOD Sika Sika % Möhnesee Möhnesee 40 Vosges Hybrids 30 Harz Donon Wicklow 20 Heide 10 Möhnesee Solling Solling Austria 0 Hungary Reinhards- 28,3% wald Möhnesee 25,3% Heide Egge Harz Egge *Gregorius 1985 UPGMA dendrograms* for different populations and different sets of marker gene loci 60 40 20 0 % IDH, SOD, 6-PGDH Sika Möhnesee Möhnesee Egge Harz Solling UPGMA-dendrogram Heide SOD Sika Möhnesee Hybrids Wicklow Möhnesee Egge Austria Hungary Harz Reinhardswald Heide Solling Vosges Donon *Sokal and Roh1f 1985 Irland Rotwild Heide Rotwild Solling Hybriden Wicklow Rotwild Harz Rotwild Egge Enzym SOD Rotwild Möhnesee Sikawild Möhnesee Gene Rotwild Reinhardswald a b Rotwild Vosges Rotwild Donon Österreich Ungarn Conclusion: Hypothesis of hybridization not to be falsified • The present study gives some good indication for hybridization events between red deer and sika deer in Germany • the total ammount of introgression seems to be lower than e.g. in Ireland • the results call for cytogenetic studies to proof the present findings • red deer and sika deer are behaving like ecotypes of one and the same species • ecological consequences are nor to observe neither to expect Methods biochemical-genetic methods • horizontal starch gel electrophoresis (STAGE) described in detail by HERZOG (1988), GEHLE (1993), GEHLE & HERZOG (1994) Table 1. Using isoenzymes as well known gene markers quarternary enzyme system E.C. 1- number gene locus structure IDH 1.1.1.42 dimer IDH 6-PGD 1.1.1.44 dimer 6-PGD SOD 1.15.1. dimer SOD 1 E.C. = Enzyme Commission biometric methods • likelihood ratio test with statistic G and 2 • PEARSON‘s χ goodness of fit test (WOOLF 1957) Long term genetic monitoring initiative (Deutsche Wildtier Stiftung) A 20 Neubrandenburg A 20 Ueckermünde Friedland Templin Gut Klepelshagen N = 110 Neubrandenburg Rothemühl Strasburg Burg Stargard Woldegk Pasewalk Hinrichshagen Göhren Grauenhagen Malchow Luzin N = 92 Penkun Feldberg Prenzlau Haßleben Lychen Mittenwalde Templin Melzow A 11 Consequences of fragmentation by motorways: a prospective long-term study N = 202 motorway A 20 1 2 deme N 1 110 Mecklenburg-Vorpommern/ 2 92 Brandenburg 54% calves GEHLE & HERZOG 2003 Genotypic structures of IDH gene locus in Mecklenburg-Vorpommern and Brandenburg, Germany 0,7 0,6 0,5 aa 0,4 ab bb 0,3 a 0,2 b 0,1 0 north-east south-west Genotypic structures of SOD gene locus in Mecklenburg-Vorpommern and Brandenburg, Germany 1,2 1 0,8 aa ab 0,6 bb a 0,4 b 0,2 0 north-east south-west Red deer (Cervus elaphus ): habitat fragmentation Fragmantation by settlements (Sachsen, Germany) Red deer (Cervus elaphus ): habitat fragmentation Fragmantation by motorways (Sachsen, Germany) Red deer (Cervus elaphus ): habitat fragmentation Fragmantation by legislation (Sachsen, Germany) 1 7 6 8 9 5 4 N = 219 population N 3 2 1 24 2 31 Sachsen 3 34 4 31 5 26 6 10 7 26 42% calves 8 10 9 24 aa ab bb Start cm cm aa ab bb Start IDH SOD Allelic structures of IDH gene locus in Sachsen, Germany 0,9 0,8 0,7 0,6 0,5 a 0,4 b 0,3 0,2 0,1 0 Dresden Tharandter Laußnitz Görlitz Wald Allelische Strukturen am SOD -Genort in Sachsen 120 100 80 a 60 b 40 20 0 Altenberg Tharandter Doberschütz Ostsachsen Wald Effects of genetic drift probability V of losing an allele of a biallelic gene locus under the assumption of a Hardy Weinberg structure 2 N 2 N V = ((1 - pa) ) + ( pa ) with pa = relative frequency of the rare allele, therefore 1 - pa = relative frequency of the common allele and N = population size GREGORIUS 1980, HATTEMER et al. 1982 two examples pa = 3,6% N = 1000 V = 48% N = 50 V = 96% pa = 12,0% N = 1000 V = 9% N = 50 V = 89% Characteristics of genetic structures of red deer in Sachsen ( Cervus