New Egg Laying Record for Liolaemus Chiliensis (Lesson, 1830) (Iguania: Liolaemidae)

Total Page:16

File Type:pdf, Size:1020Kb

New Egg Laying Record for Liolaemus Chiliensis (Lesson, 1830) (Iguania: Liolaemidae) Herpetology Notes, volume 10: 529-531 (2017) (published online on 10 October 2017) New egg laying record for Liolaemus chiliensis (Lesson, 1830) (Iguania: Liolaemidae) Jaime Troncoso-Palacios1,* and Antonieta Labra1,2 Liolaemus chiliensis (Lesson, 1830) is a lizard species plastic mesh. Enclosures contained a sandy substrate, a distributed from central-southern Chile to the southern clay pot to maintain water continuously, a wooden stick of Argentina. The species inhabits bushes and usually used as a perch, and an inverted tile used as shelter and climbs the branches (Donoso-Barros, 1966). It is known basking place (see details in Hoare and Labra, 2013). as the “weeping lizard” because it vocalizes when it In our sample group, we had fifteen females that laid a is seized (Donoso-Barros, 1966; Labra et al., 2013). mean of 14.3 ± 4.5 eggs (SD; range = 5-22, median and This is an oviparous lizard, and according to Donoso- mode = 13) between late October to November (Table Barros (1966), females lay half-dozen eggs under 1). Four females had more eggs than was previously stones between October and November. Thereafter, reported; two females had 19 eggs, one had 20 eggs and Pincheira-Donoso and Núñez (2005) reported that the other had 22 eggs. Although females showed a high females laid between 7 to 11 eggs in November, while variation in the number of laid eggs, we found that their Ibargüengoytía (2008), reported a maximum of 18 eggs, body size correlated significantly with the number of indicating that pregnancy takes place in October and eggs laid (Pearson correlation Coefficient = 0.59; P = the oviposition occurs in November. Altogether, data 0.021, Fig. 1). This positive correlation has been reported suggest that the clutch size of L. chiliensis presents for some Liolaemus lizards (Martori and Aun, 1997; a great variation. Here, we provide a new egg laying Pincheira-Donoso and Tregenza, 2011; Ramírez-Pinilla, record for L. chiliensis, and investigate a potential correlation between female body size and egg clutch size (e.g. Martori and Aun, 1997). As part of an ongoing study with L. chiliensis, we collected lizards in mid-spring and early summer (October–December) of 2009 and 2012, in central Chile. They were transported to the laboratory where we measured their body sizes (snout–vent length, SVL) with a Vernier calliper (± 0.02 mm) and determined their sex by direct observation of the tail base (Mella, 2005). During their permanence in the laboratory, the lizards were maintained individually in plastic enclosures (44.5 x 32 x 25 cm), which had two windows covered by 1 Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile. Casilla 70005, Correo 7, Santiago, Chile. 2 Centre for Ecological and Evolutionary Synthesis (CEES). Department of Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway Figure 1. Relationship between the female body size and the * Corresponding author e-mail: �troncosopalacios�gmail.com number of eggs laid in Liolaemus chiliensis. 530 Jaime Troncoso-Palacios & Antonieta Labra Table 1. Data1 onTable oviposition 1. Data on of oviposition Liolaemus of chiliensis Liolaemus. All chiliensis lizards. wereAll lizards collected were incollected October. in October.NA= Information not available. 