AMMA-Weather
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Detection of Mesoscale Convective Systems by the GPM Ku-Band Spaceborne Radar
For Peer Review The Detection of Mesoscale Convective Systems by the GPM Ku-band Spaceborne Radar Journal: Journal of the Meteorological Society of Japan Manuscript ID JMSJ-2019-0034.R1 Manuscript Type: Articles Date Submitted by the n/a Author: Complete List of Authors: wang, jingyu; Pacific Northwest National Laboratory, Atmospheric Sciences & Global Change Houze, Robert ; University of Washington, Department of Atmospheric Sciences; Pacific Northwest National Laboratory, Atmospheric Sciences and Global Change Division Fan, Jiwen; Pacific Northwest National Laboratory, Atmospheric Sciences and Global Change Division Brodzik, Stacy; University of Washington, Department of Atmospheric Sciences Feng, Zhe; Pacific Northwest National Laboratory, Atmospheric Sciences and Global Change Division Hardin, Joseph; Pacific Northwest National Laboratory, Atmospheric Sciences and Global Change Division GPM evaluation, 3D reflectivity structure, Mesoscale Convective System Keywords: tracking, MCS feature, Global MCS distribution, Intense convection Page 1 of 100 For Peer Review 1 The Detection of Mesoscale Convective Systems by the 2 GPM Ku-band Spaceborne Radar 3 4 Jingyu Wang 5 Pacific Northwest National Laboratory, 6 Richland, Washington, USA 1 7 Robert. A. Houze, Jr 8 University of Washington, 9 Seattle, Washington, USA 10 Pacific Northwest National Laboratory, 11 Richland, Washington, USA 12 Jiwen Fan 13 Pacific Northwest National Laboratory, 14 Richland, Washington, USA 15 Stacy. R. Brodzik 16 University of Washington, 17 Seattle, Washington, USA 18 Zhe Feng 19 Pacific Northwest National Laboratory, 20 Richland, Washington, USA 21 and 22 Joseph C. Hardin 23 Pacific Northwest National Laboratory, 24 Richland, Washington, USA 25 26 27 March 31, 2019 28 ------------------------------------ 29 1) Corresponding author: Robert Houze, University of Washington, Seattle, Washington, 30 USA. -
Hurricane and Tropical Storm
State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. -
Atmospheric Circulation Newsletter of the University of Washington Atmospheric Sciences Department
Autumn 2017 Atmospheric Circulation Newsletter of the University of Washington Atmospheric Sciences Department Studying the effects of Southern African biomass burning on clouds and climate: The ORACLES mission by Professor Robert Wood, Michael Diamond, & Sarah Doherty iny aerosol particles, emitted by Fires, mainly associated with dry season Teverything from tailpipes to trees, float agricultural burning on African savannas, above us reflecting sunlight, seeding clouds and generate smoke, a chemical soup that absorbing solar heat. How exactly this happens includes a large quantity of tiny aerosol – and how it might change in the future particles. This smoke rises high in – is one of the biggest uncertainties the atmosphere driven by strong in how humans are influencing surface heating and then is climate. blown west off the coast; it In September 2016, three then subsides down toward University of Washington the cloud layer over the scientists took part in a southeastern Atlantic large NASA field campaign, Ocean. The interaction Observations of Aerosols between air moisture and Above Clouds and their smoke pollution is complex Interactions, or ORACLES, and not well understood. that is flying research planes Southern Africa produces around clouds off the west coast almost a third of the Earth’s of southern Africa to see how smoke biomass burning aerosol particles, particles and clouds interact. yet the fate of these particles and their ORACLES is a five year program, with influence on regional and global climate is three month-long aircraft field studies, and is poorly represented in climate models. led by Dr. Jens Redemann from NASA Ames The ORACLES experiment is providing Research Center in California. -
Recent Advances and Future Challenges in Hurricane Prediction
