Identifying Ecological Effects of Organic Toxicants and Metals Using
Total Page:16
File Type:pdf, Size:1020Kb
Identifying ecological effects of organic toxicants and metals using the SPEAR approach by Nadine Vanessa Gerner from Mainz Accepted Dissertation thesis for the partial fulfillment of the requirements for a Doctor of Natural Sciences Fachbereich 7: Natur- und Umweltwissenschaften Universität Koblenz-Landau Thesis examiners: Prof. Dr. Ralf Schäfer, Universität Koblenz-Landau Prof. Dr. Matthias Liess, Helmholtz-Zentrum für Umweltforschung GmbH – UFZ, Leipzig Date of the oral examination: 27.06.2018 This doctoral thesis is based on the following scientific publications: 1. Schäfer, R.B., Gerner, N., Kefford, B.J., Rasmussen, J.J., Beketov, M.A., de Zwart, D., Liess, M., von der Ohe, P.C., 2013. How to characterize chemical exposure to predict ecologic effects on aquatic communities? Environmental Science & Technology 47 (14), pp. 7996-8004, doi: 10.1021/es4014954. 2. Gerner, N.V., Koné, M., Ross, M.S., Pereira, A., Ulrich, A.C., Martin, J.W., Liess, M., 2017. Stream invertebrate community structure at Canadian oil sands development is linked to concentration of bitumen-derived contaminants. Science of the Total Environment 575, pp. 1005-1013,doi: 10.1016/j.scitotenv.2016.09.169. 3. Gerner, N.V., Cailleaud, K., Bassères, A., Liess, M., Beketov, M.A., 2017. Sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants. Ecotoxicology 26 (9), pp. 1216-1226, doi: 10.1007/s10646-017-1847-7. 4. Liess, M., Gerner, N.V., Kefford, B.J., 2017. Metal toxicity affects predatory stream invertebrates less than other functional feeding groups. Environmental Pollution 227, pp. 505- 512, doi: 10.1016/j.envpol.2017.05.017. The above publications have been published in international, peer-reviewed journals. 2 Summary The aquatic environment is exposed to multiple environmental pressures and mixtures of chemical substances, among them petroleum and petrochemicals, metals, and pesticides. Aquatic invertebrate communities are used as bioindicators to reflect long-term and integral effects. Information on the presence of species can be supplemented with information on their traits. SPEAR-type bioindicators integrate such trait information on the community level. This thesis aimed at enhancing specificity of SPEAR-type bioindicators towards particular groups of chemicals, namely to mixtures of oil sands-derived compounds, hydrocarbons, and metals. For developing a bioindicator for discontinuous contamination with oil-derived organic toxicants, a field study was conducted in the Canadian oil sands development region in Northern Alberta. The traits ‘physiological sensitivity towards organic chemicals’ and ‘generation time’ were integrated to develop the bioindicator SPEARoil, reflecting the community sensitivity towards oil sands derived contamination in relation to fluctuating hydrological conditions. According to the SPEARorganic approach, a physiological sensitivity ranking of taxa was developed for hydrocarbon contamination originating from crude oil or petroleum distillates. For this purpose, ecotoxicological information from acute laboratory tests was enriched with rapid and mesocosm test results. The developed Shydrocarbons sensitivity values can be used in SPEAR-type bioindicators. To specifically reflect metal contamination in streams via bioindicators, Australian field studies were re-evaluated with focus on the traits ‘physiological metal sensitivity’ and ‘feeding type’. Metal sensitivity values, however, explained community effects in the field only weakly. Instead, the trait ‘feeding type’ was strongly related to metal exposure. The fraction of predators in a community can, thus, serve as an indicator for metal contamination in the field. Furthermore, several metrics reflecting exposure to chemical cocktails in the environment were compared using existing pesticide datasets. Exposure metrics based on the 5% fraction of species sensitivity distributions were found to perform best, however, closely followed by Toxic Unit metrics based on the most sensitive species of a community or Daphnia magna. 