Hydrodynamics of the Bose-Einstein Condensate According to the Gross-Pitaevskii Theory
Total Page:16
File Type:pdf, Size:1020Kb
Hydrodynamics of the Bose-Einstein condensate according to the Gross-Pitaevskii theory Author: Agisilaos Papatheodorou Supervisor: Ch.C. Moustakidis, Assosiate Professor Department of Physics, Aristotle University of Thessaliniki February 13, 2020 Abstract We consider a dilute and ultra-cold bosonic gas of particles. Within the framework of statistical physics, we derive the thermodynamic equations that dictate the gas's behavior for non-interacting par- ticles. With the use of quantum mechanics the addition of inter- particle interaction through s-wave scattering is possible obtain- ing the Gross-Pitaevskii equation. By investigating the weakly- interacting boson gas's characteristics we define it's size and shape. Lastly we draw a connection from the quantum mechanical equa- tions to those of fluid dynamics and we utilize these hydrodynamic properties to examine the gas's behavior and attributes. i PerÐlhyh O σκοπός αυτής thc ergasÐac eÐnai h αναπαραγωγή thc sta- tisτικής jewrÐac kai thc jewrÐac Gross-Pitaevskii gia thn pe- rigrafή twn idioτήτwn ενός sumpukn¸matoc Bose-Einstein. Ta sumpukn¸mata Bose-Einstein eÐnai mÐa μορφή ύlhc apoτελούμε- nh από swmatÐdia me akèraia τιμή κβαντικού ariθμού idiostro- φορμής, λεγόμενα μποζόnia, ta opoÐa èqoun yuqjeÐ se jermo- krasÐec kontά se αυτή tou apόlutou μηδενός. Ta swmatÐdia autά, kaj¸c h jermokrasÐa teÐnei na mhdenisteÐ, ωθούντai ma- ζικά sthn βασική touc ενεργειακή katάσtash gegoνός όpou katasteÐ εύφορη mÐa plhj¸ra kbantik¸n fainomènwn upaÐtia gia thn αλλαγή twn idioτήτwn tou ulikoύ. Melet¸ntac thn allhlepÐdrash se upoatομική klÐmaka twn swmatidÐwn όπou apoτελούν to mpozoνικό aèrio se qamhlèc jermokrasÐec sto- χεύουμε sthn παραγωγή twn αξιωμάτwn pou dièpoun tic ιδιόth- tec tou sumpukn¸matoc Bose-Einstein. Αυτή h diadikasÐa apo- dÐdei montèla ta opoÐa diakrÐnontai se aèria mpozonÐwn ta opo- Ða den αλληλεπιδρούν metαξύ touc kai se aèria mpozonÐwn όπου αλληλεπιδρούν metαξύ touc. To montèlo mh-allhlepidr¸ntwn swmatidÐwn me akèraia idiosτροφορμή, to opoÐo eÐnai to pr¸to όπου anaparάγουμε se αυτή thn ergasÐa, αναπτύχθηκε από touc Satyendra Nath Bose kai Albert Einstein en èth 1924, mèsw thc jewrÐac thc statisτικής φυσικής. 'Eqei wc stόqo thn periγραφή thc συμπεριφοράς twn mh-allhlepidr¸ntwn kai mh-diakrit¸n mpozonÐwn katά thn αλλαγή thc jermokrasÐac tou aerÐou. Qrhsimopoi¸ntac statistikèc exis¸sewn gia thn perigrafή thc ενεργειακής katανομής twn mpozonÐkwn sw- matidÐwn, eÐnai δυνατή h εξαγωγή twn jermodunamik¸n exi- s¸sewn pou periγράφουν èna συμπύκνωμα apoτελούμενο a- po tètoia swmatÐdia. H εξάρτηση twn makroskopik¸n poso- τήτwn tou sumpukn¸matoc από thn jermokrasÐa parèqei mia pr¸th εικόna gia thn φύση tou susτήματoc wstόσο παράγει kai asunèqeiec sto shmeÐo metάβασης tou aerÐou από thn fu- sioloγική tou katάσtash se αυτή tou sumpukn¸matoc mpo- zonÐwn. Me σκοπό thn èntaxh twn swmatidiak¸n allhlepi- ii δράσεων, gegoνός όπου εδράζετai sthn pragmatikόthta, a- ναπτύσουμε mèsa apό kbantomhqanikèc exis¸seic thn jewrÐa Gross-Pitaevskii kai thn sunoνόματη exÐswsh. To δυναμικό al- lhlepÐdrashc pou qrhsimopoiούμε eÐnai autό thc skèdashc