Pollination Biology of Astragalus Phoenix (Fabaceae) with Notes on the Natural History of Its Pollinator, Anthophora Porterae (Hymenoptera: Apidae)

Total Page:16

File Type:pdf, Size:1020Kb

Pollination Biology of Astragalus Phoenix (Fabaceae) with Notes on the Natural History of Its Pollinator, Anthophora Porterae (Hymenoptera: Apidae) Western North American Naturalist Volume 73 Number 3 Article 10 10-21-2013 Pollination biology of Astragalus phoenix (Fabaceae) with notes on the natural history of its pollinator, Anthophora porterae (Hymenoptera: Apidae) David A. Tanner University of North Texas at Dallas, Dallas, TX, [email protected] Catherine Clark Utah State University, Logan, UT, [email protected] James P. Pitts Utah State University, Logan, UT, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Tanner, David A.; Clark, Catherine; and Pitts, James P. (2013) "Pollination biology of Astragalus phoenix (Fabaceae) with notes on the natural history of its pollinator, Anthophora porterae (Hymenoptera: Apidae)," Western North American Naturalist: Vol. 73 : No. 3 , Article 10. Available at: https://scholarsarchive.byu.edu/wnan/vol73/iss3/10 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 73(3), © 2013, pp. 373–381 POLLINATION BIOLOGY OF ASTRAGALUS PHOENIX (FABACEAE) WITH NOTES ON THE NATURAL HISTORY OF ITS POLLINATOR, ANTHOPHORA PORTERAE (HYMENOPTERA: APIDAE) David A. Tanner1,3, Catherine Clark2, and James P. Pitts2 ABSTRACT.—Astragalus (Fabaceae) is a broadly distributed, diverse, and economically important group of plants. Given the number of species and its distribution, it is not surprising that there are many species that are highly restricted and endangered. Among these is the Ash Meadows milkvetch, Astragalus phoenix. Here we investigate the breeding biology of As. phoenix. Our data show that As. phoenix is xenogamous and that Anthophora porterae (Hymenoptera: Apidae) is the most likely pollinator. We also noticed Apis mellifera visiting As. phoenix, though it appears unlikely that Ap. mellifera contributes significantly to the reproductive success of As. phoenix. We located a nesting aggregation of An. porterae and offer a description of its nest architecture. RESUMEN.—Astragalus (Fabaceae) es un grupo de plantas con amplia distribución, muy diverso y de gran importancia económica. Debido a la cantidad de especies y a su distribución, no es sorprendente que muchas especies estén restrin- gidas y en peligro de extinción. Entre dichas especies se encuentran Astragalus phoenix, cuya reproducción estudiamos en esta investigación. La información que obtuvimos muestra que As. phoenix es una especie alógama y que lo más pro- bable es que Anthophora porterae (Hymenoptera: Apidae) sea el polinizador. Observamos que Apis mellifera visitó a As. phoenix, aunque parece poco probable que contribuya significativamente al éxito reproductivo de As. phoenix. Localiza- mos un conjunto de nidos de An. porterae, y ofrecemos una descripción de la estructura de sus nidos. Astragalus (Fabaceae), known as milkvetch, Given the relative size and distribution of this is a large genus with a global distribution genus, it is not surprising that there are many (Frodin 2004). Astragalus is most diverse in geographically restricted and endangered spe - montane regions, such as the Andes Moun- cies of Astragalus (Baskin et al. 1972, Sugden tains, western North America, and the Sino- 1985, Karron 1987, 1989, Gallardo et al. 1993, Himalayan region (Allen and Allen 1981, Isely Geer and Tepedino 1993, Geer et al. 1995, All- 1998). The global impact of Astragalus is 2- phin et al. 2005, Tepedino 2005). Among these fold. Firstly, the family Fabaceae is second is the Ash Meadows milkvetch, Astragalus only to the grasses in economic importance phoenix Barneby. (Watrous and Cane 2011). It is an important Astragalus phoenix appears to be restricted source of ground cover, forage for livestock, to Ash Meadows National Wildlife Refuge, and food crops (reviewed in Allen and Allen which is located east of California’s Death Val- 1981), although some species known as “loco - ley and represents a relatively rare habitat, the weeds” are toxic to livestock (e.g., James et al. desert wetlands (Haller et al. 1992). A series of 1970). Secondly, Astragalus has ecological im - ephemeral streams and natural springs and a portance as forage for many native and in - high water table keep much of Ash Meadows’ troduced pollinators, particularly bees (Green soils wet throughout the year and cause