Recent Advances and Future Challenges in Hurricane Prediction Yuh-Lang Lin Professor Departments of Physics Department of Energy & Environ. Systems Senior Scientist NCAT ISET Center Outlines 1. The Need for Skillful Hurricane Prediction 2. Origins of Tropical Cyclones 3. Numerical Weather Prediction 4. Hurricane Track Prediction 5. Hurricane Intensity and Rainfall Predictions 6. Seasonal Hurricane Forecasts 7. Effects of Global Warming on Hurricanes 8. Summary 2 1. The Need for Skillful Tropical Cyclone Prediction More people live along coastal areas – it takes longer time to evacuate. Emergency managements are very costly: (e.g., it costs ~$1M per mile of coastline evacuation). Evacuation decision making is very sensitive to the prediction of hurricane track, intensity and size. More hurricane related fatalities now due to storm surge or inland flooding which depends on accurate TC prediction. More and stronger hurricanes are coming due to global warming?! 3 2. Origin of Tropical Cyclones Tropical cyclones form over tropical oceans with sufficient sea-surface temperature (> 26.5oC), circulation (vorticity), moisture and instability, and weak vertical wind shear. Definitions of tropical cyclones: Tropical Tropical Storm Hurricane/ Depression Typhoon 17 m/s 33 m/s (38 mph) (75 mph) Hurricane Patricia (2015) Major Hurricane [89 m/s (200 mph), 879 mb] 50 m/s (112 mph) Super Typhoon Typhoon Haiyan (2013) 67 m/s [87 m/s (195 mph), 895 mb] (150 mph) 4 About 85% of major hurricanes were initiated by African easterly waves (AEWs) [e.g., pre-Hurricane Alberto (2000) AEW] 5 (From Lin et al. 2005), based on EUMETSAT Some Basic Dynamics of Hurricane Genesis are still not well understood: Why are there so many easterly waves and so few tropical storms? What processes ”choose” a particular Easterly Wave? What are the major formation mechanisms of hurricanes? . -
Convectively-Coupled Kelvin Waves Over the Tropical Atlantic and African Regions and Their
Convectively-coupled Kelvin waves over the tropical Atlantic and African regions and their influence on Atlantic tropical cyclogenesis by MICHAEL J. VENTRICE A Dissertation Submitted to the University at Albany, State University of New York in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy College of Arts & Sciences Department of Atmospheric and Environmental Sciences 2012 Convectively-coupled Kelvin waves over the tropical Atlantic and African regions and their influence on Atlantic tropical cyclogenesis by Michael J. Ventrice COPYRIGHT 2012 Abstract High-amplitude convectively coupled atmospheric Kelvin waves (CCKWs) are explored over the tropical Atlantic during the boreal summer. Atlantic tropical cyclogenesis is found to be more frequent during the passage of the convectively active phase of the CCKW, and most frequent two days after its passage. CCKWs impact convection within the mean latitude of the inter-tropical convergence zone over the northern tropical Atlantic. In addition to convection, CCKWs also impact the large scale environment that favors Atlantic tropical cyclogenesis (i.e., deep vertical wind shear, moisture, and low-level relative vorticity). African easterly waves (AEWs) are known to be the main precursors for Atlantic tropical cyclones. Therefore, the relationship between CCKWs and AEW activity during boreal summer is explored. AEW activity is found to increase over the Guinea Highlands and Darfur Mountains during and after the passage of the convectively active phase of the CCKW. First, CCKWs increase the number of convective triggers for AEW genesis. Secondly, the associated zonal wind structure of the CCKW is found to affect the horizontal shear on the equatorward side of the African easterly jet (AEJ), such that the jet becomes more unstable during and after the passage of the convectively active phase of the CCKW. -
Leading and Trailing Anvil Clouds of West African Squall Lines