2 NA= Information not available. N° of pregnant �ear of capture Locality Oviposture Date of Oviposture females Mean ± SD (range) 4 2009 El Manzano (33º42`S – 71º12`O) 12.3 ± 5.7 (5-19) 28/10/2009 - 03/11/2009 6 2010 Melipilla (33º35`S – 70º24`O) 15.7 ± 3.4 (11-20) NA 5 2012 Melipilla 14.4 ± 4.8 (10-22) 09/11/2012 - 20/11/2012 3 1994; Rocha, 1992); however, some species seem to not A. Martínez, O. Acevedo and M. Penna, for their invaluable help follow this rule (Vega and Bellagamba, 2005). On the in the field and laboratory. Funds come from Fondecyt 1090251 other hand, the effect of body size and fecundity in L. and 1120181 (AL). chiliensis suggests that the previous reported variation in the number of eggs might be consequence of variation References in the size of the females considered. Donoso-Barros, R. (1966): Reptiles de Chile. Santiago, Chile. Based on fecundity and body size data available Ediciones de la Universidad de Chile. for other Liolaemus species (see Donoso-Barros, Hoare, M., Labra, A. (2013): Searching for the audience of the 1966; Ibargüengoytía, 2008; Leyton and Valencia, weeping lizard’s distress call. Ethology 119: 860–868. 1992; Pincheira-Donoso-Treguenza, 2011; Ramirez- Ibargüengoytía, N.R. (2008): Estrategias reproductivas en reptiles. In: Herpetología de Chile, p. 391–425. Vidal, M.A., Labra, A. Pinilla, 1992, 1995; Rocha, 1992), L. chiliensis has a Eds., Santiago, Chile, Science Verlag. comparative larger clutch size than other Liolaemus Labra, A., Silva, G., Norambuena, F., Velázquez, N., Penna, M. species. It is unknown, however, which are the selective (2013): Acoustic features of the weeping lizard’s distress call. forces that may determine this larger clutch size in L. Copeia 2013: 206–212. chiliensis. Labra, A., Reyes-Olivares, C., Weymann, M. (2016): Asymmetric The distributional range of L. chiliensis covers around response to heterotypic distress calls in the lizard Liolaemus 10° of latitude; it goes between Coquimbo (29°S; chiliensis. Ethology 122: 758–768. Leyton, V., Valencia, J. (1992): Follicular population dynamics: its Pincheira-Donoso and Núñez, 2005) to Valdivia (39°S; relation to clutch and litter size in Chilean Liolaemus lizards. Moreno et al., 2002). We reported data from a population In: Reproductive Biology of South American Vertebrates, p. coming from the midpoint of the species distribution. 123 –134. Hamlett, W. Ed., New �ork, Springer. Therefore, to understand the selective pressure of the Martori, R.A., Aun, L. (1997): Reproduction and fat body cycle high fecundity of L. chiliensis, it would be necessary of Liolaemus wiegmannii in central Argentina. Journal of to include data from the extreme populations. This Herpetology 31: 578–581. would also allow for testing at intraspecific level if, in Mella, J. (2005): Guía de campo reptiles de Chile: Zona Centra. Peñaloza, A.P.G., Novoa, F., Contreras, M. Eds., Santiago, fact, fecundity is not affected by the climatic conditions, Chile, Ediciones del Centro de Ecología Aplicada. as was suggested by Pincheira-Donoso and Treguenza Moreno, R., Vidal, M., Ortiz, J.C. (2002): Geographic distribution. (2011). Testing this would be also relevant considering Liolaemus chiliensis (NCN). Herpetological Review1 33: 226. that southern populations of L. chiliensis (at lower Pincheira-Donoso, D., Núñez, H. (2005): Las especies chilenas temperatures) present smaller body size (Labra et al., del género Liolaemus Wiegmann. 1834 (Iguania: Tropiduridae: 2016). Therefore, more research could clarify if the Liolaeminae). Taxonomía, sistemática y evolución. Publicación southern populations have an absolute lower number ocasional del Museo Nacional de Historia Natural de Chile 59: 1–486. of eggs than the central populations, due to their body Pincheira-Donoso, D., Tregenza, T. (2011): Fecundity selection size, but keep a relative high fecundity, as the central and the evolution of reproductive output and sex-specific body population studied here. size in the Liolaemus lizard adaptive radiation. Evolutionary Biology 38: 197–207. Acknowledgements. The study was authorized by SAG Ramírez–Pinilla, M.P. (1992): Actividad reproductiva en tres (Resolution No. 7266) and by the Scientific Ethics