salts and Bohart 1975, Krombein et al. 1979, Clem - to precipitate and form a thick crust over ent et al. 2006). Additionally, Astragalus is much of the soil. Given the rarity of this habi- currently targeted as a species of importance tat, it is not surprising that Ash Meadows for rehabilitating poorly managed rangeland houses many endemic and endangered organ- (Shaw et al. 2005). isms, including the Devil’s Hole pupfish, Cy - Astragalus also occupies a unique position prinodon diabolis (Wales), which is the ver - in the taxonomy of plants. It is the most spe - tebrate with the most restricted habitat in cies rich of all plant genera, with approxi- the world (Knight and Clemmer 1987). In - mately 3200 described species (Frodin 2004). deed, Ash Meadows has a greater number of 1Department of Life and Health Sciences, University of North Texas at Dallas, Dallas, TX 75241. 2Department of Biology, Utah State University, Logan, UT 84322. 3E-mail: [email protected] 373 374 WESTERN NORTH AMERICAN NATURALIST [Volume 73 endemic species than do similar habitats that geographically restricted species, such as also occur within the Mojave Desert (Haller As. phoenix, are likely to be self compatible et al. 1992). Among these endemic species be cause propagules that are dispersed long are many rare plants, which some argue war- distances stand a better chance of generating rant government protection, including the sexually viable populations if they are capable threatened species As. phoenix (Beatley 1977a, of self fertilization (Baker 1955, 1967, Allard 1977b, 1977c). et al. 1968, Jain 1976, Lande and Schemske Astragalus phoenix was discovered by C.A. 1985). Additionally, if the population size of Purpus in 1898, collected again in 1966 the rare species fluctuates significantly, self by A. Cronquist, and described by Barneby compatibility will be favored when the popu- (1970). Astragalus phoenix is a long-lived, low- lation size is small (Baker 1955, Stebbins growing, mat-forming perennial composed of 1957, Baker 1967, Allard et al. 1968, Jain spreading branches that form large mounds 1976, Lande and Schemske 1985, Schemske (Knight and Clemmer 1987). Each branch and Lande 1985). Interestingly, As. phoenix may terminate in 1, 2, or 3 flowers. The flow- does not fit either of these criteria; the only ers are 2–2.5 cm long, pink-purple shortly known populations of As. phoenix are in Ash after bloom, and purple once the flower be - Meadows, suggesting that recent dispersal gins to fade (Knight and Clemmer 1987). The events are unlikely. Secondly, As. phoenix is a fruit is small (rarely more than 2 cm long and perennial plant, and there seems to be high 1 cm wide); entirely covered in thick, grayish survivorship between seasons. Consequently, pubescence; and contains approximately 30 there is little yearly variation in population size. seeds (Knight and Clemmer 1987). Astraga - The origins of As. phoenix rarity are un - lus phoenix is officially listed as “threatened” clear. Nevertheless, it may be unlikely that As. and is restricted to the hard alkaline soils in phoenix will become more common if repro- Ash Meadows (Linhart and Grant 1996); it is ductive success is at least partially dependent commonly associated with Distichlis spicata on pollinator services. Previous work on Astra- (L.) Greene (saltgrass), Atriplex confertifolia galus has shown that restricted species receive (Torr. and Frém) S. Watson (shadscale salt- less pollinator attention than sympatric, wide- bush), Mentzelia leucophylla Brandegee (Ash spread congeners (Karron 1987). Other stud- Meadows blazingstar, another plant endemic ies have shown, however, that sympatry be - to Ash Meadows), and Isocoma acradenia tween rare and broadly distributed species (Greene) Green var. acradenia (alkali golden- may facilitate pollination of rare plants be - bush; Knight and Clemmer 1987). cause little fidelity is shown by the pollinators Currently, very little is known about the between plant species (Geer et al. 1995). breeding biology of As. phoenix. A recent This study addresses questions regarding review of the breeding biology of Astragalus the reproductive biology of As. phoenix and showed that there is significant variability the nesting biology of insects that pollinate it. across the genus ranging from autogamous to Namely, we tested the ability of As. phoenix xenogamous (Watrous and Cane 2011). Fur- for autogamy through a series of pollinator ther, this review showed that there is little exclusion experiments. Secondly, we observed relationship between the rarity of the plant the insects that visit As. phoenix. Based on and its degree of autogamy (Watrous and behavioral and pollen load analyses, we deter- Cane 2011). It should be mentioned, however, mined which of the insects offers pollination that the breeding biology is known for <1% services and deduced natural history
