NMFS April 20, 2009, Final Biological Opinion Under the Endangered Species Act, Issued for Carbofuran, Carbaryl and Methomyl

Total Page:16

File Type:pdf, Size:1020Kb

NMFS April 20, 2009, Final Biological Opinion Under the Endangered Species Act, Issued for Carbofuran, Carbaryl and Methomyl National Marine Fisheries Service Endangered Species Act Section 7 Consultation Biological Opinion Environmental Protection Agency Registration of Pesticides Containing Carbaryl, Carbofuran, and Methomyl Photo Credit: Desmond Maynard NMFS Photo Credit: Tom Maurer USFWS April 20, 2009 Table of Contents Background ........................................................................................................................ 3 Consultation History.......................................................................................................... 6 Description of the Proposed Action................................................................................. 16 The Federal Action ................................................................................................... 16 Carbaryl..................................................................................................................... 22 Carbofuran ................................................................................................................ 27 Methomyl.................................................................................................................. 32 Species Addressed in the BEs................................................................................... 36 Approach to this Assessment ........................................................................................... 38 Overview of NMFS’ Assessment Framework ............................................................... 38 Evidence Available for the Consultation .................................................................. 41 Application of Approach in this Consultation .......................................................... 41 General conceptual framework for assessing risk of EPA’s pesticide actions to listed resources. .................................................................................................................. 43 Problem Formulation ................................................................................................ 43 Risk Characterization................................................................................................ 53 Other Considerations ................................................................................................ 54 Action Area....................................................................................................................... 55 Status of Listed Resources ............................................................................................... 58 Chinook Salmon............................................................................................................ 59 Description of the Species ........................................................................................ 59 Status and Trends...................................................................................................... 60 California Coastal Chinook Salmon ......................................................................... 62 Central Valley Spring-Run Chinook Salmon ........................................................... 66 Lower Columbia River Chinook Salmon ................................................................. 71 Upper Columbia River Spring-run Chinook Salmon................................................ 76 Puget Sound Chinook Salmon .................................................................................. 80 Sacramento River Winter-Run Chinook Salmon...................................................... 85 Snake River Fall-Run Chinook Salmon.................................................................... 88 ii Snake River Spring/Summer-Run Chinook Salmon................................................. 93 Upper Willamette River Chinook Salmon................................................................ 99 Chum Salmon.............................................................................................................. 102 Description of the Species ...................................................................................... 102 Status and Trends.................................................................................................... 104 Columbia River Chum Salmon............................................................................... 105 Hood Canal Summer-Run Chum Salmon............................................................... 109 Coho Salmon............................................................................................................... 115 Description of the Species ...................................................................................... 115 Central California Coast Coho Salmon................................................................... 116 Lower Columbia River Coho Salmon..................................................................... 120 SONCC Coho Salmon ............................................................................................ 124 Oregon Coast Coho Salmon.................................................................................... 128 Sockeye Salmon........................................................................................................... 131 Description of the Species ...................................................................................... 131 Ozette Lake Sockeye Salmon ................................................................................. 133 Snake River Sockeye Salmon ................................................................................. 138 Steelhead..................................................................................................................... 142 Description of the Species ...................................................................................... 142 Central California Coast Steelhead......................................................................... 145 California Central Valley Steelhead ....................................................................... 148 Lower Columbia River Steelhead........................................................................... 152 Middle Columbia River Steelhead.......................................................................... 156 Northern California Steelhead ................................................................................ 161 Puget Sound Steelhead............................................................................................ 164 Snake River Steelhead ............................................................................................ 167 South-Central California Coast Steelhead .............................................................. 172 Southern California Steelhead ................................................................................ 174 Upper Columbia River Steelhead ........................................................................... 177 Upper Willamette River Steelhead ......................................................................... 182 Environmental Baseline ................................................................................................ 186 iii Natural Mortality Factors........................................................................................... 187 Parasites and/or Disease.......................................................................................... 187 Predation ................................................................................................................. 188 Wildland Fire .......................................................................................................... 191 Oceanographic Features and Climatic Variability.................................................. 193 Climate Change....................................................................................................... 194 Anthropogenic Mortality Factors ............................................................................... 195 Baseline Pesticide Detections in Aquatic Environments ............................................ 195 Baseline Water Temperature- Clean Water Act ......................................................... 201 Baseline Habitat Condition......................................................................................... 204 Geographic Regions................................................................................................ 206 Southwest Coast Region.............................................................................................. 207 Land Use ................................................................................................................. 212 Habitat Modification............................................................................................... 218 Mining..................................................................................................................... 219 Hydromodification Projects.................................................................................... 220 Artificial Propagation.............................................................................................. 221 Commercial and Recreational Fishing.................................................................... 221 Alien Species .......................................................................................................... 222 Atmospheric deposition .........................................................................................