Committee of especies simpátricas del género Liolaemus (Reptilia: Sauria: the Faculty of Medicine, University of Chile. We thank A. Zapata, Tropiduridae). Caldasia 17: 67–74. J. Constanzo, M. Hoare, G. Silva, S. Valdecantos, F. Norambuena, Ramírez–Pinilla, M.P. (1994): Reproductive and fat body cycles Egg laying record for Liolaemus chiliensis 531 of the oviparous lizard Liolaemus scapularis. Journal of Herpetology 28: 521–524. Ramírez–Pinilla, M.P. (1995): Reproductive and fat body cycles of the oviparous lizard Liolaemus bitaeniatus (Sauria: Tropiduridae). Journal of Herpetology 29: 256–260. Rocha, C.F.D. (1992): Reproductive and fat body cycles of the tropical sand lizard (Liolaemus lutzae) of southeastern Brazil. Journal of Herpetology 26: 17–23. Vega, L.E., Bellagamba, P.J. (2005): Ciclo reproductivo de Liolaemus gracilis Bell, 1843 (Iguanidae: Tropidurinae) en las dunas costeras de Buenos Aires, Argentina. Cuadernos de Herpetología 18: 3–13. Accepted by Gonçalo Rosa.
Recommended publications
  • Annual Report
    ANNUAL REPORT 2011 The Centre for Ecological and Evolutionary Synthesis (CEES) combines a broad spectrum of disciplines (such as population biology, statistical and mathematical modelling and genom- ics) to foster the concept of ecology as a driving force of evolu- tion via selective processes, with a corresponding influence of evolutionary changes on ecology. Bumblebee in the Herb Garden at Blindern Campus, UiO © Ruben A. Pettersen Cover picture: Stockfish (dried cod) in Ballstad, Lofoten © Martin Malmstrøm CEES IN BRIEF CEES is chaired by Professor Nils Chr. Stenseth. As of 31 December 2011 CEES consists of 125 members including students, researchers, technical and administrative personnel. The centre has a core group of 19 employees of which 12 are full-time, two are employed by the Department of Mathematics, one by the Department of Economy and one by the Institute of Marine Research. In 2011, CEES hosted two Kristine Bonnevie Professors, from Florida State University (USA) and the Norwegian University of Life Sciences. One em- ployee is a visiting scientist at the University of Alberta (Canada). There were representa- tives from 25 nationalities at CEES in 2011. CEES supervised 23 Master and 28 PhD students in 2011, and was also involved in the teaching of 13 PhD/Master courses and 4 Bachelor courses. 4 new PhD students were employed, and 9 PhD students and 8 master students completed their degrees. The CEES graduate school held its annual conference at Holmen Fjordhotell with 114 participants. Approximately 59 MNOK of the total 2011 budget of 121 MNOK came from the 54 exter- nally funded research projects conducted by CEES in 2011.
    [Show full text]
  • Breitman M.F.-1.Pdf (11.47Mb)
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Molecular Phylogenetics and Evolution 59 (2011) 364–376 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Lizards from the end of the world: Phylogenetic relationships of the Liolaemus lineomaculatus section (Squamata: Iguania: Liolaemini) ⇑ M. Florencia Breitman a, Luciano J. Avila a, Jack W. Sites Jr. b, Mariana Morando a, a Centro Nacional Patagónico – Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard Almirante Brown 2915, ZC: U9120ACF, Puerto Madryn, Chubut, Argentina b Department of Biology and M.L. Bean Life Science Museum, 401 WIDB, Brigham Young University, ZC: 84602, Provo, UT, USA article info abstract Article history: The Liolaemus lineomaculatus section is a geographically widely distributed group of lizards from the Pat- Received 24 August 2010 agonian region of southern South America, and includes 18 described species representing the most Revised 2 February 2011 southerly distributed Liolaemus taxa (the genus includes 228 species and extends from Tierra del Fuego Accepted 3 February 2011 north to south-central Peru).
