The Brain and the Egg

Total Page:16

File Type:pdf, Size:1020Kb

The Brain and the Egg tissues. Yields per acre are tremen- ing and food? Rayon, along with other dous; the young stems are easy to chemical converts, may also be an end harvest and chip with fairly simple and product of the new forest, helping to light equipment. The young wood is clothe our people in generations to relatively uniform in its characteris- come. Sugar, molasses, and yeasts can tics. Bark and leaves are not considered also be derived from wood. They trash in some products. could help considerably to provide the Maybe our young forest of sprouts world with vital and urgently needed will mass-produce raw material for energy foods and proteins at low cost. mass-produced housing to help shelter Thus, the silage connotation in the our exploding population. What about designation "silage sycamore" may the other two necessities of life—cloth- not be so weird after all. The Brain and the Egg RAYMOND D. SCHAR Mother Nature originally groups of chickens that gradually be- intended the egg of a bird to be used came more and more proficient in exclusively to perpetuate the species. their ability to produce eggs. As the To accomplish this parental instinct, birds were kept confined to smaller the bird was endowed with internal areas, they could no longer forage for organs and glands that responded to their feed. Man became the provider. certain external stimulations that oc- Through trial and error, he learned curred in nature. However, man has that a chicken would lay more eggs altered many of these external stimu- when fed one kind of feed than lants in order to force the domesticated another. By observing that a hen fowl to better serve him. began to produce more eggs in the The domesticated chicken is thought spring of the year as the days became to have originated from the jungle longer, man reasoned correctly that if fowl. This ancestor laid her eggs in he provided artificial light to lengthen the spring and early summer months the day, she would lay more eggs. Pro- as the length of the days increased. tection against the elements and dis- She woxild lay 10 to 12 eggs, incubate eases permitted additional production. them, and brood the chicks, and then All these efforts down through the repeat this process once and occasion- centuries have increased yearly egg ally twice. When man discovered the production from 20 to 30 eggs per hen egg was a good food, he started to to 250 and above in the better pro- domesticate chickens. By taking the ducing strains. But modern man is not eggs from the hen's nest as she laid content. He is intensifying his efforts them, man disrupted her normal to produce an even more prolific reproduction cycle. Since she no chicken. Refined selection principles, longer had to incubate her eggs and crossing and incrossing of families and brood the chicks, her body underwent physiological adjustments that per- RAYMOND D. SCHAR is Coordinator, National mitted her to lay more eggs. Poultry Improvement Plans, Animal Husbandry Through selection, man developed Research Division, Agricultural Research Service. 44 Chicken egg seems minute compared with egg from biggest bird ever known, Madagascar's elephant bird, extinct for centuries. National Geographic Society, which found giant fossil egg, estimates that when fresh it weighed about 20 pounds, equal to 160 hen eggs. strains, fortified diets, and improved time of artificially stimulated ovula- environmental conditions are but a tions to be reliably measured. few of the practices under constant Some of the earliest studies of ovula- study and improvement. In addition, tion led to the conclusion that light is during the last several decades, this probably the main external stimulus never ending search for perfection has to egg production. Since the hen's eye drawn a new group of scientists into picks up the light and sends signals to the picture. These are the physiologists. the brain, it was reasoned that the The physiologists are studying the brain must be the initial biological functions and activities of the organs clock involved in ovulation. It was and glands to find their relationship also discovered that the anterior pitui- to each other and to determine the tary gland, located directly beneath effects of natural and artificially in- the brain, is the organ responsible for duced internal and external stimuli. secretion of the hormones which are Dr. Richard M. Fraps, while a necessary for ovulation. physiologist at the University of Chi- The portion of the brain known as cago, investigated the effect of hor- the hypothalamus apparently is di- mones on feather development in rectly responsible for the initial inter- chickens. In time, he expanded his nal stimulation. This was verified when interest in hormones to include the ovulation was consistently induced by part they played in ovulation. Since the infusion of extracts from the hy- the ovaries of birds produce eggs that pothalamus into the pituitary gland. rnature singly, chickens provided an Conversely, intentional injury to the excellent opportunity for this study. hypothalamus stopped ovulation for A domestic hen will complete an extended period. Also, when cer- more than 200 ovulations a year in tain drugs known to affect the nervous rather definitely established cycles. system were injected into the hen, the This allows a reasonably accurate ovulation cycle was disrupted. How- estimate to be made of the time of ever, if extracts from the hypothalamus natural ovulation, thus permitting the were injected into birds from which the 45 STIMULI saclike membrane which surrounds the single, fully developed yolk. This per- mits the yolk to be released from the