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • California Vegetation Map in Support of the DRECP
    CALIFORNIA VEGETATION MAP IN SUPPORT OF THE DESERT RENEWABLE ENERGY CONSERVATION PLAN (2014-2016 ADDITIONS) John Menke, Edward Reyes, Anne Hepburn, Deborah Johnson, and Janet Reyes Aerial Information Systems, Inc. Prepared for the California Department of Fish and Wildlife Renewable Energy Program and the California Energy Commission Final Report May 2016 Prepared by: Primary Authors John Menke Edward Reyes Anne Hepburn Deborah Johnson Janet Reyes Report Graphics Ben Johnson Cover Page Photo Credits: Joshua Tree: John Fulton Blue Palo Verde: Ed Reyes Mojave Yucca: John Fulton Kingston Range, Pinyon: Arin Glass Aerial Information Systems, Inc. 112 First Street Redlands, CA 92373 (909) 793-9493 [email protected] in collaboration with California Department of Fish and Wildlife Vegetation Classification and Mapping Program 1807 13th Street, Suite 202 Sacramento, CA 95811 and California Native Plant Society 2707 K Street, Suite 1 Sacramento, CA 95816 i ACKNOWLEDGEMENTS Funding for this project was provided by: California Energy Commission US Bureau of Land Management California Wildlife Conservation Board California Department of Fish and Wildlife Personnel involved in developing the methodology and implementing this project included: Aerial Information Systems: Lisa Cotterman, Mark Fox, John Fulton, Arin Glass, Anne Hepburn, Ben Johnson, Debbie Johnson, John Menke, Lisa Morse, Mike Nelson, Ed Reyes, Janet Reyes, Patrick Yiu California Department of Fish and Wildlife: Diana Hickson, Todd Keeler‐Wolf, Anne Klein, Aicha Ougzin, Rosalie Yacoub California
    [Show full text]
  • U·M·I University Microfilms International a 8Ell & Howell Information Company 300 North Zeeb Road
    Patterns of homoplasy in North American Astragalus L. (Fabaceae). Item Type text; Dissertation-Reproduction (electronic) Authors Sanderson, Michael John. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 10/10/2021 18:39:52 Link to Item http://hdl.handle.net/10150/184764 INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UIVn a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • IP Athos Renewable Energy Project, Plan of Development, Appendix D.2
    APPENDIX D.2 Plant Survey Memorandum Athos Memo Report To: Aspen Environmental Group From: Lehong Chow, Ironwood Consulting, Inc. Date: April 3, 2019 Re: Athos Supplemental Spring 2019 Botanical Surveys This memo report presents the methods and results for supplemental botanical surveys conducted for the Athos Solar Energy Project in March 2019 and supplements the Biological Resources Technical Report (BRTR; Ironwood 2019) which reported on field surveys conducted in 2018. BACKGROUND Botanical surveys were previously conducted in the spring and fall of 2018 for the entirety of the project site for the Athos Solar Energy Project (Athos). However, due to insufficient rain, many plant species did not germinate for proper identification during 2018 spring surveys. Fall surveys in 2018 were conducted only on a reconnaissance-level due to low levels of rain. Regional winter rainfall from the two nearest weather stations showed rainfall averaging at 0.1 inches during botanical surveys conducted in 2018 (Ironwood, 2019). In addition, gen-tie alignments have changed slightly and alternatives, access roads and spur roads have been added. PURPOSE The purpose of this survey was to survey all new additions and re-survey areas of interest including public lands (limited to portions of the gen-tie segments), parcels supporting native vegetation and habitat, and windblown sandy areas where sensitive plant species may occur. The private land parcels in current or former agricultural use were not surveyed (parcel groups A, B, C, E, and part of G). METHODS Survey Areas: The area surveyed for biological resources included the entirety of gen-tie routes (including alternates), spur roads, access roads on public land, parcels supporting native vegetation (parcel groups D and F), and areas covered by windblown sand where sensitive species may occur (portion of parcel group G).