    [Show full text]
  • An Accumulation of Bone Remains of Two Liolaemus Species (Iguanidae) in an Holocene Archaeological Site of the Argentine Puna
    An accumulation of bone remains of two Liolaemus species (Iguanidae) in an Holocene archaeological site of the Argentine Puna Adriana M. Albino1, Débora M. Kligmann2 Abstract. An accumulation of iguanian bone remains was found inside a rodent burrow in an Holocene archaeological site of the Argentine southern Puna. Characters of the preserved bones suggest that a minimum of two species of the Liolaemus genus is represented. One of them is undoubtedly attributed to the montanus group, probably L. poecilochromus or L. andinus.The finding of Liolaemus bone remains in the Argentine Puna Region represents the first record of this genus in an archaeological site of South America and suggests that specimens of at least two Liolaemus species exploited the same refuge simultaneously, including both adult and juvenile individuals. Reptile remains found in archaeological sites layer where the microvertebrates were found are relevant for understanding the relation- (Kligmann et al., 1999). These remains, that ac- ship between indigenous groups and their en- cording to the number of preserved right den- vironment as well as to interpret the taphon- taries belong to at least 71 individuals (Klig- omy of microvertebrate fossil assemblages. The mann et al., 1999), were concentrated in a sur- findings of small iguanids in South American face smaller than 1 m2 on the SW sector of archaeological sites are still scarce. For Ar- the excavation. A rodent burrow, probably cor- gentina, Van Devender (1977) describes an iso- responding to Ctenomys, was observed in the lated dentary belonging to the iguanid Leiosau- same area. rus belli (Gruta del Indio cave, eastern slopes Kligmann et al.
    [Show full text]
  • Reptiles De La Región Metropolitana
    GUÍA DE..CAMPO/FIELD GUIDE REPTILES DE LA REGIŁN METROPOLITANA DE CHILE OF THE METROPOLITAN REGION OF CHILE Damien Esquerré Research School of Biology The Australian National University Herman Núñez Curador de Vertebrados Museo Nacional de Historia Natural de Chile 1 Contenido Presentación/Presentation 7 Prólogo/Prologue 9 Introducción/Introduction 13 Cómo usar esta guía/How to use this guide 21 Reptiles de la Región Metropolitana 30 Reptiles of the Metropolitan Region Familia/Family Liolaemidae Grupo/Group bellii 32 Grupo/Group gravenhorstii/robertmertensi 44 Grupo/Group leopardinus 64 Grupos/Groups alticolor-bibronii & nigromaculatus 91 Grupos/Groups monticola & tenuis 106 Grupo/Group nigroviridis 118 Género/Genus Phymaturus 124 Familia/Family Leiosauridae Género/Genus Pristidactylus 135 Familia/Family Teiidae Género/Genus Callopistes 148 Familia/Family Dipsadidae 155 Especies introducidas en Chile/Introduced species in Chile 165 Clave de identificación/Identification key 173 Glosario/Glossary 185 Bibliografía/Bibliography 188 Créditos de imágenes/images credits 198 Índice de especies/Table of species 199 7 Donde verlos Para encontrar reptiles en las cercanías de Santiago no hace falta mucho esfuerzo. Habitan prácticamente todos los ecosistemas presentes en la región. En la cordillera de los Andes y de la Costa se pueden observar en primavera y verano hasta casi los 4.000 msm. También habitan en muchas zonas urbanas. Bosque esclerófilo. Hábitat de di- versas especies de reptiles en Chile, como Liolaemus lemniscatus, L. tenuis y Callopistes maculatus entre otros. Reserva Nacional Río Clarillo. Sclerophyllous forest. Habitat to many reptile species in Chile, such as Liolaemus lemniscatus, L. tenuis and Ca- llopistes maculatus. Río Clarillo National Reserve.