ovary. The infundibulum, or upper end of the oviduct, then engulfs this free yolk and starts it on its journey down the hen's reproductive tract. Besides causing maturation and ovu- lation of a yolk, the pituitary-secreted hormones cause the ovary to secrete hormones of its own. These are thought to be estrogens and progestagens and are called feedback hormones. When they reach the hypothalamus, they cause a signal to go to the pituitary which inlubits its hormone produc- tion, completing the cycle. After Dr. Fraps came to work for the U.S. Department of Agriculture at Beltsville, Md., he and his coworkers studied time patterns involved in the intricacies of ovulation. After repeated experiments and observations, they de- termined that release of LH closely re- lates to the onset of darkness in the light/dark cycle of the day (or other light/dark cycle from 22 to 34 hours in length). In most instances, the mem- brane or follicle surrounding the yolk Hormone secretion and flow in hen^s ruptures about 8 hours after the LH ovulation process. When brain is stimu- release. After ovulation, or rupture of lated by light, it signals anterior pituitary the follicle, the yolk spends approxi- gland to release maturation and ovulation hormones. After maturation and release mately 26 to 28 hours in the oviduct, of an ova, the ovary secretes feedback where various glands secrete the albu- hormones which tell brain it is time for men, membranes, and shell that go to pituitary to reduce its hormone produc- make up the complete egg. tion, thus completing ovulation cycle. It was known that under a normal period of daylight a hen will lay an egg on each of two or more consecutive days, skip a day, and then repeat the pituitary gland had been removed, no cycle. So when a hen has produced an ovulation took place. This made it ap- egg on each of 2 consecutive days, she pear that hormone secretion from the is said to have a two-egg sequence; pituitary was necessary for ovulation. production on 3 consecutive days gives There is considerable evidence that her a three-egg sequence, etc. upon receipt of a light-controlled sig- The hen iisually lays the first egg in nal, nerve terminals of the hypothala- a sequence during the first part of the mus discharge a substance called re- Hghted or daylight period. Within 15 leasing factor into the bloodstream. to 45 minutes after she lays this first This is carried to the pituitary where it egg^ ovulation of the second egg takes stimulates that gland into secreting the place. The time lapse between laying maturation and ovulation hormones. an egg and the succeeding ovulation These hormones travel to the ovary becomes less as the number of eggs in where the ovulation, or luteinizing, a sequence increases. Thus, if a hen hormone (LH) causes rupture of the has a two-egg sequence, the time be- 46 tween eggs is about 2S}i hours. If she Exposure to very high intensity light is on a four-egg sequence, the time for a short period of time has produced between eggs is about 26 j^ hours, and inconclusive results for different re- for a six-egg sequence, about 25}^. searchers. Additional studies of light In longer sequences, the lag time for intensity, as well as types of light, are eggs in the middle of the sequence was needed. less than for the first or last eggs. One Other physical environmental fac- researcher, who observed a group of tors thought to affect ovulation include birds for a complete year, recorded lag temperature, moisture, and diet. More times for various hens that laid two- research has been done on the effect of through 13-egg sequences. He noted these factors upon mammals and other that when the sequence was above 10 birds than with chickens. This is true eggs in length, some of the consecutive also of external psychological factors eggs were produced in less than 24- such as group interaction or the pres- hour intervals.
Recommended publications
  • Evolution of Oviductal Gestation in Amphibians MARVALEE H
    THE JOURNAL OF EXPERIMENTAL ZOOLOGY 266394-413 (1993) Evolution of Oviductal Gestation in Amphibians MARVALEE H. WAKE Department of Integrative Biology and Museum of Vertebrate Zoology, University of California,Berkeley, California 94720 ABSTRACT Oviductal retention of developing embryos, with provision for maternal nutrition after yolk is exhausted (viviparity) and maintenance through metamorphosis, has evolved indepen- dently in each of the three living orders of amphibians, the Anura (frogs and toads), the Urodela (salamanders and newts), and the Gymnophiona (caecilians). In anurans and urodeles obligate vivi- parity is very rare (less than 1%of species); a few additional species retain the developing young, but nutrition is yolk-dependent (ovoviviparity) and, at least in salamanders, the young may be born be- fore metamorphosis is complete. However, in caecilians probably the majority of the approximately 170 species are viviparous, and none are ovoviviparous. All of the amphibians that retain their young oviductally practice internal fertilization; the mechanism is cloaca1 apposition in frogs, spermato- phore reception in salamanders, and intromission in caecilians. Internal fertilization is a necessary but not sufficient exaptation (sensu Gould and Vrba: Paleobiology 8:4-15, ’82) for viviparity. The sala- manders and all but one of the frogs that are oviductal developers live at high altitudes and are subject to rigorous climatic variables; hence, it has been suggested that cold might be a “selection pressure” for the evolution of egg retention. However, one frog and all the live-bearing caecilians are tropical low to middle elevation inhabitants, so factors other than cold are implicated in the evolu- tion of live-bearing.
