[Physics.Hist-Ph] 13 Nov 2006 Mn U Olauswoddntwn Ihteeiesi Mind in Ideas Histor for the These with to About Superfluidity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Book of Abstracts
Book of Abstracts 3 Foreword The 23 rd International Conference on Atomic Physics takes place in Ecole Polytechnique, a high level graduate school close to Paris. Following the tradition of ICAP, the conference presents an outstanding programme of invited VSHDNHUVFRYHULQJWKHPRVWUHFHQWVXEMHFWVLQWKH¿HOGRIDWRPLFSK\VLFVVXFKDV Ultracold gases and Bose Einstein condensates, Ultracold Fermi gases, Fundamental atomic tests and measurements, Precision measurements, atomic clocks and interferometers, Quantum information and simulations with atoms and ions, Quantum optics and cavity QED with atoms, Atoms and molecules in optical lattices, From two-body to many-body systems, Ultrafast phenomena and free electron lasers, Beyond atomic physics (biophysics, optomechanics...). The program includes 31 invited talks and 13 ‘hot topic’ talks. This book of abstracts gathers the contributions of these talks and of all posters, organized in three sessions. The proceedings of the conference will be published online in open access by the “European 3K\VLFDO-RXUQDO:HERI&RQIHUHQFHV´KWWSZZZHSMFRQIHUHQFHVRUJ On behalf of the committees, we would like to welcome you in Palaiseau, and to wish you an excit- ing conference. 4 Committees Programme committee Alain Aspect France Michèle Leduc France Hans Bachor Australia Maciej Lewenstein Spain Vanderlei Bagnato Brazil Anne L’Huillier Sweden Victor Balykin Russia Luis Orozco USA Rainer Blatt Austria Jian-Wei Pan China Denise Caldwell USA Hélène Perrin France Gordon Drake Canada Monika Ritsch-Marte Austria Wolfgang Ertmer Germany Sandro Stringari Italy Peter Hannaford Australia Regina de Vivie-Riedle Germany Philippe Grangier France Vladan Vuletic USA Massimo Inguscio Italy Ian Walmsley UK Hidetoshi Katori Japan Jun Ye USA Local organizing committee Philippe Grangier (co-chair) Institut d’Optique - CNRS Michèle Leduc (co-chair) ENS - CNRS Hélène Perrin (co-chair) U. -
Aleksei A. Abrikosov 1928–2017
Aleksei A. Abrikosov 1928–2017 A Biographical Memoir by M. R. Norman ©2018 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. ALEKSEI ALEKSEEVICH ABRIKOSOV June 25, 1928–March 29, 2017 Elected to the NAS, 2000 Shortly after the 2003 announcement that Aleksei Abrikosov had won the Nobel Prize in Physics, a number of colleagues took Alex to lunch at a nearby Italian restau- rant. During lunch, one of the Russian visitors exclaimed that Alex should get a second Nobel Prize, this time in Literature for his famous “AGD” book with Lev Gor’kov and Igor Dzyaloshinskii (Methods of Quantum Field Theory in Statistical Physics.) Somewhat taken aback, I looked closely at this individual and realized that he was deadly serious. Although I could imagine the reaction of the Nobel Literature committee to such a book (for a lay person, perhaps analogous to trying to read Finnegan’s Wake), I had to admit that my own copy of this book is quite dog-eared, having been put to good use over the By M. R. Norman years. In fact, you know you have made it in physics when your book gets a Dover edition. One of the most charming pictures I ever saw was a rare drawing in color that Alexei Tsvelik did (commissioned by Andrei Varlamov for Alex’s 50th birthday) that was proudly displayed in Alex’s home in Lemont, IL. It showed Alex with his fingers raised in a curled fashion as in the habit of medieval Popes. -
CURRICULUM VITAE SANDRO STRINGARI Born in Italy on March