    [Show full text]
  • Species Specific Provisions for Amphibians Background
    Restricted Strasbourg, 27 August 2004 GT 123 (2004) 14 WORKING PARTY FOR THE PREPARATION OF THE FOURTH MULTILATERAL CONSULTATION OF PARTIES TO THE EUROPEAN CONVENTION FOR THE PROTECTION OF VERTEBRATE ANIMALS USED FOR EXPERIMENTAL AND OTHER SCIENTIFIC PURPOSES (ETS 123) 8th Meeting of the Working Party Strasbourg, 22-24 September 2004 ___________ Species specific provisions for Amphibians Background information for the proposals presented by the Group of Experts on Amphibians and Reptiles PART B _____ This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. 2 Background information On the species-specific proposals for amphibians Presented by the Expert Group on Amphibians and Reptiles Jörg-Peter Ewert 1 (Coordinator), John E. Cooper 2, Tom Langton 3, Gilbert Matz 4, Kathryn Reilly 5, Helen Schwantje 6 ___________________ 1Department of Neurobiology, Faculty of Natural Sciences, University of Kassel, Heinrich-Plett-Str. 40, D-34109 Kassel, Germany, Email: [email protected], [email protected] 2Wildlife Health Services, PO Box 153, Wellingborough NN8 2ZA, UK, Email: [email protected] [Present address: Prof. John E. Cooper, DTVM, FRCPath, FIBiol, FRCVS ; School of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; Email: [email protected] ] 3Triton House, Bramfield, Halesworth, Suffolk 1P19 9AE, UK, Email: [email protected] 4Laboratoire de Biologie Animale, Université d'Angers, 2 Bd Lavoisier, F-49045 Angers Cedex 01, France 5Merck Sharp & Dohme Ltd, Terling Park, Eastwick Road, Harlow, Essex CM20 2QR, UK, Email: [email protected] 6Canadian Council on Animal Care Constitution Square, Tower II, 315-350 Albert Street, Ottawa, ON K1R 1B1, Canada, Email: [email protected] 3 C o n t e n t s Preamble Amphibians 1.
    [Show full text]
  • Inventory of the Herpetofauna of Talampaya National Park, a World Heritage Site in Argentina
    Neotropical Biology and Conservation 13(3):202-211, september-december 2018 Unisinos - doi: Inventory of the herpetofauna of Talampaya National Park, a World Heritage Site in Argentina Inventário da herpetofauna do Parque Nacional Talampaya, Patrimônio da Humanidade, na Argentina Camila Kass1,2* [email protected] Abstract Talampaya National Park (TNP) was designated a UNESCO World Heritage Site, together Nicolas Ariel Kass2 [email protected] with Ischigualasto Provincial Park in 2000, but there is no list with updated information from reptiles and amphibians eighteen years after its creation. Therefore, we listed a complete Melina Alicia Velasco2 inventory of the herpetofauna of TNP with the information obtained from bibliography, data [email protected] from Argentina National Parks Administration (ranger reports and the species listed in their database) and fieldwork using pitfall traps, active search transects and pictures/material María Dolores Juri1 collected in the site. We confirm the occurrence of 35 species of herpetofauna in the TNP, [email protected] including 29 reptiles and 6 amphibians. Some species found in TNP are of great value because their national conservation status is vulnerable (Chelonoidis chilensis, Liolaemus 2 Jorge Daniel Williams anomalus, Liolaemus riojanus) or even endangered (Boa constrictor occidentalis). There- [email protected] fore, priority areas for conservation of these species should be proposed inside the park. 2 Federico Pablo Kacoliris Amphibians, conservation area, list of species, reptiles. [email protected] Keywords: Resumo O Parque Nacional Talampaya (TNP) foi declarado Patrimônio da Humanidade pela UNESCO, juntamente com o Parque Provincial Ischigualasto, em 2000, mas não há lista com informações atualizadas de répteis e anfíbios 18 anos após sua criação.
