Polyploidy and Ecological Adaptation in Wild Yarrow
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vascular Plants at Fort Ross State Historic Park
19005 Coast Highway One, Jenner, CA 95450 ■ 707.847.3437 ■ [email protected] ■ www.fortross.org Title: Vascular Plants at Fort Ross State Historic Park Author(s): Dorothy Scherer Published by: California Native Plant Society i Source: Fort Ross Conservancy Library URL: www.fortross.org Fort Ross Conservancy (FRC) asks that you acknowledge FRC as the source of the content; if you use material from FRC online, we request that you link directly to the URL provided. If you use the content offline, we ask that you credit the source as follows: “Courtesy of Fort Ross Conservancy, www.fortross.org.” Fort Ross Conservancy, a 501(c)(3) and California State Park cooperating association, connects people to the history and beauty of Fort Ross and Salt Point State Parks. © Fort Ross Conservancy, 19005 Coast Highway One, Jenner, CA 95450, 707-847-3437 .~ ) VASCULAR PLANTS of FORT ROSS STATE HISTORIC PARK SONOMA COUNTY A PLANT COMMUNITIES PROJECT DOROTHY KING YOUNG CHAPTER CALIFORNIA NATIVE PLANT SOCIETY DOROTHY SCHERER, CHAIRPERSON DECEMBER 30, 1999 ) Vascular Plants of Fort Ross State Historic Park August 18, 2000 Family Botanical Name Common Name Plant Habitat Listed/ Community Comments Ferns & Fern Allies: Azollaceae/Mosquito Fern Azo/la filiculoides Mosquito Fern wp Blechnaceae/Deer Fern Blechnum spicant Deer Fern RV mp,sp Woodwardia fimbriata Giant Chain Fern RV wp Oennstaedtiaceae/Bracken Fern Pleridium aquilinum var. pubescens Bracken, Brake CG,CC,CF mh T Oryopteridaceae/Wood Fern Athyrium filix-femina var. cyclosorum Western lady Fern RV sp,wp Dryopteris arguta Coastal Wood Fern OS op,st Dryopteris expansa Spreading Wood Fern RV sp,wp Polystichum munitum Western Sword Fern CF mh,mp Equisetaceae/Horsetail Equisetum arvense Common Horsetail RV ds,mp Equisetum hyemale ssp.affine Common Scouring Rush RV mp,sg Equisetum laevigatum Smooth Scouring Rush mp,sg Equisetum telmateia ssp. -
Micro-Evolutionary Change and Population Dynamics of a Brood Parasite and Its Primary Host: the Intermittent Arms Race Hypothesis
Oecologia (1998) 117:381±390 Ó Springer-Verlag 1998 Manuel Soler á Juan J. Soler á Juan G. Martinez Toma sPe rez-Contreras á Anders P. Mùller Micro-evolutionary change and population dynamics of a brood parasite and its primary host: the intermittent arms race hypothesis Received: 7 May 1998 / Accepted: 24 August 1998 Abstract A long-term study of the interactions between Key words Brood parasitism á Clamator glandarius á a brood parasite, the great spotted cuckoo Clamator Coevolution á Parasite counter-defences á Pica pica glandarius, and its primary host the magpie Pica pica, demonstrated local changes in the distribution of both magpies and cuckoos and a rapid increase of rejection of Introduction both mimetic and non-mimetic model eggs by the host. In rich areas, magpies improved three of their defensive Avian brood parasites exploit hosts by laying eggs in mechanisms: nest density and breeding synchrony in- their nests, and parental care for parasitic ospring is creased dramatically and rejection rate of cuckoo eggs subsequently provided by the host. Parasitism has a increased more slowly. A stepwise multiple regression strongly adverse eect on the ®tness of hosts, given that analysis showed that parasitism rate decreased as host the young parasite ejects all host ospring or outcom- density increased and cuckoo density decreased. A lo- petes them during the nestling period (Payne 1977; gistic regression analysis indicated that the probability Rothstein 1990). Thus, there is strong selection acting on of changes in magpie nest density in the study plots was hosts to evolve defensive mechanisms against a brood signi®cantly aected by the density of magpie nests parasite which, in turn, will develop adaptive counter- during the previous year (positively) and the rejection defences. -
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
Abronia Maritima Nutt. Ex S. Wats