CURRICULUM VITAE SANDRO STRINGARI Born in Italy on March 2nd, 1949 Married with two daughters. Italian citizenship EDUCATION, MAIN APPOINTMENTS AND AWARDS 1972 Laurea in Physics cum laude at the Università di Pisa and Scuola Normale Superiore 1972/1973 Fellowship at the Scuola Normale Superiore 1973-1976 Research assistant at the Università di Trento 1976 Visiting scientist at the Department of Theoretical Physics, Oxford (6 months) 1976-1980 Assistant professor at the Università di Trento 1978/1979 CNRS visitor at the Institute de Physique Nucleaire, Orsay 1980-1990 Associate professor at the Università di Trento 1985/1986 CNRS visitor at the Institute de Physique Nucleaire, Orsay 1990 Visiting scientist at the Laue-Langevin Institute, Grenoble (1 month) 1990 Full professor at the Università di Trento 2002 M.T. Messori Roncaglia and E. Mari prize of the Accademia dei Lincei 2002 Visiting professor at the Ecole Normale Superieure, Paris (1 month) 2004/2005 European Chair at the College de France, Paris 2007 Visiting professor at the Institut Henri Poincaré, Paris (1 month) 2008 Visiting professor at the Center for Ultracold Atoms, MIT-Harvard (2 months) ORGANIZATION ACTIVITIES (selection) 1992-1995 Chairman of the Physics Department, Università di Trento 1996/1997 Vice-Rector of the Università di Trento 1996-2000 National coordinator of the INFM Project "Experimental and Theoretical Investigation of Bose-Einstein Condensation in Alkali Atoms” 2002 Director of the INFM Research and Development BEC Center 2006 Member of the Evaluation Committee -
Fritz London a Scientific Biography
Fritz London a scientific biography Kostas Gavroglu University of Athens, Greece CAMBRIDGE UNIVERSITY PRESS Contents Preface page xni Acknowledgements xxi 1 From philosophy to physics 1 The years that left nothing unaffected 2 The appeal of ideas 5 Goethe as a scientist 7 How absolute is our knowledge? 8 Acquiring knowledge 10 London's teachers in philosophy: Alexander Pfander and Erich Becher 11 Husserl's teachings 12 Abhorrence of reductionist schemata 14 The philosophy thesis 15 Tolman's principle of similitude 23 The necessary clarifications 25 Work on quantum theory 26 Transformation theory 28 Unsuccessful attempts at unification 31 2 The years in Berlin and the beginnings of quantum chemistry 38 The mysterious bond 39 London in Zurich 42 Binding forces 44 The Pauli exclusion principle 48 [ix] X FRITZ LONDON The early years in Berlin 49 Reactions to the Heitler—London paper 51 Polyelectronic molecules and the application of group theory to problems of chemical valence 53 Chemists as physicists? 57 London's first contacts in Berlin 59 Marriage 61 Job offers 64 Intermolecular forces 66 The book which could not be written 69 Leningrad and Rome 71 Difficulties with group theory 74 Linus Pauling's resonance structures 75 Robert Mulliken's molecular orbitals 78 Trying to save what could not be saved 82 3 Oxford and superconductivity 96 The rise of the Nazis 97 The changes at the University 102 Going to Oxford 105 Lindemann, Simon and Heinz London 106 Electricity in the very cold 110 The end of old certainties 113 The thermodynamic treatment -
Arxiv:1610.06882V2 [Astro-Ph.HE] 1 Mar 2017
International Journal of Modern Physics D c World Scientific Publishing Company NEUTRON STARS IN THE LABORATORY VANESSA GRABER1;2 [email protected] NILS ANDERSSON1 [email protected] MICHAEL HOGG1 1Mathematical Sciences and STAG Research Centre, University of Southampton Southampton SO17 1BJ, United Kingdom 2Department of Physics and McGill Space Institute, McGill University, 3550 rue University, Montreal, QC, H3A 2T8, Canada Received Day Month Year Revised Day Month Year Neutron stars are astrophysical laboratories of many extremes of physics. Their rich phe- nomenology provides insights into the state and composition of matter at densities which cannot be reached in terrestrial experiments. Since the core of a mature neutron star is expected to be dominated by superfluid and superconducting components, observations also probe the dynamics of large-scale quantum condensates. The testing and under- standing of the relevant theory tends to focus on the interface between the astrophysics phenomenology and nuclear physics. The connections with low-temperature experiments tend to be ignored. However, there has been dramatic progress in understanding labo- ratory condensates (from the different phases of superfluid helium to the entire range of superconductors and cold atom condensates). In this review, we provide an overview of these developments, compare and contrast the mathematical descriptions of laboratory condensates and neutron stars and summarise the current experimental state-of-the-art. arXiv:1610.06882v2 [astro-ph.HE] 1 Mar 2017 This discussion suggests novel ways that we may make progress in understanding neutron star physics using low-temperature laboratory experiments. Keywords: PACS numbers: Contents 1. Neutron Stars and Fundamental Physics . -