    [Show full text]
  • Los Últimos 30 Años De Estudios De La Familia De Lagartijas Más Diversa De Argentina
    AHA - 30 años Cuad. herpetol. 28 (2): 00-00 (2014) Los últimos 30 años de estudios de la familia de lagartijas más diversa de Argentina. Actualización taxonómica y sistemática de Liolaemidae Cristian Simón Abdala1, Andrés Sebastián Quinteros2 ¹ Instituto de Herpetología, Fundación Miguel Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Cátedra de Biología de la Conservación, Facultad de Ciencias Naturales e Instituto Miguel Lillo (IML), Universidad Nacional de Tucumán. Miguel Lillo 251. 4000- Tucumán. Argentina.. ² Cátedra de Sistemática Filogenética – Cátedra de Zoología General. Facultad de Ciencias Naturales. Universi- dad Nacional de Salta. Instituto de Bio y Geociencias del NOA (IBIGEO) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Avenida Bolivia 5150. 4400. Salta. Recibido: 19 Marzo 2013 RESUMEN Revisado: 12 Septiembre 2013 La Familia Liolaemidae, integrada por los géneros Ctenoblepharys, Liolaemus y Phymaturus, Aceptado: 28 Octubre 2013 es la familia más diversa del sector sur de Sudamérica, y ha experimentado un crecimiento Editor Asociado: J. Goldberg imponente en los últimos 30 años. Numerosos estudios relacionados a las diferentes ramas de la (Comisión Directiva AHA) Biología se han realizado con los géneros y especies que integran Liolaemidae. Sin embargo los avances taxonómicos y filogenéticos son los más evidentes. El géneroLiolaemus , es el segundo género más diverso dentro de Iguania y su número de taxa aumenta considerablemente año tras año. El género Phymaturus presenta una diversidad intermedia dentro de la familia, pero en la última década ha casi triplicado su diversidad específica. Debido a la gran diversidad que presenta la familia, desde sus comienzos los arreglos taxonómicos y propuestas filogenéticas han sido cuantiosas, multiplicándose en los últimos años.
    [Show full text]
  • Liolaemus E Ibéricos Thermal Niche Evolution in Liolaemus
    Evolución del Nicho Térmico en Lagartos del Género Liolaemus e Ibéricos Thermal Niche Evolution in Liolaemus and Iberian Lizards Francisco Ferri Yáñez Universitat d’Alacant Universidad de Alicante Evolución del Nicho Térmico en Lagartos del Género Liolaemus e Ibéricos Thermal Niche Evolution in Liolaemus and Iberian Lizards Francisco Ferri Yáñez Francisco Ferri Yáñez Escola de Doctorat Tesis doctoral Escuela de Doctorado ED|UA Alicante Septiembre 2016 edua.ua.es Tesis doctoral Alicante Septiembre 2016 PHD THESIS UNIVERSIDAD DE ALICANTE, SEptEMBER 2016 INSTITUTO UNIVERSITARIO DE INVESTIGACIÓN - CIBIO UNIVERSIDAD DE ALICANTE Thermal Niche Evolution in Liolaemus and Iberian lizards Evolución del nicho térmico en lagartos del género Liolaemus e ibéricos FRANCISCO FERRI YÁÑEZ Tesis presentada para aspirar al grado de: DOCTOR POR LA UNIVERSIDAD DE ALICANTE MENCIÓN DE DOCTOR INTERNACIONAL DOCTORADO EN BIODIVERSIDAD Y CONSERVACIÓN Dirigida por: DR. MIGUEL BASTOS ARAUJO DR. PABLO MARQUET Departamento de Biogeografía y Cambio Global Departamento de Ecología Museo Nacional de Ciencias Naturales (CSIC) Pontificia Universidad Católica de Chile Bajo la tutela académica de: DR. JOSÉ RAMÓN VERDÚ FARACO Instituto Universitario de Investigación - CIBIO Universidad de Alicante Esta tesis ha sido financiada por una beca JAE-Predoc del Consejo Superior de Investigaciones Científicas (CSIC: 2010 00735) y el proyecto NICHE CGL2011-26852 del Ministerio de Economía y Competitividad. A mis abuelos, José Yáñez Verdú y María Llorens Francés A mis padres, Francisco Ferri Llorens y Amelia Yáñez Tortosa Nota acerca del idioma: En la redacción de la presente tesis doctoral se han utilizado dos idiomas: español e inglés. Los apartados Introducción, Justificación y objetivos de la tesis han sido escritos en castellano, mientras que los Capítulos 1–4 aparecen íntegramente en inglés.