SPECIES Abronia maritima Nutt. ex S. Wats. Family: Nyctaginaceae; NRCS CODE: Gary A. Monroe @ USDA-NRCS PLANTS Database ABMA2 Order: Caryophyllales; Subclass: Caryophyllidae; Class: Magnoliopsida Subspecific taxa None. Synonyms None listed. Common name red sand verbena (CalFlora, USDA PLANTS), sticky sand verbena (CalFlora) Taxonomic relationships Abronia latifolia Eschsch. and A. umbellata Lam. are closely related species (Blancas 2001). Related taxa in region May co-occur with A. latifolia and A. umbellata where distributions overlap. All three occur between Point Arguello, Santa Barbara Co., to Morro Bay in San Luis Obispo Co. (Tilllett 1967). Other CNPS list 4.2, limited distribution. Endemic to California and Baja California. There has been concern that hybridization with the two more widespread, co-occurring species of Abronia together with rapid loss of its coastal dune habitat are making the plants vulnerable to extinction (Blancas 2001). Genetic and morphological studies by Blancas (2001) were consistent with there being a high rate of hybridization with A. umbellata within a few small populations. GENERAL Map Data provided by the participants of the Consortium of California Herbaria represent 114 records with coordinate data out of 324 total records retrieved; data accessed 9/23/10. See Berkeley Mapper: http://ucjeps.berkeley.edu/consortium Geographic range Sparsely located in central and southern California and Baja California (Hickman 1993). Distribution in California; South coast and south central coast (Hickman 1993) and Channel Islands. Ecological Sections Ecological section and subsection (http://www.fs.fed.us/r5/projects/ecoregions/ca_sections.htm): Central California Coast (261A), and Southern California Coast (261B). Life history, life form Perennial herb, rapidly growing, mat forming pioneer that keeps up with advancing sand dunes. -
Ecological Character Displacement and the Study of Adaptation
Commentary Ecological character displacement and the study of adaptation Jonathan B. Losos* Department of Biology, Campus Box 1137, Washington University, St. Louis, MO 63130 he study of adaptation—a central is- Tsue in biology since before the time of Darwin—is currently enjoying a renais- sance. Ridiculed two decades ago as fol- lowing a panglossian paradigm (1) that Fig. 1. (Upper) Two sympatric promulgated ‘‘just so stories’’ rather than species with broadly overlapping distributions of resource use. If re- testing hypotheses, evolutionary biology sources are limiting, then natural has become a vibrant field in which a selection may favor individuals in wide variety of methods—ranging from each species with traits that allow molecular developmental biology to each of them to use that portion of manipulative field experiments—are used the resource spectrum not used by to rigorously test adaptive hypotheses (2). the other species, as indicated by Nowhere is this more evident than in the the arrows. (Lower) The result may study of ecological character displace- be that the species diverge in trait value and resource use, thus mini- ment; a paper by Adams and Rohlf (3) in mizing competition for resources. a recent issue of PNAS is one of a growing number of studies that have used integra- tive, multidisciplinary approaches and have demonstrated that ecological char- placement was seen as a powerful and enon for which few convincing examples acter displacement appears to be an pervasive force structuring ecological could be found (e.g., refs. 14–16). important ecological and evolutionary communities. These interpretations cor- These debates—unpleasant as they COMMENTARY phenomenon. -
Species at Risk Assessment—Pacific Rim National Park Reserve Of
Species at Risk Assessment—Pacific Rim National Park Reserve of Canada Prepared for Parks Canada Agency by Conan Webb 3rd May 2005 2 Contents 0.1 Acknowledgments . 10 1 Introduction 11 1.1 Background Information . 11 1.2 Objective . 16 1.3 Methods . 17 2 Species Reports 20 2.1 Sample Species Report . 21 2.2 Amhibia (Amphibians) . 23 2.2.1 Bufo boreas (Western toad) . 23 2.2.2 Rana aurora (Red-legged frog) . 29 2.3 Aves (Birds) . 37 2.3.1 Accipiter gentilis laingi (Queen Charlotte goshawk) . 37 2.3.2 Ardea herodias fannini (Pacific Great Blue heron) . 43 2.3.3 Asio flammeus (Short-eared owl) . 49 2.3.4 Brachyramphus marmoratus (Marbled murrelet) . 51 2.3.5 Columba fasciata (Band-tailed pigeon) . 59 2.3.6 Falco peregrinus (Peregrine falcon) . 61 2.3.7 Fratercula cirrhata (Tufted puffin) . 65 2.3.8 Glaucidium gnoma swarthi (Northern pygmy-owl, swarthi subspecies ) . 67 2.3.9 Megascops kennicottii kennicottii (Western screech-owl, kennicottii subspecies) . 69 2.3.10 Phalacrocorax penicillatus (Brandt’s cormorant) . 73 2.3.11 Ptychoramphus aleuticus (Cassin’s auklet) . 77 2.3.12 Synthliboramphus antiquus (Ancient murrelet) . 79 2.3.13 Uria aalge (Common murre) . 83 2.4 Bivalvia (Oysters; clams; scallops; mussels) . 87 2.4.1 Ostrea conchaphila (Olympia oyster) . 87 2.5 Gastropoda (Snails; slugs) . 91 2.5.1 Haliotis kamtschatkana (Northern abalone) . 91 2.5.2 Hemphillia dromedarius (Dromedary jumping-slug) . 95 2.6 Mammalia (Mammals) . 99 2.6.1 Cervus elaphus roosevelti (Roosevelt elk) . 99 2.6.2 Enhydra lutris (Sea otter) . -
Longevity of Scarified Seed of Three Native Legumes Under Different Seed Storage Conditions Annie Young-Mathews, Kathy Pendergrass and Amy Bartow