The London Equations Aria Yom Abstract: the London Equations Were the First Successful Attempt at Characterizing the Electrodynamic Behavior of Superconductors
The London Equations Aria Yom Abstract: The London Equations were the first successful attempt at characterizing the electrodynamic behavior of superconductors. In this paper we review the motivation, derivation, and modification of the London equations since 1935. We also mention further developments by Pippard and others. The shaping influences of experiments on theory are investigated. Introduction: Following the discovery of superconductivity in supercooled mercury by Heike Onnes in 1911, and its subsequent discovery in various other metals, the early pioneers of condensed matter physics were faced with a mystery which continues to be unraveled today. Early experiments showed that below a critical temperature, a conventional conductor could abruptly transition into a superconducting state, wherein currents seemed to flow without resistance. This motivated a simple model of a superconductor as one in which charges were influenced only by the Lorentz force from an external field, and not by any dissipative interactions. This would lead to the following equation: 푚 푑퐽 = 퐸 (1) 푛푒2 푑푡 Where m, e, and n are the mass, charge, and density of the charge carriers, commonly taken to be electrons at the time this equation was being considered. In the following we combine these variables into a new constant both for convenience and because the mass, charge, and density of the charge carriers are often subtle concepts. 푚 Λ = 푛푒2 This equation, however, seems to imply that the crystal lattice which supports superconductivity is somehow invisible to the superconducting charges themselves. Further, to suggest that the charges flow without friction implies, as the Londons put it, “a premature theory.” Instead, the Londons desired a theory more in line with what Gorter and Casimir had conceived [3], whereby a persistent current is spontaneously generated to minimize the free energy of the system. -
The Original Remark of Fritz London in 1938 ' Linking the Phenomenon of Superfluidity in He II with Boee-Einetein Con
IC/65A63 INTERNAL REPORT (Limited distribution) The original remark of Fritz London in 1938 ' linking the phenomenon of superfluidity in He II with Boee-Einetein con- •-International Atomic Energy Agency densation ( BEC ) has inspired a great deal of theory and ana experiment. On the other hand, the excitation spectrum was put I '!:-f. .Uni,ted^.Kati>ifis Educational Scientific and Cultural Organization on a solid microscopic basis by the remarkable variational 2 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS calculation of Peynman and Cohen ( PC ), which connected the excitation Bpectrum with the dynamic structure factor obtained from inelastic neutron acatteringt and at the same BIOPHYSICS AND THE MICROSCOPIC THEORY OF He II * time pointed out the relevance of backflow. In spite of the importance of the FC variational calculation, which was later J. Chela-Florea ** improved upon by the Monte Carlo calculation of the excitation International Centre for Theoretical Physics, Trieste, Italy spectrum of He II, a few questions remain unanswered. Chief among these are: and (a) What ie the microscopic nature of He II? In particular, H.B. Ghassit what is the nature of the roton? Department of Physics, University of Jordan, Amman, Jordan (b) Are there any new excitations contributing to the disper- and International Centre for Theoretical Physics, Trieste, Italy sion relation? (c) How good is the PC wave function? (d) What is the connection between BEC and superfluidity? ABSTRACT The difficulty in obtaining completely satisfactory ans- Bose-Einstein condensation and solitonic propagation have recently wers to the above questions lieB partly in two experimental teen uhovn to be intimately related in "biosysteras. -