    [Show full text]
  • Phylogeny, Time Divergence, and Historical Biogeography of the South American Liolaemus Alticolor-Bibronii Group (Iguania: Liolaemidae) Sabrina N
    Phylogeny, time divergence, and historical biogeography of the South American Liolaemus alticolor-bibronii group (Iguania: Liolaemidae) Sabrina N. Portelli* and Andrés S. Quinteros* UNSa-CONICET, Instituto de Bio y Geociencias del NOA, Rosario de Lerma, Salta, Argentina * These authors contributed equally to this work. ABSTRACT The genus Liolaemus comprises more than 260 species and can be divided in two subgenera: Eulaemus and Liolaemus sensu stricto. In this paper, we present a phylogenetic analysis, divergence times, and ancestral distribution ranges of the Liolaemus alticolor- bibronii group (Liolaemus sensu stricto subgenus). We inferred a total evidence phy- logeny combining molecular (Cytb and 12S genes) and morphological characters using Maximum Parsimony and Bayesian Inference. Divergence times were calculated using Bayesian MCMC with an uncorrelated lognormal distributed relaxed clock, calibrated with a fossil record. Ancestral ranges were estimated using the Dispersal-Extinction- Cladogenesis (DEC-Lagrange). Effects of some a priori parameters of DEC were also tested. Distribution ranged from central Perú to southern Argentina, including areas at sea level up to the high Andes. The L. alticolor-bibronii group was recovered as monophyletic, formed by two clades: L. walkeri and L. gracilis, the latter can be split in two groups. Additionally, many species candidates were recognized. We estimate that the L. alticolor-bibronii group diversified 14.5 Myr ago, during the Middle Miocene. Our results suggest that the ancestor of the Liolaemus alticolor-bibronii group was distributed in a wide area including Patagonia and Puna highlands. The speciation pattern follows the South-North Diversification Hypothesis, following the Andean uplift. Submitted 30 August 2017 Accepted 2 February 2018 Published 20 February 2018 Subjects Biogeography, Taxonomy, Zoology Corresponding author Keywords Andean uplift, Ancestral range, Lizards, Liolaemus, Total evidence Andrés S.
    [Show full text]
  • Doi Done 25Jan.Fm
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital Zootaxa 0000 (0): 000–000 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/00000.00/zootaxa.0000.0.0 http://zoobank.org/urn:lsid:zoobank.org:pub:00000000-0000-0000-0000-00000000000 Checklist of lizards and amphisbaenians of Argentina: an update LUCIANO JAVIER AVILA1, LORENA ELIZABETH MARTINEZ & MARIANA MORANDO CENPAT-CONICET. Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina. E-mail: [email protected], [email protected] 1Corresponding author. E-mail: [email protected] Abstract We update the list of lizards of Argentina, reporting a total of 261 species from the country, arranged in 27 genera and 10 families. Introduced species and dubious or erroneous records are discussed. Taxonomic, nomenclatural and distributional comments are provided when required. Considering species of probable occurrence in the country (known to occur in Bo- livia, Brazil, Chile and Paraguay at localities very close to the Argentinean border) and still undescribed taxa, we estimate that the total number of species in Argentina could exceed 300 in the next few years. Key words: Reptiles, Liolaemus, Phymaturus, South America, list Resumen Actualizamos la lista de lagartijas de la Argentina, presentamos un total de 261 especies para el país, organizados en 27 géneros y 10 familias. Especies introducidas, registros dudosos o erróneos son discutidos. Comentarios taxonómicos, no- menclaturales o de distribución son incorporados si son requeridos. Considerando especies de probable existencia en nue- stro país (que se encuentran en Bolivia, Brasil, Chile y Paraguay en localidades muy cercanas al límite con Argentina) y taxas aún no descriptos, estimamos que el número total de especies en Argentina puede exceder las 300 en los próximos años.