    [Show full text]
  • Fremontia Journal of the California Native Plant Society
    $10.00 (Free to Members) VOL. 40, NO. 3 AND VOL. 41, NO. 1 • SEPTEMBER 2012 AND JANUARY 2013 FREMONTIA JOURNAL OF THE CALIFORNIA NATIVE PLANT SOCIETY INSPIRATIONINSPIRATION ANDAND ADVICEADVICE FOR GARDENING VOL. 40, NO. 3 AND VOL. 41, NO. 1, SEPTEMBER 2012 AND JANUARY 2013 FREMONTIA WITH NATIVE PLANTS CALIFORNIA NATIVE PLANT SOCIETY CNPS, 2707 K Street, Suite 1; Sacramento, CA 95816-5130 FREMONTIA Phone: (916) 447-CNPS (2677) Fax: (916) 447-2727 Web site: www.cnps.org Email: [email protected] VOL. 40, NO. 3, SEPTEMBER 2012 AND VOL. 41, NO. 1, JANUARY 2013 MEMBERSHIP Membership form located on inside back cover; Copyright © 2013 dues include subscriptions to Fremontia and the CNPS Bulletin California Native Plant Society Mariposa Lily . $1,500 Family or Group . $75 Bob Hass, Editor Benefactor . $600 International or Library . $75 Rob Moore, Contributing Editor Patron . $300 Individual . $45 Plant Lover . $100 Student/Retired/Limited Income . $25 Beth Hansen-Winter, Designer Cynthia Powell, Cynthia Roye, and CORPORATE/ORGANIZATIONAL Mary Ann Showers, Proofreaders 10+ Employees . $2,500 4-6 Employees . $500 7-10 Employees . $1,000 1-3 Employees . $150 CALIFORNIA NATIVE STAFF – SACRAMENTO CHAPTER COUNCIL PLANT SOCIETY Executive Director: Dan Gluesenkamp David Magney (Chair); Larry Levine Finance and Administration (Vice Chair); Marty Foltyn (Secretary) Dedicated to the Preservation of Manager: Cari Porter Alta Peak (Tulare): Joan Stewart the California Native Flora Membership and Development Bristlecone (Inyo-Mono): Coordinator: Stacey Flowerdew The California Native Plant Society Steve McLaughlin Conservation Program Director: Channel Islands: David Magney (CNPS) is a statewide nonprofit organi- Greg Suba zation dedicated to increasing the Rare Plant Botanist: Aaron Sims Dorothy King Young (Mendocino/ understanding and appreciation of Vegetation Program Director: Sonoma Coast): Nancy Morin California’s native plants, and to pre- Julie Evens East Bay: Bill Hunt serving them and their natural habitats Vegetation Ecologists: El Dorado: Sue Britting for future generations.