    [Show full text]
  • Oogenesis [PDF]
    Oogenesis Dr Navneet Kumar Professor (Anatomy) K.G.M.U Dr NavneetKumar Professor Anatomy KGMU Lko Oogenesis • Development of ovum (oogenesis) • Maturation of follicle • Fate of ovum and follicle Dr NavneetKumar Professor Anatomy KGMU Lko Dr NavneetKumar Professor Anatomy KGMU Lko Oogenesis • Site – ovary • Duration – 7th week of embryo –primordial germ cells • -3rd month of fetus –oogonium • - two million primary oocyte • -7th month of fetus primary oocyte +primary follicle • - at birth primary oocyte with prophase of • 1st meiotic division • - 40 thousand primary oocyte in adult ovary • - 500 primary oocyte attain maturity • - oogenesis completed after fertilization Dr Navneet Kumar Dr NavneetKumar Professor Professor (Anatomy) Anatomy KGMU Lko K.G.M.U Development of ovum Oogonium(44XX) -In fetal ovary Primary oocyte (44XX) arrest till puberty in prophase of 1st phase meiotic division Secondary oocyte(22X)+Polar body(22X) 1st phase meiotic division completed at ovulation &enter in 2nd phase Ovum(22X)+polarbody(22X) After fertilization Dr NavneetKumar Professor Anatomy KGMU Lko Dr NavneetKumar Professor Anatomy KGMU Lko Dr Navneet Kumar Dr ProfessorNavneetKumar (Anatomy) Professor K.G.M.UAnatomy KGMU Lko Dr NavneetKumar Professor Anatomy KGMU Lko Maturation of follicle Dr NavneetKumar Professor Anatomy KGMU Lko Maturation of follicle Primordial follicle -Follicular cells Primary follicle -Zona pallucida -Granulosa cells Secondary follicle Antrum developed Ovarian /Graafian follicle - Theca interna &externa -Membrana granulosa -Antrial
    [Show full text]
  • Infertility Investigations for Women
    Infertility investigations for women Brooke Building Gynaecology Department 0161 206 5224 © G21031001W. Design Services, Salford Royal NHS Foundation Trust, All Rights Reserved 2021. Document for issue as handout. Unique Identifier: SURG08(21). Review date: May 2023. This booklet is aimed for women undergoing fertility LH (Luteinising Hormone) Progesterone investigations. Its’ aim is to Oligomenorrhoea - When the provide you with some useful periods are occurring three In women, luteinising hormone Progesterone is a female information regarding your or four times a year (LH) is linked to ovarian hormone produced by the hormone production and egg ovaries after ovulation. It investigations. Irregular cycle - Periods that maturation. LH is used to causes the endometrial lining vary in length We hope you !nd this booklet measure a woman’s ovarian of the uterus to get thicker, helpful. The following blood tests are reserve (egg supply). making it receptive for a used to investigate whether You will be advised to have some It causes the follicles to grow, fertilised egg. ovulation (production of an egg) or all of the following tests: mature and release the eggs Progesterone levels increase is occurring each month and also for fertilisation. It reaches its after ovulation, reaching a to help determine which fertility Hormone blood tests highest level (the LH surge) in maximum level seven days treatments to offer. Follicular bloods tests the middle of the menstrual before the start of the next cycle 48 hours prior to ovulation period. The progesterone test is These routine blood tests are FSH (Follicle Stimulating i.e. days 12-14 of a 28 day cycle.