Sandro Stringari Books and Main Review Papers: Main Edited Books
Sandro Stringari Books and main review papers: Theory of ultracold atomic Fermi gases Stefano Giorgini, Lev P. Pitaevskii, Sandro Stringari, cond-mat/0706.3360, to appear in Rev. Mod. Phys. (2008) Bose-Einstein Condensation Lev Pitaevskii and Sandro Stringari, Int. Series of Monographs on Physics (Oxford University Press) 2003 Theory of Bose-Einstein condensation in trapped gases Franco Dalfovo, Stefano Giorgini, Lev Pitaesvkii and Sandro Stringari, Reviews of Modern Physics 71 , 463 (1999) Sum Rules and Giant Resonances in Nuclei E. Lipparini and S. Stringari, Physics Reports 175, 103 (1989) Main edited books Bose Einstein Condensation in atomic gases Proceedings of the 1998 E. Fermi Summer School held in Varenna, M. Inguscio, S. Stringari and C. Weiman eds.(IOS Press, Amsterdam, 1999) Bose Einstein Condensation Proceedings of the 1993 international workshop held in Levico, A. Griffin, D. Snoke and S. Stringari eds. (Cambridge University Press, 1995) Publications 2008 Collisional properties of a polarized Fermi gas with resonant interactions G.M. Bruun, A. Recati, C.J. Pethcick, H. Smith and S. Stringari, arXiv:0804.1885 , Phys. Rev. Lett. The role of interactions in spin-polarized atomic Fermi gases at unitarity A. Recati, C. Lobo and S. Stringari, cond-mat/0803.4419, Phys. Rev. A Theory of ultracold atomic Fermi gases Stefano Giorgini, Lev P. Pitaevskii, Sandro Stringari, cond-mat/0706.3360, to appear in Rev. Mod. Phys. (2008) Destroying superfluidity by rotating a fermi gas at unitarity , I. Bausmerth, A. Recati and S. Stringari, Phys. Rev. Lett.. 100 070401 (2008) Tkachenko modes in a superfluid Fermi gas at unitarity Gentaro Watanabe, Marco Cozzini, and Sandro Stringari, Phys. -
50 Years of BCS Theory “A Family Tree” Ancestors BCS Descendants
APS March Meeting 2007 50 Years of BCS Theory “A Family Tree” Ancestors BCS Descendants D. Scalapino: Ancestors and BCS J. Rowell : A “tunneling” branch of the family G. Baym: From Atoms and Nuclei to the Cosmos Supraconductivity 1911 H. Kamerlingh Onnes `(Gilles Holst) finds a sudden drop in the resistance of Hg at ~ 4.2K. R(ohms) T 1933 Meissner and Ochsenfeld discover that superconductors are perfect diamagnets --flux expulsion Robert Ochsenfeld 1901 - 1993 Phenomenolog` y • 1934 Casimir and Gorter ‘s two-fluid phenomenological model of thermodynamic properties. • 1934 Heinz and Fritz London’s phenomenological electrodynamics. F. London’s suggestion of the rigidity of the wave function. • 1948 Fritz London, “Quantum mechanics on a macroscopic scale, long range order in momentum.” Fritz London (1900-1954) 1950 Ginzburg-Landau Theory n∗ ! e∗ β f(x) = Ψ(x) + A(x)Ψ(x) 2 + α Ψ(x) 2 + Ψ(x) 4 2m∗ | i ∇ c | | | 2 | | β +α Ψ(x) 2 + Ψ(x) 4 | | 2 | | V. Ginzburg L. Landau 1957 Type II Superconductivity Aleksei Abrikosov But the question remained: “How does it work?” R.P. Feynman ,1956 Seattle Conference But the question remained: “How does it work?” A long list of the leading theoretical physicists in the world had taken up the challenge of developing a microscopic theory of superconductivity. A.Einstein,“Theoretische Bemerkungen zur Supraleitung der Metalle” Gedenkboek Kamerlingh Onnes, p.435 ( 1922 ) translated by B. Schmekel cond-mat/050731 “...metallic conduction is caused by atoms exchanging their peripheral electrons. It seems unavoidable that supercurrents are carried by closed chains of molecules” “Given our ignorance of quantum mechanics of composite systems, we are far away from being able to convert these vague ideas into a theory.” Felix Bloch is said to have joked that ”superconductivity is impossible”. -
MARTIN J. KLEIN June 25, 1924–March 28, 2009