FINAL STUDY REPORT NRCS Plant Materials Center, Corvallis, OR December 2017 Longevity of Scarified Seed of Three Native Legumes under Different Seed Storage Conditions Annie Young-Mathews, Kathy Pendergrass and Amy Bartow ABSTRACT Seed mixes are often needed at short notice for revegetation or erosion control plantings, and many native Pacific Northwest legumes used for such plantings require mechanical scarification in order to obtain rapid, even germination. Mechanical scarification and seed storage conditions have the potential to affect the long-term viability of seed. Studies were conducted at the USDA Natural Resources Conservation Service Corvallis Plant Materials Center, Corvallis, Oregon to determine the response of riverbank lupine (Lupinus rivularis), broadleaf lupine (Lupinus latifolius), and rosy bird’s-foot trefoil (Lotus aboriginus) to seed storage environment and scarification treatment over the course of five years. Seed of all three legume species showed little response to either storage environment or scarification, retaining greater than 90% viability levels over the five years of the study. Results suggest that scarified legume seed might be maintained for several years in “ready-to-go” seed mixes, even under less than ideal storage conditions, thus facilitating rapid revegetation efforts when the need arises. INTRODUCTION In western Oregon, seed mixes are often needed at short notice for revegetation of retired logging roads, road cuts, reseeding after fires, or for other erosion control plantings. The Salem and Eugene Districts of the Oregon Bureau of Land Management (BLM) were interested in developing simple seed mixes, including legumes and grasses, which could be seeded in projects on the west slopes of the Cascades and Coast Range in western Oregon. -
Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection
sustainability Review Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection Brandon Schlautman 1,2,* ID , Spencer Barriball 1, Claudia Ciotir 2,3, Sterling Herron 2,3 and Allison J. Miller 2,3 1 The Land Institute, 2440 E. Water Well Rd., Salina, KS 67401, USA; [email protected] 2 Saint Louis University Department of Biology, 1008 Spring Ave., St. Louis, MO 63110, USA; [email protected] (C.C.); [email protected] (S.H.); [email protected] (A.J.M.) 3 Missouri Botanical Garden, 4500 Shaw Blvd. St. Louis, MO 63110, USA * Correspondence: [email protected]; Tel.: +1-785-823-5376 Received: 12 February 2018; Accepted: 4 March 2018; Published: 7 March 2018 Abstract: Annual cereal and legume grain production is dependent on inorganic nitrogen (N) and other fertilizers inputs to resupply nutrients lost as harvested grain, via soil erosion/runoff, and by other natural or anthropogenic causes. Temperate-adapted perennial grain legumes, though currently non-existent, might be uniquely situated as crop plants able to provide relief from reliance on synthetic nitrogen while supplying stable yields of highly nutritious seeds in low-input agricultural ecosystems. As such, perennial grain legume breeding and domestication programs are being initiated at The Land Institute (Salina, KS, USA) and elsewhere. This review aims to facilitate the development of those programs by providing criteria for evaluating potential species and in choosing candidates most likely to be domesticated and adopted as herbaceous, perennial, temperate-adapted grain legumes. We outline specific morphological and ecophysiological traits that may influence each candidate’s agronomic potential, the quality of its seeds and the ecosystem services it can provide. -
Vascular Plants of the Coastal Dunes of Humboldt County, California
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 4-2019 Vascular Plants of the Coastal Dunes of Humboldt County, California James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Vascular Plants of the Coastal Dunes of Humboldt County, California" (2019). Botanical Studies. 41. https://digitalcommons.humboldt.edu/botany_jps/41 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. VASCULAR PLANTS OF THE COASTAL DUNES OF HUMBOLDT COUNTY, CALIFORNIA Compiled by James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California Ninth Edition • August 2019 Amaryllidaceae — Onion or Amaryllis Family F E R N S Allium unifolium •One-leaved onion Dennstaedtiaceae — Bracken Fern Family Anacardiaceae — Cashew Family Pteridium aquilinum var. pubescens • Bracken fern Toxicodendron diversilobum • Poison-oak Ophioglossaceae — Adder’s-tongue Family Apocynaceae — Dogbane or Milkweed Family Botrychium multifidum • Leathery -
Biological and Biomedical Implications of the Co-Evolution of Pathogens and Their Hosts