    [Show full text]
  • Understanding Your Menstrual Cycle If You're Trying to Conceive
    IS MY PERIOD NORMAL? Understanding Your Menstrual Cycle If You’re Trying to Conceive More than 70% 11% 95% of women have or more of of U.S. women start irregular menstrual American women their periods by cycles as menopause suffer from age 16. approaches. endometriosis.1 10% 12% of U.S. women are of women have affected by PCOS trouble getting or (polycystic ovary staying pregnant.3 syndrome).2 Fortunately, your menstrual cycle can tell you a lot about your fertility if you know what to look for. TYPES OF MENSTRUAL CYCLES Only 15% of About Normal = women have 30% of women are fertile only during 21 to 35 days the “perfect” the “normal” fertility 28-day cycle. window—between days 10 and 17 of the menstrual cycle. Day 1 Period starts (aka menses) 27 28 1 2 26 3 25 4 24 5 Day 15-28 23 6 Day 2-14 Luteal phase; Follicular phase; progesterone** 22 WHAT’S NORMAL? 7 FSH released, (follicle- uterine lining 21 8 stimulating matures Give or take a few days, hormone) and a normal cycle looks like this: estrogen released, 20 9 ovulation* begins 19 10 18 11 17 12 16 15 14 13 *ovulation: the process of an ovum (egg) being released from the ovary; occurs 10-14 days before menses. **progesterone: a steroid hormone that tells the uterus to prepare for pregnancy At least 30% of women have an “irregular” cycle either short, long or inconsistent. Short = Long = < 21 days > 35 days May be a sign of: May be a sign of: Hormonal imbalance Hormonal imbalance Ovaries with fewer eggs Lack of ovulation Approach of menopause Other fertility issues Reduced fertility4 Increased risk of miscarriage SIGNS TO WATCH FOR Your menstrual cycle provides valuable clues about your body’s reproductive health.
    [Show full text]
  • A Fixed Formula to Define the Fertile Window of the Menstrual Cycle As the Basis of a Simple Method of Natural Family Planning
    ORIGINAL RESEARCH ARTICLE A Fixed Formula to Define the Fertile Window of the Menstrual Cycle as the Basis of a Simple Method of Natural Family Planning Marcos Are´valo,* Irit Sinai,* and Victoria Jennings* A significant number of women worldwide use periodic basis of the proposed Standard Days method, a simple abstinence as their method of family planning. Many of method of natural family planning (NFP). Survey data them use some type of calendar-based approach to deter- from a number of countries around the world show mine when they should abstain from unprotected inter- that a substantial number of women worldwide use course to avoid pregnancy; yet they often lack correct periodic abstinence as their method of family plan- knowledge of when during their menstrual cycle they are ning.1 Many of these women use calendar-based ap- most likely to become pregnant. A simple method of proaches to determine when they should abstain from natural family planning (NFP) based on a fixed formula to unprotected intercourse to avoid pregnancy. How- define the fertile window could be useful to these women. ever, research also indicates that a significant per- This article reports the results of an analysis of the appli- centage of women who claim to use periodic absti- cation of a fixed formula to define the fertile window. A nence lack correct knowledge of when during their large existing data set from a World Health Organization menstrual cycle they are most likely to become study of the Ovulation Method was used to estimate the pregnant.a Most of these women simply abstain from theoretical probability of pregnancy using this formula.
    [Show full text]
  • Changes Before the Change1.06 MB
    Changes before the Change Perimenopausal bleeding Although some women may abruptly stop having periods leading up to the menopause, many will notice changes in patterns and irregular bleeding. Whilst this can be a natural phase in your life, it may be important to see your healthcare professional to rule out other health conditions if other worrying symptoms occur. For further information visit www.imsociety.org International Menopause Society, PO Box 751, Cornwall TR2 4WD Tel: +44 01726 884 221 Email: [email protected] Changes before the Change Perimenopausal bleeding What is menopause? Strictly defined, menopause is the last menstrual period. It defines the end of a woman’s reproductive years as her ovaries run out of eggs. Now the cells in the ovary are producing less and less hormones and menstruation eventually stops. What is perimenopause? On average, the perimenopause can last one to four years. It is the period of time preceding and just after the menopause itself. In industrialized countries, the median age of onset of the perimenopause is 47.5 years. However, this is highly variable. It is important to note that menopause itself occurs on average at age 51 and can occur between ages 45 to 55. Actually the time to one’s last menstrual period is defined as the perimenopausal transition. Often the transition can even last longer, five to seven years. What hormonal changes occur during the perimenopause? When a woman cycles, she produces two major hormones, Estrogen and Progesterone. Both of these hormones come from the cells surrounding the eggs. Estrogen is needed for the uterine lining to grow and Progesterone is produced when the egg is released at ovulation.