1114 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 68 Leading and Trailing Anvil Clouds of West African Squall Lines JASMINE CETRONE AND ROBERT A. HOUZE JR. Department of Atmospheric Sciences, University of Washington, Seattle, Washington (Manuscript received 10 June 2010, in final form 5 January 2011) ABSTRACT The anvil clouds of tropical squall-line systems over West Africa have been examined using cloud radar data and divided into those that appear ahead of the leading convective line and those on the trailing side of the system. The leading anvils are generally higher in altitude than the trailing anvil, likely because the hydrometeors in the leading anvil are directly connected to the convective updraft, while the trailing anvil generally extends out of the lower-topped stratiform precipitation region. When the anvils are subdivided into thick, medium, and thin portions, the thick leading anvil is seen to have systematically higher reflectivity than the thick trailing anvil, suggesting that the leading anvil contains numerous larger ice particles owing to its direct connection to the convective region. As the leading anvil ages and thins, it retains its top. The leading anvil appears to add hydrometeors at the highest altitudes, while the trailing anvil is able to moisten a deep layer of the atmosphere. 1. Introduction layer ascent (Zipser 1969, 1977; Houze 1977; Houze et al. 1989). We take advantage of a set of data collected at Satellite data show that a large portion of upper-level- Niamey, Niger, as part of the African Monsoon Multi- cloud ice clouds in the tropics originate as anvil clouds disciplinary Analyses (AMMA) field program of summer associated with precipitating deep convection (Luo and 2006 (see Redelsperger et al. -
The Olympic Mountains Experiment (Olympex)
THE OLYMPIC MOUNTAINS EXPERIMENT (OLYMPEX) ROBERT A. HOUZE JR., LYNN A. MCMURDIE, WALTER A. PETERSEN, MATHEW R. SCHWAllER, WIllIAM BACCUS, JESSICA D. LUNDQUIST, CLIFFORD F. MASS, BART NIJSSEN, STEVEN A. RUTLEDGE, DAVID R. HUDAK, SIMONE TANEllI, GERALD G. MACE, MICHAEL R. POEllOT, DENNIS P. LETTENMAIER, JOSEph P. ZAGRODNIK, ANGELA K. ROWE, JENNIFER C. DEHART, LUKE E. MADAUS, AND HANNAH C. BARNES OLYMPEX is a comprehensive field campaign to study how precipitation in Pacific storms is modified by passage over coastal mountains. hen frontal systems pass over midlatitude the lee sides. Snow deposited at high elevations by mountain ranges, precipitation is modified, these storms is an important form of water storage Woften with substantial enhancement on the around the globe. However, precipitation over and windward slopes and reduced accumulations on near Earth’s mountain ranges has long been very difficult to measure. As a result, the physical and dynamical mechanisms of enhancement and reduc- AFFILIATIONS: HOUZE, MCMURDIE, LUNDQUIST, MASS, NIJSSEN, tion of precipitation accompanying storm passage ZAGRODNIK, ROWE, AND DEHART—University of Washington, over mountains remain only partially understood. Seattle, Washington; PETERSON—NASA Marshall Space Flight Center, Huntsville, Alabama; SCHWAllER—NASA Goddard Space The launch of the Global Precipitation Measurement Flight Center, Greenbelt, Maryland; HOUZE AND BARNES—Pa- (GPM) satellite in February 2014 by the U.S. National cific Northwest National Laboratory, Richland, Washington; Aeronautics and Space Administration (NASA) and BACCUS—Olympic National Park, Port Angeles, Washington; the Japan Aerospace Exploration Agency (Hou et al. RUTLEDGE—Colorado State University, Fort Collins, Colorado; 2014) fosters exploration of precipitation processes HUDAK—Environment and Climate Change Canada, King City, over most of Earth’s mountain ranges. -
Atmospheric Circulation Newsletter of the University of Washington Atmospheric Sciences Department
Autumn 2012 Atmospheric Circulation Newsletter of the University of Washington Atmospheric Sciences Department The Weather Challenge by Lynn McMurdie he UW Atmospheric Sciences spring Tforecast contest has been an annual tradition in the department for many years. It’s a time when faculty and students alike agonize over whether there will be a marine push or a convergence zone wrecking their forecast for maximum temperature and precipitation probability at SeaTac. The winner earns department-wide recognition with their name engraved on a trophy, and the respect (or envy!) of their fellow forecasters. Now imagine forecasting for a wide-variety of cities across the United States and competing against thousands of other contestants from many other universities and institutions across the country. That’s just