Recommended publications
  • Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 PBRIA a Newsletter for Plecopterologists
    No. 10 1990/1991 Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 PBRIA A Newsletter for Plecopterologists EDITORS: Richard W, Baumann Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 Peter Zwick Limnologische Flußstation Max-Planck-Institut für Limnologie, Postfach 260, D-6407, Schlitz, West Germany EDITORIAL ASSISTANT: Bonnie Snow REPORT 3rd N orth A merican Stonefly S ymposium Boris Kondratieff hosted an enthusiastic group of plecopterologists in Fort Collins, Colorado during May 17-19, 1991. More than 30 papers and posters were presented and much fruitful discussion occurred. An enjoyable field trip to the Colorado Rockies took place on Sunday, May 19th, and the weather was excellent. Boris was such a good host that it was difficult to leave, but many participants traveled to Santa Fe, New Mexico to attend the annual meetings of the North American Benthological Society. Bill Stark gave us a way to remember this meeting by producing a T-shirt with a unique “Spirit Fly” design. ANNOUNCEMENT 11th International Stonefly Symposium Stan Szczytko has planned and organized an excellent symposium that will be held at the Tree Haven Biological Station, University of Wisconsin in Tomahawk, Wisconsin, USA. The registration cost of $300 includes lodging, meals, field trip and a T- Shirt. This is a real bargain so hopefully many colleagues and friends will come and participate in the symposium August 17-20, 1992. Stan has promised good weather and good friends even though he will not guarantee that stonefly adults will be collected during the field trip. Printed August 1992 1 OBITUARIES RODNEY L.
    [Show full text]
  • Phylogeographic and Nested Clade Analysis of the Stonefly Pteronarcys
    J. N. Am. Benthol. Soc., 2004, 23(4):824–838 q 2004 by The North American Benthological Society Phylogeographic and nested clade analysis of the stonefly Pteronarcys californica (Plecoptera:Pteronarcyidae) in the western USA JOHN S. K. KAUWE1 Department of Biology, Washington University, St. Louis, Missouri 63110 USA DENNIS K. SHIOZAWA2 Department of Integrative Biology, Brigham Young University, Provo, Utah 84602 USA R. PAUL EVANS3 Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602 USA Abstract. Long-distance dispersal by aquatic insects can be difficult to detect because direct mea- surement methods are expensive and inefficient. When dispersal results in gene flow, signs of that dispersal can be detected in the pattern of genetic variation within and between populations. Four hundred seventy-five base pairs of the mitochondrial gene, cytochrome b, were examined to inves- tigate the pattern of genetic variation in populations of the stonefly Pteronarcys californica and to determine if long-distance dispersal could have contributed to this pattern. Sequences were obtained from 235 individuals from 31 different populations in the western United States. Sequences also were obtained for Pteronarcella badia, Pteronarcys dorsata, Pteronarcys princeps, Pteronarcys proteus, and Pter- onarcys biloba. Phylogenies were constructed using all of the samples. Nested clade analysis on the P. californica sequence data was used to infer the processes that have generated the observed patterns of genetic variation. An eastern North American origin and 2 distinct genetic lineages of P.californica could be inferred from the analysis. Most of the current population structure in both lineages was explained by a pattern of restricted gene flow with isolation by distance (presumably the result of dispersal via connected streams and rivers), but our analyses also suggested that long-distance, over- land dispersal has contributed to the observed pattern of genetic variation.
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Qt2cd0m6cp Nosplash 6A8244
    International Advances in the Ecology, Zoogeography, and Systematics of Mayflies and Stoneflies Edited by F. R. Hauer, J. A. Stanford and, R. L. Newell International Advances in the Ecology, Zoogeography, and Systematics of Mayflies and Stoneflies Edited by F. R. Hauer, J. A. Stanford, and R. L. Newell University of California Press Berkeley Los Angeles London University of California Press, one of the most distinguished university presses in the United States, enriches lives around the world by advancing scholarship in the humanities, social sciences, and natural sciences. Its activities are supported by the UC Press Foundation and by philanthropic contributions from individuals and institutions. For more information, visit www.ucpress.edu. University of California Publications in Entomology, Volume 128 Editorial Board: Rosemary Gillespie, Penny Gullan, Bradford A. Hawkins, John Heraty, Lynn S. Kimsey, Serguei V. Triapitsyn, Philip S. Ward, Kipling Will University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England © 2008 by The Regents of the University of California Printed in the United States of America Library of Congress Cataloging-in-Publication Data International Conference on Ephemeroptera (11th : 2004 : Flathead Lake Biological Station, The University of Montana) International advances in the ecology, zoogeography, and systematics of mayflies and stoneflies / edited by F.R. Hauer, J.A. Stanford, and R.L. Newell. p. cm. – (University of California publications in entomology ; 128) "Triennial Joint Meeting of the XI International Conference on Ephemeroptera and XV International Symposium on Plecoptera held August 22-29, 2004 at Flathead Lake Biological Station, The University of Montana, USA." – Pref. Includes bibliographical references and index.