δύο swmatidÐwn gia μηδενική sτροφορμή, to opoÐo kai upologÐzou- me gia tic αλληλεπιδράσειc metαξύ κάθε mpozonÐou tou sumpu- kn¸matoc me κάθε allό sto Ðdio σύσthma swmatidÐwn. H λύση thc μη-γραμμικής diaforikèc exÐswshc Gross-Pitaevskii, pou προκύπτει, kajistά perÐplokh kai δυσνόητη thn peraitèrw a- νάλυση thc αναλυτικής λύσης tou sumpukn¸matoc. Gia na ξεπεράσουμε autό to εμπόδιo qrhsimopoiούμε prosseggÐseic όπως h Thomas-Fermi prosèggish, gegoνός pou epitrèpei ton prosdioriσμό twn qarakthristik¸n tou sumpukn¸matoc όπως to mègejoc kai thn συνεκτικόthta ston q¸ro tou. Ta axi¸ma- iii ta αυτής thc prosèggishc basÐzontai ston auxhmèno ariθμό swmatidÐwn entός tou sumpukn¸matoc όπως kai thn elaqi- stopoihmènh jermokrasÐa gia na apλοποιήσουν thn exÐswsh Gross-Pitaevskii afair¸ntac ton όρο thc kiνητικής enèrgeiac twn mpozonik¸n swmatidÐwn. 'Eqontac εξάγei tic sqèseic pou kajorÐzoun ta βασικά qarakthrisτηκά megèjh ενός aerÐou al- lhpedr¸ntwn mpozonÐwn, παράγουμε tic aparaÐthtec udrodu- namikèc exis¸seic gia thn periγραφή thc kÐnhshc ενός sumpu- kn¸matoc ston q¸ro wc reustό, mèsw thc kumatοσυνάρτη- shc tou susτήματoc swmatidÐwn όποu to apoτελούν. Basi- ζόμενοι sta παραπάνω meletούμε thn διάδοση twn mhqanik¸n κυμάτwn entός tou sumpukn¸matoc, όπου παρατηρούμε fai- νόμενα upèrreusthc συμπεριφοράς. To apotèlesma to opoÐo mac odhgeÐ se autό to sumpèrasma eÐnai h metaboλή thc ener- γειακής εξάρτησης se sqèsh me to kumatοδιάνυσμα thc ορμής twn swmatidÐwn από τετραγωνική εξάρτηση se gramμική. To sumpèrasma autό brÐsketai se sumfwnÐa me tic peiramatikèc μετρήσειc, όσοn αφορά thn uperreustόthta yugmènwn mpozo- nÐwn, me ta pr¸ta peirάμata se sqèsh me autό to faiνόμενο na eÐnai autό tou Pyotr Kapitsa kai tou John F. Allen oi opo- iv Ðoi xeqwristά παρατήρησαν upèrreusth συμπεριφορά se υγρό ήλιo, en èth 1938. Me thn ανάλυση Gross-Pitaevskii aitiologe- Ðtai αυτή h upèrreusth μακροσκοπικής klÐmakac συμπεριφορά arqÐzontac από upoatομικής klÐmakac swmatidiakèc allhle- πιδράσειc prosjètontac βασικό θεωρητικό υπόβαθρο gia thn πλήρη katανόηση tou fainomènou. Tèloc axioloγούμε thn je- wrÐa Gross-Pitaevskii wc ergaleÐo melèthc συμπυκνωμάτwn a- ntiparajètontάς thn me progenèsterec όπως kai metagenèste- rec jewrÐec kai anadÐdontac thn sumboλή thc sthn θεωρητική kai πειραματική φυσική. v Introduction The Bose-Einstein condensate is a state of matter of bosonic par- ticles cooled to near absolute zero temperature. These conditions drive a large fraction of the subatomic particles to the ground en- ergy state and perplex their wavefunctions. These microscopic quantum phenomena translate into different macroscopic proper- ties as superconductivity and superfluidity. The Gross-Pitaevskii theory, developed by Eugene P. Gross and Lev Petrovich Pitaevskii in 1961, is a theoretical model based on the Hartee-Fock approxi- mation which approximately describes a Bose-Einstein condensate of interacting bosons in their ground state through a pseudopo- tential. This theory is able to produce a non-linear differential equation called the Gross-Pitaevskii equation for the whole con- densate. This allows for hydrodynamic equations to be extracted and further theoretical analysis of the phenomenon. vi CONTENTS Contents Abstract i PerÐlhyh ii Introduction vi 1 General Information 1 1.1 Historical Context . 