The Detection of Mesoscale Convective Systems by the GPM Ku-Band Spaceborne Radar
For Peer Review The Detection of Mesoscale Convective Systems by the GPM Ku-band Spaceborne Radar Journal: Journal of the Meteorological Society of Japan Manuscript ID JMSJ-2019-0034.R1 Manuscript Type: Articles Date Submitted by the n/a Author: Complete List of Authors: wang, jingyu; Pacific Northwest National Laboratory, Atmospheric Sciences & Global Change Houze, Robert ; University of Washington, Department of Atmospheric Sciences; Pacific Northwest National Laboratory, Atmospheric Sciences and Global Change Division Fan, Jiwen; Pacific Northwest National Laboratory, Atmospheric Sciences and Global Change Division Brodzik, Stacy; University of Washington, Department of Atmospheric Sciences Feng, Zhe; Pacific Northwest National Laboratory, Atmospheric Sciences and Global Change Division Hardin, Joseph; Pacific Northwest National Laboratory, Atmospheric Sciences and Global Change Division GPM evaluation, 3D reflectivity structure, Mesoscale Convective System Keywords: tracking, MCS feature, Global MCS distribution, Intense convection Page 1 of 100 For Peer Review 1 The Detection of Mesoscale Convective Systems by the 2 GPM Ku-band Spaceborne Radar 3 4 Jingyu Wang 5 Pacific Northwest National Laboratory, 6 Richland, Washington, USA 1 7 Robert. A. Houze, Jr 8 University of Washington, 9 Seattle, Washington, USA 10 Pacific Northwest National Laboratory, 11 Richland, Washington, USA 12 Jiwen Fan 13 Pacific Northwest National Laboratory, 14 Richland, Washington, USA 15 Stacy. R. Brodzik 16 University of Washington, 17 Seattle, Washington, USA 18 Zhe Feng 19 Pacific Northwest National Laboratory, 20 Richland, Washington, USA 21 and 22 Joseph C. Hardin 23 Pacific Northwest National Laboratory, 24 Richland, Washington, USA 25 26 27 March 31, 2019 28 ------------------------------------ 29 1) Corresponding author: Robert Houze, University of Washington, Seattle, Washington, 30 USA.
[Show full text]