    [Show full text]
  • PLECOPTERA (Stoneflies) with Special Reference to Those Found in Utah Prepared By: L
    ORDER: PLECOPTERA (stoneflies) with special reference to those found in Utah prepared by: L. K. Hapairai, R. L. Johnson, October 2006 revised by: S. W. Judson, September 2008 Diagnosing Features, adults: hind wing usually has large anal lobe soft-bodied and flattened wings reticulated and fold flat over abdomen (Fig. 1) fore wings elongated and narrow long antennae tarsi usually 3-segmented chewing mouth parts Diagnosing Features, nymphs: flattened, generalized insect two tarsal claws (Fig. 2) two cerci (Fig. 3) wing pads usually present, especially in older nymphs long antennae Habitat: near streams or rocky lake shores, nymphs are aquatic Trophic Habits: some detritivores (shredders and more), others predators (but collectors as young) Development: hemimetabolous Preservation: alcohol, for both nymphs and adults. Notes: Stoneflies are indicators of the quality of aquatic habitats. The northern hemisphere families are often divided into two “groups”: the Euholognatha with glossa and paraglossa of equal length, and the Systellognatha with the paraglossa much larger than the glossa. In this classification care must be taken because the Peltoperlidae and Pteronarcyidae have the paraglossa and glossa of equal length, but are often placed in the Systellognatha for other reasons. The following treatments are arranged by Suborders and overall similarity of families within the suborders placed adjacently. Appendix A is a species list by UT counties. Figures: . `` Figure 1. Wings folded flat Figure 2. Two tarsal claws. Figure 3. Two cerci. Phot by CRNelson. Photo by SWJudson. Photo from Invertebrate ID CD. SUBORDER: EUHOLOGNATHA Paraglossae and glossae of equal length. (Fig. 4) Figure 4. Paraglossae and glossae equal.
    [Show full text]
  • Factors Influencing the Genetic Structure of the Least Salmonfly, Pteronarcella Badia (Plecoptera), in Western North America
    Climate oscillations, glacial refugia, and dispersal ability: factors influencing the genetic structure of the least salmonfly, Pteronarcella badia (Plecoptera), in Western North America Sproul, J. S., Houston, D. D., Nelson, C. R., Evans, R. P., Crandall, K. A., & Shiozawa, D. K. (2015). Climate oscillations, glacial refugia, and dispersal ability: factors influencing the genetic structure of the least salmonfly, Pteronarcella badia (Plecoptera), in Western North America. BMC Evolutionary Biology, 15, 279. doi:10.1186/s12862-015-0553-4 10.1186/s12862-015-0553-4 BioMed Central Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Sproul et al. BMC Evolutionary Biology (2015) 15:279 DOI 10.1186/s12862-015-0553-4 RESEARCH ARTICLE Open Access Climate oscillations, glacial refugia, and dispersal ability: factors influencing the genetic structure of the least salmonfly, Pteronarcella badia (Plecoptera), in Western North America John S. Sproul1*, Derek D. Houston2, C. Riley Nelson3,4, R. Paul Evans5, Keith A. Crandall6 and Dennis K. Shiozawa3,4 Abstract Background: Phylogeographic studies of aquatic insects provide valuable insights into mechanisms that shape the genetic structure of communities, yet studies that include broad geographic areas are uncommon for this group. We conducted a broad scale phylogeographic analysis of the least salmonfly Pteronarcella badia (Plecoptera) across western North America. We tested hypotheses related to mode of dispersal and the influence of historic climate oscillations on population genetic structure. In order to generate a larger mitochondrial data set, we used 454 sequencing to reconstruct the complete mitochondrial genome in the early stages of the project. Results: Our analysis revealed high levels of population structure with several deeply divergent clades present across the sample area.