    [Show full text]
  • Reproductive Ecology of Astragalus Filipes, a Great Basin
    REPRODUCTIVE ECOLOGY OF ASTRAGALUS FILIPES, A GREAT BASIN RESTORATION LEGUME by Kristal M. Watrous A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biology Approved: ________________________ _______________________ James H. Cane Edward W. Evans Major Professor Committee Member ________________________ _______________________ Eugene W. Schupp Byron R. Burnham Committee Member Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2010 ii ABSTRACT Reproductive Ecology of Astragalus filipes, a Great Basin Restoration Legume by Kristal M. Watrous, Master of Science Utah State University, 2010 Major Professor: Dr. James H. Cane Department: Biology Astragalus filipes Torrey ex. A. Gray (Fabaceae) is being studied and propagated for use in rangeland restoration projects throughout the Great Basin. Restoration forbs often require sufficient pollination services for seed production and persistence in restoration sites. Knowledge of a plant’s breeding biology is important in providing pollination for maximal seed set. Reproductive output from four manual pollination treatments (autogamy, geitonogamy, xenogamy, and distant xenogamy) was examined in a common garden. Pod set, seed set, and seed germination were quantified for each of the treatments. Seed set from four wild populations was compared to that of an openly visited common garden array. A. filipes was found to be self-compatible, but to benefit greatly from outcrossing. Less seed germinated from distantly outcrossed treatments than for any other treatment, indicating possible outbreeding depression. Common garden plants set less seed per pod than any wild population, possibly due to a depauperate pollinator guild in the common garden. iii Bees were surveyed at wild A. filipes populations to identify common pollinators.
    [Show full text]
  • November 2009 an Analysis of Possible Risk To
    Project Title An Analysis of Possible Risk to Threatened and Endangered Plant Species Associated with Glyphosate Use in Alfalfa: A County-Level Analysis Authors Thomas Priester, Ph.D. Rick Kemman, M.S. Ashlea Rives Frank, M.Ent. Larry Turner, Ph.D. Bernalyn McGaughey David Howes, Ph.D. Jeffrey Giddings, Ph.D. Stephanie Dressel Data Requirements Pesticide Assessment Guidelines Subdivision E—Hazard Evaluation: Wildlife and Aquatic Organisms Guideline Number 70-1-SS: Special Studies—Effects on Endangered Species Date Completed August 22, 2007 Prepared by Compliance Services International 7501 Bridgeport Way West Lakewood, WA 98499-2423 (253) 473-9007 Sponsor Monsanto Company 800 N. Lindbergh Blvd. Saint Louis, MO 63167 Project Identification Compliance Services International Study 06711 Monsanto Study ID CS-2005-125 RD 1695 Volume 3 of 18 Page 1 of 258 Threatened & Endangered Plant Species Analysis CSI 06711 Glyphosate/Alfalfa Monsanto Study ID CS-2005-125 Page 2 of 258 STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS The text below applies only to use of the data by the United States Environmental Protection Agency (US EPA) in connection with the provisions of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) No claim of confidentiality is made for any information contained in this study on the basis of its falling within the scope of FIFRA §10(d)(1)(A), (B), or (C). We submit this material to the United States Environmental Protection Agency specifically under the requirements set forth in FIFRA as amended, and consent to the use and disclosure of this material by EPA strictly in accordance with FIFRA. By submitting this material to EPA in accordance with the method and format requirements contained in PR Notice 86-5, we reserve and do not waive any rights involving this material that are or can be claimed by the company notwithstanding this submission to EPA.
    [Show full text]
  • Recovery Plan for the Endangered and Threatened Species of Ash Meadows, Nevada