elaphus ) low ammount of genetic variation compared to previous studies Ha= 1.5 -3.5 % (compared to 1.2-4.6 %) differentiation by anthropogeneic (?) barriers and fine-scale isolation of subpopulations: d0 = 0.9 % - 23.1 % (compared to 0.0 % -8 %) Red deer (Cervus elaphus ): proposal for defragmentation results • genetic profiles show higher variation than expected N = 421 • significant differences between subpopulations from Mecklenburg-Vorpommern and Sachsen concerning • allelic and genotypic structures • the distribution of the degree of heterozygosity • genetic distance (GEHLE & HERZOG 2003) • no excess of homozygotes compared to the corresponding Hardy Weinberg structure • no trend towards an inbreeding mating system Studies on molecular marker systems CER14 N = 166 MM12 HAUT14 CSSM16 IOBT965 RME25 Studies on molecular marker systems Differentiation Fst N = 166 0.0282 to 0.1353 Highest values between Solling and Lüneburger Heide resp. NW-Sachsen and Lüneburger Heide Lowest values between Anhalt and Harz, Solling, Lüneburger Heide Conclusions I • Genetic structures of red deer in Central Europe are assumed to be subjected to changes during the last decades • although actually not endangered, red deer underlies unconrolled anthropogenic influences with uncontrolled long-term effects • management concepts have to take into consideration that population diversity is the relevant diversity for evolutionary development Conclusions II: Turning research findings into practical applications • links between single (sub-)populations: metapopulation concept • minimum populations sizes • genetic monitoring as an indispensable part of any management concept variation parameter Table 2. Variation parameters and their formal description parameter symbol category genetic diversity ν measures of proportion of heterozygosity H a variation degree of heterozygosity H pairwise genetic distance d 0 measures of genetic differentiation δ Dj , differentiation δ total population differentiation T GREGORIUS 1974, 1978, 1985, 1987, HATTEMER et al. 1993, GEHLE 1995, GEHLE & HERZOG 2003 Variation parameters Observed genetic types: population B I. Variation Diversity ννν , Prop. of heterozygotes Ha A C Heterozygosity H II. Differentiation between populations A, B, C Genetic distance d0 ( X,Y ), _ δδδ Differentiation Dj = d0 ( X,Y ), Individual treated as a deme of its own III. Variation within populations δδδ Total differentiation T GREGORIUS 1974, 1978, 1985, 1987 HATTEMER et al. 1993, GEHLE 1995 allelic variation of SOD enzyme minor polymorphism Mecklenburg - Western Pommerania Ireland hybrids Wicklow Möhnesee sika deer Möhnesee Saxony France N = 1499 alleles a b Austria Hungary gene locus SOD reanalysed data by HERZOG 1988, HARTL et al. 1990, STRÖHLEIN et al. 1991, GEHLE & HERZOG 1994, STRÖHLEIN et al. 1994, KÜHN 1998, GEHLE & HERZOG 2003 Genetisches Monitoring am Beispiel des Rotwildes Größen der Variationsparameter über die Genorte IDH und SOD Parameter Nordosten Südwesten Diversität ν 1,374 1,550 δ Gesamtdifferenzierung T 27,3 [%] 35,7 [%] Heterozygotenanteil Ha 22,3 [%] 32,1 [%] Genetischer Abstand d0 10,7 [%] 10,7 [%] A 20 Neubrandenburg Vergleich genetischer Strukturen: A 20 Ueckermünde Friedland Templin • allelische Struktur Neubrandenburg Gut Klepelshagen N = 110 • genotypische Struktur Rothemühl Strasburg Burg • Verteilung des Heterozygotiegrades Stargard Woldegk Pasewalk Hinrichshagen Göhren Grauenhagen Malchow Luzin N = 92 Penkun Feldberg • die Kollektive unterscheiden sich Prenzlau bereits vor dem Autobahnbau Haßleben Lychen Mittenwalde Templin Melzow Signifikanz für alle Verteilungen im Homogenitätstest A 11 Foto: www.forst-hamburg.de GEHLE u.