    [Show full text]
  • Full Issue, Vol. 60 No. 1
    Western North American Naturalist Volume 60 Number 1 Article 11 1-20-2000 Full Issue, Vol. 60 No. 1 Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation (2000) "Full Issue, Vol. 60 No. 1," Western North American Naturalist: Vol. 60 : No. 1 , Article 11. Available at: https://scholarsarchive.byu.edu/wnan/vol60/iss1/11 This Full Issue is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 60(1), © 2000, pp. 1–15 COMMUNITY STRUCTURE OF ELEODES BEETLES (COLEOPTERA: TENEBRIONIDAE) IN THE SHORTGRASS STEPPE: SCALE-DEPENDENT USES OF HETEROGENEITY Nancy E. McIntyre1 ABSTRACT.—Patterns in the community structure of darkling beetle (9 Eleodes spp., Coleoptera: Tenebrionidae) assemblages in the shortgrass steppe of north central Colorado were monitored by live pitfall trapping for 4 summers. There were significant correlations among weather (temperature and precipitation), species richness, and number of indi- viduals per species captured; effects from weather conditions also displayed 1-month and 1-yr delayed effects. Population densities of 2 eleodid species were monitored by mark-recapture methods. Densities of these species varied relatively little among years and sites, although density was correlated with temperature and precipitation. Abiotic influences on both density and richness differed between 2 macrohabitat types (shortgrass upland, shrub floodplain).
    [Show full text]
  • John C. Abbott Section of Integrative Biology 1 University Station #L7000
    John C. Abbott Section of Integrative Biology (512) 417-5467, office 1 University Station #L7000 (512) 232-1896, lab The University of Texas at Austin (512) 475-6286, fax Austin, Texas 78712 USA [email protected] http://www.sbs.utexas.edu/jcabbott http://www.odonatacentral.com PROFESSIONAL PREPARATION Stroud Water Research Center, Philadelphia Academy of Sciences Postdoc, 1999 University of North Texas Biology/Ecology Ph.D., 1999 University of North Texas Biology/Ecology M.S., 1998 Texas A&M University Zoology/Entomology B.S., 1993 Texas Academy of Mathematics and Science, University of North Texas 1991 APPOINTMENTS 2006-present Curator of Entomology, Texas Natural Science Center 2005-present Senior Lecturer, School of Biological Sciences, University of Texas at Austin 1999-2005 Lecturer, School of Biological Sciences, University of Texas at Austin 2004-present Environmental Science Institute, University of Texas 2000-present Research Associate, Texas Memorial Museum, Texas Natural History Collections 1999 Research Scientist, Stroud Water Research Center, Philadelphia Academy of Natural Sciences 1997-1998 Associate Faculty, Collin County Community College (Plano, Texas) 1997-1998 Teaching Fellow, University of North Texas PUBLICATIONS Abbott, J.C. In preparation. Damselflies of Texas: A field guide. Texas Natural History Guides. University of Texas Press. Abbott, J.C. In preparation. Dragonflies of Texas: A field guide. Texas Natural History Guides. University of Texas Press. Bauer, K.K., J.C. Abbott, K. Quigley. 2009. Collared Peccary (Pecari tajacu) found outside its current range: Bastrop County, Texas. Southwestern Naturalist. In press. Abbott, J.C. 2009. Odonata (Dragonflies and Damselflies). In: Gene E. Likens, (Editor) Encyclopedia of Inland Waters.
    [Show full text]
  • Drosophila | Other Diptera | Ephemeroptera
    NATIONAL AGRICULTURAL LIBRARY ARCHIVED FILE Archived files are provided for reference purposes only. This file was current when produced, but is no longer maintained and may now be outdated. Content may not appear in full or in its original format. All links external to the document have been deactivated. For additional information, see http://pubs.nal.usda.gov. United States Department of Agriculture Information Resources on the Care and Use of Insects Agricultural 1968-2004 Research Service AWIC Resource Series No. 25 National Agricultural June 2004 Library Compiled by: Animal Welfare Gregg B. Goodman, M.S. Information Center Animal Welfare Information Center National Agricultural Library U.S. Department of Agriculture Published by: U. S. Department of Agriculture Agricultural Research Service National Agricultural Library Animal Welfare Information Center Beltsville, Maryland 20705 Contact us : http://awic.nal.usda.gov/contact-us Web site: http://awic.nal.usda.gov Policies and Links Adult Giant Brown Cricket Insecta > Orthoptera > Acrididae Tropidacris dux (Drury) Photographer: Ronald F. Billings Texas Forest Service www.insectimages.org Contents How to Use This Guide Insect Models for Biomedical Research [pdf] Laboratory Care / Research | Biocontrol | Toxicology World Wide Web Resources How to Use This Guide* Insects offer an incredible advantage for many different fields of research. They are relatively easy to rear and maintain. Their short life spans also allow for reduced times to complete comprehensive experimental studies. The introductory chapter in this publication highlights some extraordinary biomedical applications. Since insects are so ubiquitous in modeling various complex systems such as nervous, reproduction, digestive, and respiratory, they are the obvious choice for alternative research strategies.
