International Journal of Modern Physics D c World Scientific Publishing Company NEUTRON STARS IN THE LABORATORY VANESSA GRABER1;2
[email protected] NILS ANDERSSON1
[email protected] MICHAEL HOGG1 1Mathematical Sciences and STAG Research Centre, University of Southampton Southampton SO17 1BJ, United Kingdom 2Department of Physics and McGill Space Institute, McGill University, 3550 rue University, Montreal, QC, H3A 2T8, Canada Received Day Month Year Revised Day Month Year Neutron stars are astrophysical laboratories of many extremes of physics. Their rich phe- nomenology provides insights into the state and composition of matter at densities which cannot be reached in terrestrial experiments. Since the core of a mature neutron star is expected to be dominated by superfluid and superconducting components, observations also probe the dynamics of large-scale quantum condensates. The testing and under- standing of the relevant theory tends to focus on the interface between the astrophysics phenomenology and nuclear physics. The connections with low-temperature experiments tend to be ignored. However, there has been dramatic progress in understanding labo- ratory condensates (from the different phases of superfluid helium to the entire range of superconductors and cold atom condensates). In this review, we provide an overview of these developments, compare and contrast the mathematical descriptions of laboratory condensates and neutron stars and summarise the current experimental state-of-the-art. arXiv:1610.06882v2 [astro-ph.HE] 1 Mar 2017 This discussion suggests novel ways that we may make progress in understanding neutron star physics using low-temperature laboratory experiments. Keywords: PACS numbers: Contents 1. Neutron Stars and Fundamental Physics .