    [Show full text]
  • Squamata, Liolaemidae) by Callopistes Maculatus Gravenhorst, 1838 (Squamata, Teiidae) in the Atacama Desert
    Herpetology Notes, volume 13: 267-269 (2020) (published online on 19 March 2020) Predation on Liolaemus atacamensis Müller and Hellmich, 1933 (Squamata, Liolaemidae) by Callopistes maculatus Gravenhorst, 1838 (Squamata, Teiidae) in the Atacama Desert Claudio Reyes-Olivares1,2,*, Daniel Hiriart3, and Yery Marambio-Alfaro3,4 Even though deserts are characterized by a low level of Callopistes maculatus Gravenhorst, 1838 is a Chilean primary productivity, they can present complex trophic endemic teiid that lives in scrubland habitats associated webs that support up to four trophic levels (Ayal, 2007). with rocky and sandy environments along a wide Lizards, as predators, are essential in the maintenance of latitudinal distribution (approximately 1300 km), which these webs in deserts: small and medium-sized lizards, extends from the Atacama Desert to Central Chile as well as other primary predators (e.g., arthropods) (Demangel, 2016; Mella, 2017). This is the largest can support a viable population of secondary predators, lizard of the country, reaching > 500 mm of total length like mammals, birds, and larger reptiles (Polis, 1991). (Demangel, 2016), a characteristic that renders it an Moreover, the predation of primary predators by large- essential predator role in the environments where it sized lizards can promote the diversity of consumers, inhabits (Fuentes, 1976; Castro et al., 1991). Callopistes mainly detritivores (Ayal, 2007). Thus, knowing the maculatus is an active generalist forager that consume food habits and predators of the desert lizards helps to plants (Fuentes, 1976), invertebrates (Donoso-Barros, understand the trophic links that define the structure and 1966; Mellado, 1982; Castro et al., 1991; Vidal et al., dynamics of these communities (Polis, 1991).
    [Show full text]
  • Reptiles in Monterey Pine Plantations of the Coastal Range of Central Chile Sandra V Uribe* and Cristián F Estades
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Uribe and Estades Revista Chilena de Historia Natural 2014, 87:25 http://www.revchilhistnat.com/content/87/1/25 RESEARCH Open Access Reptiles in Monterey pine plantations of the Coastal Range of Central Chile Sandra V Uribe* and Cristián F Estades Abstract Background: In Chile, most of the timber industry depends on Monterey pine (Pinus radiata (D. Don.)) plantations, which now cover more than 1.5 million ha. In spite of the intensive management of these plantations, they are home to a large number of wildlife species. One of the least known groups in this type of environment are reptiles. For this reason, we conducted a study on the distribution and abundance of reptiles at plantations of different ages in seven sites in the Coastal Range of Central Chile. Results: From seven species that could be potentially found in the study region, a total of five species were recorded, with Liolaemus lemniscatus (Gravenhorst) being the most abundant (with up to 160 ind*ha−1). Detectability of species was similar in young and mature plantations but Liolaemus tenuis (Duméril and Bibron), the most colorful species, showed a higher detection probability than the other species. The highest abundance of reptiles was found in young plantations, and the density of L. lemniscatus and Liolaemus chiliensis (Lesson) declined significantly with plantation development. Liolaemus schroederi (Müller and Hellmich) increased significantly its numbers in 4- to 5-year-old plantations and remained with similar densities in mature plantations.
    [Show full text]