NATIONAL ACADEMY OF SCIENCES M ARTIN J. KLEIN 1 9 2 4 – 2 0 0 9 A Biographical Memoir by DIANA K O R M O S - B U CHW ALD AND JED Z . B U C HW ALD Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2011 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. MARTIN J. KLEIN June 25, 1924–March 28, 2009 BY DIANA K O R M O S - B U CHWALD AND J ED Z . B UCHW ALD ARTIN JESSE KLEIN, PHYSICIST AND HISTORIAN, died on March M28, 2009, at his home in Chapel Hill, North Carolina. Known to many as “Marty,” Klein was among the foremost historians of science worldwide, a beloved teacher, colleague, and friend, who in his many writings in the history of physics set an unparalleled model of deep, critical, and empathetic understanding of science and scientists. Klein was born on June 25, 1924, in New York City, the only child of Adolph and Mary Klein, both schoolteachers. At age 14, Klein graduated from the James Monroe High School in the South Bronx, where he had struck up a lifelong, close friendship with Leon M. Lederman. Both became students at Columbia University, from which Klein graduated with a bachelor’s degree in mathematics in 1942 and a master’s degree in physics in 1944. “He was way younger than me; it was embarrassing,” Lederman remembered. “He won most of the awards at graduation: the chemistry prize, the history prize, English composition. -
Leonid Keldysh Federico Capasso, Paul Corkum, Olga Kocharovskaya, Lev Pitaevskii, and Michael V
Leonid Keldysh Federico Capasso, Paul Corkum, Olga Kocharovskaya, Lev Pitaevskii, and Michael V. Sadovskii Citation: Physics Today 70, 6, 75 (2017); doi: 10.1063/PT.3.3605 View online: https://doi.org/10.1063/PT.3.3605 View Table of Contents: https://physicstoday.scitation.org/toc/pto/70/6 Published by the American Institute of Physics ARTICLES YOU MAY BE INTERESTED IN Spartak Timofeevich Belyaev Physics Today 70, 72 (2017); https://doi.org/10.1063/PT.3.3602 Mildred S. Dresselhaus Physics Today 70, 73 (2017); https://doi.org/10.1063/PT.3.3603 Anthony Philip French Physics Today 70, 74 (2017); https://doi.org/10.1063/PT.3.3604 Hidden worlds of fundamental particles Physics Today 70, 46 (2017); https://doi.org/10.1063/PT.3.3594 The new Moon Physics Today 70, 38 (2017); https://doi.org/10.1063/PT.3.3593 Magnetic monopole search, past and present Physics Today 70, 12 (2017); https://doi.org/10.1063/PT.3.3571 became the chief lecturer and manager Leonid Keldysh Early in his career, in 1957–58, of a course taken by more than 500 Keldysh predicted an electric-field- MIT students. Subsequently, he became eonid Keldysh, a world-prominent induced shift of a semiconductor’s ab- associate head. L Russian theoretical physicist, passed sorption edge, now known as the Franz– The acronym for French’s course be- away from pneumonia on 11 Novem- Keldysh effect. It turned out to be of came notorious. French said, “I called it, ber 2016 in Moscow. He was one of the paramount importance in the develop- blandly, ‘Physics: A New Introductory most imaginative and influential physi- ment of a powerful spectroscopic tech- Course.’ . -
The Discovery of Superfluidity Sebastien Balibar
The discovery of superfluidity Sebastien Balibar To cite this version: Sebastien Balibar. The discovery of superfluidity. 2006. hal-00113242 HAL Id: hal-00113242 https://hal.archives-ouvertes.fr/hal-00113242 Preprint submitted on 11 Nov 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The discovery of superfluidity S´ebastien Balibar∗ Laboratoire de Physique Statistique de l’Ecole Normale Sup´erieure associ´eaux Universit´es Paris 6 et 7 et au CNRS 24 Rue Lhomond, 75231 Paris Cedex 05, France Superfluidity is a remarkable manifestation of quantum mechanics at the macroscopic level. This article describes the history of its discovery, which took place at a particularly difficult period of the twentieth century. A special emphasis is given to the role of J.F. Allen, D. Misener, P. Kapitza, F. London, L. Tisza and L.D. Landau. The nature and the importance of their respective contributions are analyzed and compared. Of particular interest is the controversy between Landau on one side, London and Tisza on the other, concerning the relevance of Bose-Einstein condensation to the whole issue, and also on the nature of thermal excitations in superfluid helium 4.