progress Biological and biomedical implications of the co-evolution of pathogens and their hosts Mark E.J. Woolhouse1, Joanne P. Webster2, Esteban Domingo3, Brian Charlesworth4 & Bruce R. Levin5 Co-evolution between host and pathogen is, in principle, a powerful determinant of the biology and genetics of infection and disease. Yet co-evolution has proven difficult to demonstrate rigorously in practice, and co-evolutionary thinking is only just beginning to inform medical or veterinary research in any meaningful way, even though it can have a major influence on how genetic variation in biomedically important traits is interpreted. Improving our understanding of the biomedical significance of co-evo- lution will require changing the way in which we look for it, complementing the phenomenological approach traditionally favored by evolutionary biologists with the exploitation of the extensive data becoming available on the molecular biology and molecular genetics of host–pathogen interactions. http://www.nature.com/naturegenetics That pathogens and hosts have evolutionary effects on one In this review, we assess the evidence for co-evolution in another and that these effects might be reciprocal—that is, host–pathogen systems. We then explore the complexities of pathogens and hosts co-evolve—are attractive, plausible and studying co-evolution in the ‘real world’, where there are many powerful ideas whose implications for the medical and veteri- different constraints on the potential for pathogen and host to nary sciences are only just beginning to be recognized1. An co-evolve. We proceed to consider the largely untapped oppor- important instance concerns the genetics of susceptibility to and tunity for studying co-evolution at the mechanistic as well as pathogenicity of infectious diseases. -
Sexual Selection and Speciation in Field Crickets
Sexual selection and speciation in field crickets David A. Gray* and William H. Cade† Department of Biological Sciences, Brock University, St. Catharines, ON, Canada L2S 3A1 Edited by Mary Jane West-Eberhard, Smithsonian Tropical Research Institute, Ciudad Universitaria, Costa Rica, and approved September 26, 2000 (received for review June 14, 2000) Recent theoretical work has shown that sexual selection may cause limited degree of postzygotic isolation (31–33)—have suggested speciation under a much wider range of conditions than previously to some authors the possibility of sexual selection driving supposed. There are, however, no empirical studies capable of speciation even in the absence of any pronounced hybrid infe- simultaneously evaluating several key predictions that contrast riority (see, e.g., refs. 28, 32–43). this with other speciation models. We present data on male pulse We report here our attempts to clarify the role of sexual rates and female phonotactic responses to pulse rates for the field selection in speciation. We present results from the North cricket Gryllus texensis; pulse rate is the key feature distinguishing American field cricket species Gryllus texensis (formerly Gryllus G. texensis from its cryptic sister species G. rubens. We show (i) integer) and Gryllus rubens. These species are ideal candidates for genetic variation in male song and in female preference for song, study: they are cryptic sister species with extensive areas of both (ii) a genetic correlation between the male trait and the female sympatry and allopatry, and prezygotic isolation appears to be preference, and (iii) no character displacement in male song, virtually complete, whereas postzygotic isolation appears to be female song recognition, female species-level song discrimination, virtually absent. -
Movement Rates of the Lizard Anolis Carolinensis (Squamata: Dactyloidae) in the Presence and Absence of Anolis Sagrei (Squamata
Movement Rates of the Lizard Anolis carolinensis (Squamata: Dactyloidae) in the Presence and Absence of Anolis sagrei (Squamata: Dactyloidae) Author(s): Ambika Kamath and Yoel E. Stuart Source: Breviora, 546(1):1-7. Published By: Museum of Comparative Zoology, Harvard University DOI: http://dx.doi.org/10.3099/0006-9698-546.00.1 URL: http://www.bioone.org/doi/full/10.3099/0006-9698-546.00.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/ page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. US ISSN 0006-9698 CAMBRIDGE,MASS. 17 JUNE 2015 NUMBER 546 MOVEMENT RATES OF THE LIZARD ANOLIS CAROLINENSIS (SQUAMATA: DACTYLOIDAE) IN THE PRESENCE AND ABSENCE OF ANOLIS SAGREI (SQUAMATA: DACTYLOIDAE) AMBIKA KAMATH1 AND YOEL E. STUART1,2 ABSTRACT. Shifts in a species’ habitat can be precipitated by co-occurring with a closely related, ecologically similar species, to avoid negative interspecific interactions.