    [Show full text]
  • Implantation of the Human Embryo
    14 Implantation of the Human Embryo Russell A. Foulk University of Nevada, School of Medicine USA 1. Introduction Implantation is the final frontier to embryogenesis and successful pregnancy. Over the past three decades, there have been tremendous advances in the understanding of human embryo development. Since the advent of In Vitro Fertilization, the embryo has been readily available to study outside the body. Indeed, the study has led to much advancement in embryonic stem cell derivation. Unfortunately, it is not so easy to evaluate the steps of implantation since the uterus cannot be accessed by most research tools. This has limited our understanding of early implantation. Both the physiological and pathological mechanisms of implantation occur largely unseen. The heterogeneity of these processes between species also limits our ability to develop appropriate animal models to study. In humans, there is a precise coordinated timeline in which pregnancy can occur in the uterus, the so called “window of implantation”. However, in many cases implantation does not occur despite optimal timing and embryo quality. It is very frustrating to both a patient and her clinician to transfer a beautiful embryo into a prepared uterus only to have it fail to implant. This chapter will review the mechanisms of human embryo implantation and discuss some reasons why it fails to occur. 2. Phases of human embryo implantation The human embryo enters the uterine cavity approximately 4 to 5 days post fertilization. After passing down the fallopian tube or an embryo transfer catheter, the embryo is moved within the uterine lumen by rhythmic myometrial contractions until it can physically attach itself to the endometrial epithelium.
    [Show full text]
  • Endocrine and Ovarian Follicular Changes Leading up Ovulation In
    Endocrine and ovarian follicular changes leading up to the first ovulation in prepubertal heifers A. C. O. Evans, G. P. Adams and N. C. Rawlings Departments of J Veterinary Physiological Sciences and 2 Veterinary Anatomy, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N OWO, Canada Changes in the pattern of follicular growth and development, and the associated endocrine changes, were examined in prepubertal heifers approaching their first ovulation. Ten, age-matched (\m=+-\3 days), Spring-born Hereford heifers were examined daily by transrectal ultrasonography for 17 days beginning 12 weeks before the first ovulation, and daily from just before the first ovulation until the completion of one normal duration ovulatory cycle. On each day of ultrasound examination, the position and diameter of corpora lutea and follicles \m=ge\3 mm in diameter were recorded, and one blood sample was collected. Blood samples were also collected every 15 min, for 12 h, at 20, 12 and 4 weeks before the first ovulation, to assess the pulsatile nature of LH and FSH secretion. The first ovulation occurred at 56.0 \m=+-\1.2 weeks of age, at a body weight of 391.9 \m=+-\12.0 kg. Waves of follicular development, similar to those of adult cows, were seen at all ages, and in all heifers, the first ovulation was followed by an ovulatory cycle of short duration (7.7 \m=+-\0.2 days) and then by a normal duration ovulatory cycle (20.3 \m=+-\0.5 days). The maximum diameter of the dominant, or largest subordinate, follicles did not increase as the first ovulation approached, or during the subsequent ovulatory cycles.
    [Show full text]
  • Ovulation-Menstruation-Conception”: Teacher’S Guide
    6th Puberty Session 2 “Ovulation-Menstruation-Conception”: Teacher’s Guide Chatham County Schools follows the NC Essential Standards. The NC Essential Standards outline the skills and knowledge that students should receive each year in school. The below standards represent the Interpersonal Communication and Relationships standards that students have covered by the completion of 6th grade. The knowledge encompassed by each standard builds yearly, so it is vital that students receive instruction aligning with the standards each year. This is session one of a two part lesson for 6th grade focusing on the Interpersonal Communications and Relationships Healthful Living North Carolina (NC) Essential Standards. This session focuses on 6.ICR.3.2, which focuses on understanding conception and menstruation. It is vital that students understand the concepts of puberty and the reproductive system prior to this lesson. Session One provides this foundation. Statement of Objectives By the end of today’s lesson students will be able to: 6.ICR.3: Understand the changes that occur during puberty and adolescence. o 6.ICR.3.2: Summarize the relationship between conception and the menstrual cycle. Time: 90 minutes Materials: Projector Slides (“6th Puberty Presentation_Day 2”) Teacher copy: "6th Grade Puberty Frequently Asked Questions” (separate document) Teacher copy: “6th Grade Puberty Difficult Questions” (teacher copy) (separate document) “Background Content for Facilitating Bowl and Spoon Activity” (pg 6) Items for Bowl and Spoon Activity” (pg