1 1.2 Bose-Einstein condensation criteria . 3 1.3 Bose-Einstein distribution . 3 1.4 Generalized density of states . 5 1.4.1 Free particle density of states . 5 1.4.2 Harmonic-Oscillator density of states . 6 1.5 Bosonic interaction . 7 1.5.1 Scattering length . 7 1.5.2 Effective interaction . 9 1.6 Hartee-Fock approximation . 11 1.7 Fermion condensates - Cooper pairs . 11 2 Bose-Einstein condensation statistics 13 2.1 Transition temperature . 13 2.2 Condensed fraction . 14 2.3 Thermodynamic Quantities . 15 2.3.1 Condensed phase . 15 2.3.2 Normal phase . 17 2.3.3 Continuity close to the transition temperature . 18 3 Gross-Pitaevskii theory 20 3.1 Gross-Pitaevskii equation . 20 3.2 Cloud of trapped bosons in their ground state . 23 3.2.1 Thomas-Fermi approximation . 23 3.2.2 Healing of the condensate . 26 3.3 Non-Zero temperatures . 28 4 Hydrodynamics of the condensate 30 4.1 Hydrodynamic equations . 30 4.2 Time-dependent Gross-Pitaevskii equation . 30 vii LIST OF FIGURES 4.3 Derivation of the Hydrodynamic equations . 31 4.3.1 Continuity equation . 31 4.3.2 Momentum conservation equation . 32 4.4 Condensate sound-waves . 33 5 Conclusion 37 List of Figures 1 (Provided by: Wikipedia)Electrical impedance of mercury in low temperatures. 2 2 (Provided by: Wikimedia Commons)Distribution functions of Fermi-Dirac and Bose-Einstein statistics. 5 3 (Vladimir V. Meshkov, Andrey V. Stolyarov, Robert J Le Roy, Rapid, accurate calculation of the s-wave scattering length, 2011) The wave-function in comparison to the two particles distance during s-wave scattering. 9 4 (Karmela Padavi´c,Cooper Pairs, Superconductivity and Flash Mobs, 2018) Electrons forming a Cooper pair through a crys- talline lattice. 12 5 (Matthew J. Davis: Microcanonical temperature for a classical field: Application to Bose-Einstein condensation, 2003)The specific heat C as a function of T , for different values of a. 19 Tc 6 (Cornell group, 2010) BEC under rapid rotation according to the Gross-Pitaevskii equations. 24 7 (Carlo F. Barenghi, Introduction to quantised vortices and turbulence) The distance from the rigid wall in comparison to the wave-function, where the healing or coherence length is denoted a0 instead of ξ as in our calculations. 28 8 (Clement Jones, Paul H. Roberts, Motions in a Bose con- densate. IV. Axisymmetric solitary waves, 1982) Energy to momentum-wave vector spectrum, where the dotted line is the small value ~q contribution and the continuous one the high value ~q contribution. 35 viii 1 General Information 1.1 Historical Context The first experimental evidence of BEC1 came from Kammerlingh Onnes2 of Holland's Leiden University. Onnes was the first to liquify Helium at 4.14 kelvin in 1908 following his famous tutor's, Johannes Van der Waals, work on the equation of state of real gasses. He later did further studies involving different properties of metals such as mercury, tin and lead in extremely low temperatures, of around 1 degree kelvin, and especially aimed his attention at electrical impedance which was thought to tend to infinity as the temper- ature drops to zero. This was based on the hypothesis that electrons move through the conductor