what a group of intrepid undergraduate and graduate students did this past year. For the first time, University of Washington entered a team in the national WxChallenge. The WxChallenge contest was developed A few of this year’s participants. From left: Xiaojuan Liu, Jack Neukirchen, Hannah Barnes, by the University of Oklahoma and officially started in 2006 when it replaced the National Jen DeHart, Elizabeth Maroon, Lynn McMurdie, Magdalena Szabo and Ken Dixon. Collegiate Weather Forecast contest. The goal of challenges. Often impromptu discussions would slipped into 3rd place. Aaron Hill, a recent 2012 the WxChallenge is to make the best forecast of erupt in the computer lab or someone’s office grad, had the top score in the nation for wind the next day’s maximum temperature, minimum when tricky forecasts were looming overhead at Riverton, WY. -
Colorado State Universtiy Hurricane Forecast Team Figure 1: Colorado State Universtiy Hurricane Forecast Team
SUMMARY OF 2000 ATLANTIC TROPICAL CYCLONE ACTIVITY AND VERIFICATION OF AUTHORS' SEASONAL ACTIVITY FORECAST A Successful Forecast of an Active Hurricane Season - But (Fortunately) Below Average Cyclone Landfall and Destruction (as of 21 November 2000) By William M. Gray,* Christopher W. Landsea**, Paul W. Mielke, Jr., Kenneth J. Berry***, and Eric Blake**** [with advice and assistance from Todd Kimberlain and William Thorson*****] * Professor of Atmospheric Science ** Meteorologist with NOAA?AOML HRD Lab., Miami, Fl. *** Professor of Statistics **** Graduate Student ***** Dept. of Atmospheric Science [David Weymiller and Thomas Milligan, Colorado State University Media Representatives (970-491- 6432) are available to answer questions about this forecast.] Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 Phone Number: 970-491-8681 Colorado State Universtiy Hurricane Forecast Team Figure 1: Colorado State Universtiy Hurricane Forecast Team Front Row - left to right: John Knaff, Ken Berry, Paul Mielke, John Scheaffer, Rick Taft. Back Row - left to right: Bill Thorson, Bill Gray, and Chris Landsea. SUMMARY OF 2000 SEASONAL FORECASTS AND VERIFICATION Sequence of Forecast Updates Tropical Cyclone Seasonal 8 Dec 99 7 Apr 00 7 Jun 00 4 Aug 00 Observed Parameters (1950-90 Ave.) Forecast Forecast Forecast Forecast 2000 Totals* Named Storms (NS) (9.3) 11 11 12 11 14 Named Storm Days (NSD) (46.9) 55 55 65 55 66 Hurricanes (H)(5.8) 7 7 8 7 8 Hurricane Days (HD)(23.7) 25 25 35 30 32 Intense Hurricanes (IH) (2.2) 3 3 4 3 3 Intense Hurricane Days (IHD)(4.7) 6 6 8 6 5.25 Hurricane Destruction Potential (HDP) (70.6) 85 85 100 90 85 Maximum Potential Destruction (MPD) (61.7) 70 70 75 70 78 Net Tropical Cyclone Activity (NTC)(100%) 125 125 160 130 134 *A few of the numbers may change slightly in the National Hurricane Center's final tabulation VERIFICATION OF 2000 MAJOR HURRICANE LANDFALL Forecast Probability and Climatology for last Observed 100 years (in parentheses) 1. -
Atmospheric Circulation Newsletter of the University of Washington Atmospheric Sciences Department
Autumn 2016 Atmospheric Circulation Newsletter of the University of Washington Atmospheric Sciences Department OLYMPEX: Testing a NASA Satellite on the Olympic Peninsula by Dr. Lynn McMurdie and Professor Robert A. Houze, Jr. It’s early October 2015, and NASA is project to test a new precipitation measuring satellite, and scientists from the Departments of Atmospheric Sciences and Civil and Environmental Engineering are leading this massive adventure. There is no need for earplugs to protect your ears from the roar of rockets or a countdown: the Olympic Mountains Experiment (OLYMPEX) is being launched by a mule train. mountains and nearby ocean. Highly specialized radars were set up at several locations on both sides of the mountains. For over three years, Houze and Center, McMurdie worked with NASA were planned and colleagues, wrote plans, explored directed. Often 2-3 air craft were in the air at instruments in remote areas, radars on the coast and inland, and locations for aircraft patterns. McMurdie directed a staging. Two aircraft stationed at McChord team of graduate student forecasters, who Mules carry OLYMPEX instruments through wilderness to the high terrain of the Olympic Mts. were crucial for deciding the exact times to the storms with cloud instruments to measure launch the aircraft, operate radars and launch OLYMPEX occurred last fall and winter and the sizes and types of rain and snow particles. soundings. The lead graduate student forecaster was led by Prof. Houze and Dr. McMurdie of To realize this plan, McMurdie and Houze was Jennifer DeHart of the Department of the Department of Atmospheric Sciences. -