    [Show full text]
  • Kenai National Wildlife Refuge's Species List
    Kenai National Wildlife Refuge Species List, version 2017-06-30 Kenai National Wildlife Refuge biology staff June 30, 2017 2 Cover images represent changes to the checklist. Top left: Halobi- sium occidentale observed at Gull Rock, June 8, 2017 (https://www. inaturalist.org/observations/6565787). Image CC BY Matt Bowser. Top right: Aegialites alaskaensis observed at Gull Rock, June 8, 2017 (http://www.inaturalist.org/observations/6612922). Image CC BY Matt Bowser. Bottom left: Fucus distichus observed at Gull Rock, June 8, 2017 (https://www.inaturalist.org/observations/6612338). Image CC BY Matt Bowser. Bottom right: Littorina subrotundata observed at Gull Rock, June 8, 2017 (http://www.inaturalist.org/observations/6612398). Image CC BY Matt Bowser. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 24 Vascular Plants........................................................ 47 Bryophytes .......................................................... 59 Chromista........................................................... 63 Fungi ............................................................. 63 Protozoa............................................................ 72 Non-native species 73
    [Show full text]
  • Plant Protection Product Risk Assessment for Aquatic Ecosystems
    Plant protection product risk assessment for aquatic ecosystems Evaluation of effects in natural communities Alessio Ippolito Plant protection product risk assessment for aquatic ecosystems Evaluation of effects in natural communities The research presented in this thesis was carried out at the department of Environmental and Landscape Sciences (DISAT), Università di Milano- Bicocca, Milano, Italy. Cover image : observed by far, the figure is the outline of a stonefly (Agnetina capitata ), however, by a closer look, it is also a long string of values, representing the codification of the organism traits. The same happens with ecology and ecotoxicology: a holistic, comprehensive view is needed to understand what is the meaning and the overall relevance of any process, but a reductionist approach is often appropriate to get a mechanistic understanding. The challenge proposed by this thesis is to achieve a correct balance between holism and reductionism, finding the right distance to see both the stonefly and the string. UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA Facoltà di Scienza Matematiche, Fisiche e Naturali Dottorato di ricerca in Scienze Ambientali XXIV ciclo Plant protection product risk assessment for aquatic ecosystems Evaluation of effects in natural communities TUTOR: Prof. Marco Vighi DOTTORANDO: Dott. Alessio Ippolito Anno Accademico 2011/2012 A Dino CONTENTS 1 General introduction ............................................................................... 11 1.1 Ecological Risk Assessment for chemicals ........................................
    [Show full text]
  • Ken Was Bom March 5, 1935 in Oklahoma, and Became Interested in Insects at an Early Age
    DR. KEN W. STEWART Ken was bom March 5, 1935 in Oklahoma, and became interested in insects at an early age. He earned his Bachelors degree in Forestry from Oklahoma State University in 1958 and Masters degree in Forest Entomology in 1959, with a thesis on the life history of a scolytid beetle. His Ph.D. dissertation was on the biology of the pyralid moth Zeadiatrea grandiosella. His Ph.D. was earned in 1963. After teaching at a community Jr. College for one year, he joined the faculty of the University ofNorth Texas in 1961, and began a self-taught study of aquatic insects, with particular interest in Plecoptera. His research interests evolved from passive dispersal of algae and protozoa by aquatic insects to studies of life history, ecology, and biogeography of mayflies, caddisflies and stoneflies. Research emphasis over the past 30 years has been on life histories, systematics, drumming behavior and the larvae ofNorth American Plecoptera. During his career he has trained 21 Ph.D. students and 20 Masters students in aquatic entomology and has published 160 papers, 2 books, several book chapters, and 3 monographs. Eighteen of his Ph.D. students and 6 Masters students have taught or are teaching at colleges and universities. Ken’s research has been diverse, and has included work on algae, protozoa, Nematoda, Arachnida, Pisces, Ephemeroptera, Odonata, Trichoptera, Lepidoptera, Diptera, Coleoptera, Hymenoptera and Megaloptera. His first love in research has always been with stoneflies, because he told me so, and as his Masters and PhD student I could always see his excitement with stoneflies first-hand.
    [Show full text]