    [Show full text]
  • Biology of Oocyte Maturation Oogenesis
    Biology of Reproduction Unit Biology of Oocyte Maturation Carlos E. Plancha1,2 1 Unidade de Biologia da Reprodução, Inst. Histologia e Biologia do Desenvolvimento, . Faculdade de Medicina de Lisboa, Portugal 2 CEMEARE – Centro Médico de Assistência à Reprodução, Lisboa, Portugal Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September, 2008 Biology of Reproduction Unit Oogenesis Growth Phase: - Oocyte diameter increases OOCYTE GROWTH - Organelle redistribution - High transcriptional and translational activity - Accumulation of RNA / proteins - Incompetent Æ Competent ooc. Oocyte Maturation: GV Complex series of nuclear and cytoplasmic events with resumption of the 1st meiotic OOCYTE MATURATION division and arrest at MII OVULATION shortly before ovulation MII Ovulation Growth Maturation FERTILIZATION Resumption of meiosis Æ PN formation Embryo development Prophase I Metaphase II Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September, 2008 Biology of Reproduction Unit Oogenesis in vivo (including oocyte maturation) takes place inside a morfo-functional unit: The Ovarian Follicle Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September, 2008 Biology of Reproduction Unit Factors involved in oogenesis Igf-1,2,3 and folliculogenesis GDF - 9 FSH,LH Cellular interactions Perifolicular matrix Laminin Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September,
    [Show full text]
  • Reproductive Physiology Dr
    Reproductive Physiology Dr. Ali Ebneshahidi Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Function of the reproductive system . Sexual reproduction requires a male and a female of the same species to copulate and combine their genes in order to produce a new individual who is genetically different from his parents . sexual reproduction relies on meiosis to shuffle the genes , so that new combinations of genes occur in each generation , allowing some of the offspring of survive in the constantly – changing environment . The male reproductive system produces , sustains , and delivers sperm cells (spermatozoa) to the female reproductive tract . The female reproductive system produces , sustains , and allows egg cells (oocytes ) to be fertilized by sperm . it also supports the development of an offspring (gestation) and gives birth to a new individual (parturition) . Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Male Reproductive System . Testis : Sex organ that produces sperm in a process called spermatogenesis , and male sex hormones (testosterone). Developed in a male fetus near the kidneys , and descend to the scrotum about 2 months before birth. Each testis is enclosed by a layer of fibrous connective tissue called tunica alumina . Each testis contains about 250 functional units called lobules ; each lobule contains about 4 seminiferous tubules where spermatogenesis occurs . All somniferous tubules in a testis converge and form a channel called rate testis . Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Testis Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings . Scrotum: A pouch – like cutaneous extension that contains the two testes . Located outside of pelvic cavity to prevent overheating of testes [internal temperature of scrotum is always about 3 ˚F below body temperature ] .
    [Show full text]
  • Menopause Is Not an Estrogen Deficiency Problem
    Menopause is Not an Estrogen Deficiency Problem Menopause occurs when a woman permanently stops ovulating, or producing an egg that can be fertilized and used for reproduction. Menopause is diagnosed when a woman no longer has a monthly cycle for a year and has an elevated blood level of FSH. FSH is elevated when a woman stops ovulating or producing an egg. FSH does not reflect the amount of estrogen a woman has in her body. Menopause can be a difficult transition Measuring FSH level is what most in a woman’s life. Menopause usually occurs between doctors use to diagnose menopause. The ages 48 and 52. The onset of hot flashes, extreme mood FSH test does not measure estrogen levels, swings, insomnia, hair loss, uncontrollable weight gain, it only confirms that a woman has stopped skin changes, vaginal dryness, decreased sex drive, the ovulating. fear of osteoporosis, breast cancer, and heart disease are Estrogen is made from a variety of all a part of American women’s experience. sources. The ovary is only one of many sources of estrogen. Menopause is a normal transition experienced by Estrogen is available, because hormones made by the adrenal gland women. Women are transitioning out of the reproductive can be converted into estrogen in fat and other tissue. phase of their lives into a very productive and meaningful Estrogen is also available through food sources such as soy stage of their life. and flax seed. We are exposed to many chemical substances in the environment that behave like powerful estrogens. It is a time when the fear of pregnancy no longer has With the abundance of sources of estrogen available in the to limit their sex life.
    [Show full text]