Atmospheric Circulation Newsletter of the University of Washington Atmospheric Sciences Department
Autumn 2011 Atmospheric Circulation Newsletter of the University of Washington Atmospheric Sciences Department Making of the YouTube Can Crushing Video by Kelly McCusker he Department of Atmospheric Sciences and boiled down to the essential information, all brief departure to smooth jazz while the Safety TOutreach group has recently ventured while remaining within the story arc and incor- Chicken shared his safety message. into a bold new frontier: YouTube. Composed porating some humor. “Due to recent advances The rest of the crew for this video included: of faculty, staff, and students, our group has in de-cylindrification theory, the power to crush Bryce Harrop, Brian Smoliak, Jack Scheff, and been volunteering time for over 20 years, shar- cans without undue physical exertion is now in yours truly, with new additions for upcoming ing science with youth on visits to the depart- the power of everyday citizens like yourself!” videos. The process was exceptionally fun, but ment, demonstrating concepts relevant to the Pure genius! We had lots of fun coming up with we did run across some pitfalls, many of which atmosphere, and generally illustrating the won- everyone’s lines. Can you pick out the lines that the group has since corrected. In order to cre- ders of our field. ate high definition video, we now utilize an reference an early 90’s song? In early 2009, the outreach group was HD video camera from the UW Student Tech Step three: filming. We used the department approached by UW’s Joint Institute for the Fee equipment office. We also now focus on Study of the Atmosphere and Ocean (JISAO) to video camera, providing us the flexibility to maintaining consistent audio throughout (care- participate in their Science in 180 initiative. -
Variability of Vertical Structure of Precipitation with Sea Surface Temperature Over the 2 Arabian Sea and the Bay of Bengal As Inferred by TRMM PR Measurements
1 1 Variability of vertical structure of precipitation with sea surface temperature over the 2 Arabian Sea and the Bay of Bengal as inferred by TRMM PR measurements 3 Kadiri Saikranthi1, Basivi Radhakrishna2, Thota Narayana Rao2 and 4 Sreedharan Krishnakumari Satheesh3 5 1 Department of Earth and Climate Science, Indian Institute of Science Education and 6 Research (IISER), Tirupati, India. 7 2 National Atmospheric Research Laboratory, Department of Space, Govt. of India, Gadanki 8 - 517112, India. 9 3 Divecha Centre for Climate Change, Centre for Atmospheric and Oceanic Sciences, Indian 10 Institute of Science, Bangalore - 560012, India. 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Address of the corresponding author 31 Dr. K. Saikranthi, 32 Department of Earth and Climate Science, 33 Indian Institute of Science Education and Research (IISER), 34 Tirupati, 35 Andhra Pradesh, India. 36 Email: [email protected] 2 37 Abstract 38 Tropical rainfall measuring mission precipitation radar measurements are used to 39 examine the variation of vertical structure of precipitation with sea surface temperature (SST) 40 over the Arabian Sea (AS) and Bay of Bengal (BOB). The variation of reflectivity and 41 precipitation echo top with SST is remarkable over the AS but small over the BOB. The 42 reflectivity increases with SST (from 26°C to 31°C) by ~1 dBZ and 4 dBZ above and below 43 6 km, respectively, over the AS while, its variation is < 0.5 dBZ over the BOB. The 44 transition from shallow storms at lower SSTs (≤ 27°C) to deeper storms at higher SSTs is 45 strongly associated with the decrease in stability and mid-tropospheric wind shear over the 46 AS.