    RECOVERY PuN FOR THE ENDANGERED AND THREATENED SPECIES OF AsH MEADows, NEVADA Prepared by Don W. Sada U.S. Fish and Wildlife Service Reno, Nevada RECOVERY PLAN FOR THE ENDANGERED AND THREATENED SPECIES OF ASH MEADOWS, NEVADA Prepared By Don W. Sada U.S. Fish and Wildlife Service Reno, Nevada for the U.S. Fish and Wildlife Service Portland, Oregon ~FP2 3 ‘:XN Date This plan covers the following federally listed species in Ash Meadows, Nevada and California: Devil’s Hole pupfish, Warm Springs pupfish, Ash Meadows Arnargosa pupfish, Ash Meadows speckled dace, Ash Meadows naucorid, Ash Meadows blazing star, Ash Meadows ivesia, Ainargosa niterwort, Spring-loving centaury, Ash Meadows sunray, Ash Meadows inilk-vetch, and Ash Meadows guxnplant. THIS IS THE COMPLETED ASH MEADOWS SPECIES RECOVERY PLAN. IT HAS BEEN APPROVED BY THE U.S. FISH AND WILDLIFE SERVICE. IT DOES NOT NECESSARILY REPRESENT OFFICIAL POSITIONS OR APPROVALS OF COOPERATING AGENCIES (AND IT DOES NOT NECESSARILY REPRESENT THE VIEWS OF ALL INDIVIDUALS) WHO PLAYED THE KEY ROLE IN PREPARING THIS PLAN. THIS PLAN IS SUBJECT TO MODIFICATION AS DICTATED BY NEW FINDINGS AND CHANGES IN SPECIES STATUS, AND COMPLETION OF TASKS DESCRIBED IN THE PLAN. GOALS AND OBJECTIVES WILL BE ATTAINED AND FUNDS EXPENDED CONTINGENT UPON APPROPRIATIONS, PRIORITIES, AND OTHER BUDGETARY CONSTRAINTS. LITERATURE CITATION SHOULD READ AS FOLLOWS U.S. Fish and Wildlife Service. 1990. Recovery plan for the endangered and threatened species of Ash Meadows, Nevada. U.S. Fish and Wildlife Service, Portland, Oregon. 123 pp. Additional copies may be obtained from Fish and Wildlife Reference Service 5430 Grosvenor Lane, Suite 110 Bethesda, Maryland 20814 Telephone: 301-492-6403 1-800-582-3421 : ACKNOWLEDGMENTS: This plan results from the efforts of many who spent considerable time and energy to prevent the destruction of Ash Meadows and the extinction of its diverse endemic biota.
    [Show full text]
  • Annotated Checklist of Vascular Flora, Bryce
    National Park Service U.S. Department of the Interior Natural Resource Program Center Annotated Checklist of Vascular Flora Bryce Canyon National Park Natural Resource Technical Report NPS/NCPN/NRTR–2009/153 ON THE COVER Matted prickly-phlox (Leptodactylon caespitosum), Bryce Canyon National Park, Utah. Photograph by Walter Fertig. Annotated Checklist of Vascular Flora Bryce Canyon National Park Natural Resource Technical Report NPS/NCPN/NRTR–2009/153 Author Walter Fertig Moenave Botanical Consulting 1117 W. Grand Canyon Dr. Kanab, UT 84741 Sarah Topp Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 Editing and Design Alice Wondrak Biel Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 January 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientifi c community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifi cally credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. The Natural Resource Technical Report series is used to disseminate the peer-reviewed results of scientifi c studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. The reports provide contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations.
    [Show full text]
  • Astragalus Lentiginosus Var. Coachellae
    Evaluating the Biological Conservation Status of the Coachella Valley Milkvetch (Astragalus lentiginosus var. coachellae) Robert J. Meinke, Kelly Amsberry, Rebecca E. Currin, Stephen C. Meyers, and Brian Knaus Native Plant Conservation Program OREGON DEPARTMENT OF AGRICULTURE Oregon Department of Agriculture NATIVE PLANT CONSERVATION PROGRAM NATIVE PLANT CONSERVATION PROGRAM and Department of Botany & Plant Pathology Oregon State University, Corvallis October, 2007 EXECUTIVE SUMMARY The Coachella Valley milkvetch (Astragalus lentiginosus var. coachellae) is a federally-listed endangered taxon, restricted to a highly active sand dune environment near the eastern base of the San Jacinto Mountains in the western Sonoran Desert. A recent assessment confirms that var. coachellae is endemic to the Coachella Valley, and that reported populations from the Desert Center area (disjunct ca. 75 km to the east) actually represent A. lentiginosus var. variabilis. Much of the range of A. lentiginosus var. coachellae overlaps the cities of Palm Springs, Cathedral City, and other nearby communities, where remaining populations are threatened by the effects of urbanization and habitat fragmentation. A Habitat Conservation Plan (HCP; in preparation) is expected to place several of the more significant remaining sites within administratively protected reserve areas located outside the urban core. However, little information has been available that describes the natural history and ecological status of Coachella Valley milkvetch populations, and specific management plans have yet to be developed. The current study (conducted in 2005 and 2006) corroborates earlier reports that var. coachellae exhibits a labile life history correlated with annual precipitation, in which short-lived perennials loosely dominate the less arid, northern end of the range and annuals are more prevalent in the drier south.
    [Show full text]