3 Zusammenfassung Aquatische Ökosysteme sind einer Vielzahl an Umweltstressoren sowie Mischungen chemischer Substanzen ausgesetzt, darunter Petroleum und Petrochemikalien, Metalle und Pestizide. Aquatische Gemeinschaften wirbelloser Arten werden als Bioindikatoren genutzt, um Langzeit- sowie integrale Effekte aufzuzeigen. Die Information über das Vorkommen von Arten kann dabei um weitere Informationen zu Eigenschaften dieser Arten ergänzt werden. SPEAR-Bioindikatoren fassen diese Informationen für Artengemeinschaften zusammen. Ziel der vorliegenden Doktorarbeit war es, die Spezifität von SPEAR-Indikatoren gegenüber einzelnen Chemikaliengruppen zu verbessern – speziell für Ölsand-Bestandteile, Kohlenwasserstoffe und Metalle. Für die Entwicklung eines Bioindikators für diskontinuierliche Belastung mit organischen Ölbestandteilen wurde eine Freilandbeprobung in der kanadischen Ölsand-Abbauregion im nördlichen Alberta durchgeführt. Die Arteneigenschaften „physiologische Sensitivitiät gegenüber organischen Chemikalien“ sowie „Generationszeit“ wurden in einem Indikator, SPEARoil, integriert, welcher die Sensitivität der Artengemeinschaften gegenüber Ölsand- Belastung in Abhängigkeit von fluktuierenden hydrologischen Bedingungen aufzeigt. Äquivalent zum SPEARorganic-Ansatz wurde eine Rangliste der physiologischen Sensitivität einzelner Arten gegenüber Kohlenwasserstoff-Belastung durch Rohöl oder Petroleum entwickelt. Hierfür wurden Informationen aus ökotoxikologischen Kurzzeit-Laborversuchen durch Ergebnisse aus Schnell- und Mesokosmen-Tests ergänzt. Die daraus entwickelten Shydrocarbons-Sensitivitätswerte können in SPEAR-Bioindikatoren genutzt werden. Um Metallbelastung in Gewässern mittels Bioindikatoren spezifisch nachweisen zu können, wurden die Arteneigenschaften „physiologische Metallsensitivität“ und „Ernährungsweise“ von Artengemeinschaften in australischen Feldstudien ausgewertet. Sensitivitätswerte für Metalle erklärten die Effekte auf die Artengemeinschaften im Gewässer jedoch unzureichend. Die „Ernährungsweise“ hingegen war stark mit der Metallbelastung korreliert. Der Anteil räuberischer Invertebratenarten in einer Gemeinschaft kann daher als Indikator für Metallbelastung in Gewässern dienen. Weiterhin wurden verschiedene Belastungsanzeiger für Chemikalien-Cocktails in der Umwelt anhand von Pestizid-Datensätzen verglichen. Belastungsanzeiger, die auf der 5%-Fraktion einer Species-Sensitivity-Distribution beruhen, eigneten sich am besten, gefolgt von Toxic Unit-Ansätzen, die auf der sensitivsten Art einer Gemeinschaft oder Daphnia magna beruhen. 4 Contents Chapter 1: Introduction and objectives ...................................................................................... 7 1.1. Chemicals in the aquatic environment ............................................................................ 7 1.2. Environmental monitoring via bioassessment ............................................................... 10 1.3. Trait based bioindicators ............................................................................................... 11 1.4. Ecological risk assessment ............................................................................................ 12 1.5. Bioindicators in practice ................................................................................................ 15 1.6. Research questions and aim of the thesis ...................................................................... 16 1.7. References ..................................................................................................................... 19 Chapter 2: “How to characterize chemical exposure to predict ecologic effects on aquatic communities?” .......................................................................................................................... 24 2.1. Abstract ......................................................................................................................... 25 2.2. Introduction ................................................................................................................... 25 2.3. Material and methods .................................................................................................... 27 2.3.1. Study selection and description .............................................................................. 27 2.3.2. Calculation of exposure metrics ............................................................................. 29 2.3.3. Processing of acute toxicity data ............................................................................ 32 2.3.4. Data analysis .......................................................................................................... 33 2.4. Results ........................................................................................................................... 34 2.5. Discussion ..................................................................................................................... 35 2.5.1. Composition of toxicant mixtures .......................................................................... 35 2.5.2. Is Daphnia magna a sufficiently good benchmark for toxicity? ............................ 36 2.5.3. How should mixture toxicity be considered? ......................................................... 40 2.5.4. Potential limitations and outlook ............................................................................ 41 2.6. Acknowledgements ......................................................................................................