MARTIN J. KLEIN June 25, 1924–March 28, 2009
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Philosophical Rhetoric in Early Quantum Mechanics, 1925-1927
b1043_Chapter-2.4.qxd 1/27/2011 7:30 PM Page 319 b1043 Quantum Mechanics and Weimar Culture FA 319 Philosophical Rhetoric in Early Quantum Mechanics 1925–27: High Principles, Cultural Values and Professional Anxieties Alexei Kojevnikov* ‘I look on most general reasoning in science as [an] opportunistic (success- or unsuccessful) relationship between conceptions more or less defined by other conception[s] and helping us to overlook [danicism for “survey”] things.’ Niels Bohr (1919)1 This paper considers the role played by philosophical conceptions in the process of the development of quantum mechanics, 1925–1927, and analyses stances taken by key participants on four main issues of the controversy (Anschaulichkeit, quantum discontinuity, the wave-particle dilemma and causality). Social and cultural values and anxieties at the time of general crisis, as identified by Paul Forman, strongly affected the language of the debate. At the same time, individual philosophical positions presented as strongly-held principles were in fact flexible and sometimes reversible to almost their opposites. One can understand the dynamics of rhetorical shifts and changing strategies, if one considers interpretational debates as a way * Department of History, University of British Columbia, 1873 East Mall, Vancouver, British Columbia, Canada V6T 1Z1; [email protected]. The following abbreviations are used: AHQP, Archive for History of Quantum Physics, NBA, Copenhagen; AP, Annalen der Physik; HSPS, Historical Studies in the Physical Sciences; NBA, Niels Bohr Archive, Niels Bohr Institute, Copenhagen; NW, Die Naturwissenschaften; PWB, Wolfgang Pauli, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg a.o., Band I: 1919–1929, ed. A. Hermann, K.V. -
Albert Einstein
THE COLLECTED PAPERS OF Albert Einstein VOLUME 15 THE BERLIN YEARS: WRITINGS & CORRESPONDENCE JUNE 1925–MAY 1927 Diana Kormos Buchwald, József Illy, A. J. Kox, Dennis Lehmkuhl, Ze’ev Rosenkranz, and Jennifer Nollar James EDITORS Anthony Duncan, Marco Giovanelli, Michel Janssen, Daniel J. Kennefick, and Issachar Unna ASSOCIATE & CONTRIBUTING EDITORS Emily de Araújo, Rudy Hirschmann, Nurit Lifshitz, and Barbara Wolff ASSISTANT EDITORS Princeton University Press 2018 Copyright © 2018 by The Hebrew University of Jerusalem Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA (Revised for volume 15) Einstein, Albert, 1879–1955. The collected papers of Albert Einstein. German, English, and French. Includes bibliographies and indexes. Contents: v. 1. The early years, 1879–1902 / John Stachel, editor — v. 2. The Swiss years, writings, 1900–1909 — — v. 15. The Berlin years, writings and correspondence, June 1925–May 1927 / Diana Kormos Buchwald... [et al.], editors. QC16.E5A2 1987 530 86-43132 ISBN 0-691-08407-6 (v.1) ISBN 978-0-691-17881-3 (v. 15) This book has been composed in Times. The publisher would like to acknowledge the editors of this volume for providing the camera-ready copy from which this book was printed. Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed in the United States of America 13579108642 INTRODUCTION TO VOLUME 15 The present volume covers a thrilling two-year period in twentieth-century physics, for during this time matrix mechanics—developed by Werner Heisenberg, Max Born, and Pascual Jordan—and wave mechanics, developed by Erwin Schrödinger, supplanted the earlier quantum theory. -
Shs-17-2018-14.Pdf
Science beyond borders Nobukata Nagasawa ORCID 0000-0002-9658-7680 Emeritus Professor of University of Tokyo [email protected] On social and psychological aspects of a negligible reception of Natanson’s article of 1911 in the early history of quantum statistics Abstract Possible reasons are studied why Ladislas (Władysław) Natanson’s paper on the statistical theory of radiation, published in 1911 both in English and in the German translation, was not cited properly in the early history of quantum statistics by outstanding scientists, such as Arnold Sommerfeld, Paul Ehrenfest, Satyendra Nath Bose and Albert Einstein. The social and psychological aspects are discussed as back- ground to many so far discussions on the academic evaluation of his theory. In order to avoid in the future such Natansonian cases of very limited reception of valuable scientific works, it is pro- posed to introduce a digital tag in which all the information of PUBLICATION e-ISSN 2543-702X INFO ISSN 2451-3202 DIAMOND OPEN ACCESS CITATION Nagasawa, Nobukata 2018: On social and psychological aspects of a negligible reception of Natanson’s article of 1911 in the early history of quantum statistics. Studia Historiae Scientiarum 17, pp. 391–419. Available online: https://doi.org/10.4467/2543702XSHS.18.014.9334. ARCHIVE RECEIVED: 13.06.2017 LICENSE POLICY ACCEPTED: 12.09.2018 Green SHERPA / PUBLISHED ONLINE: 12.12.2018 RoMEO Colour WWW http://www.ejournals.eu/sj/index.php/SHS/; http://pau.krakow.pl/Studia-Historiae-Scientiarum/ Nobukata Nagasawa On social and psychological aspects of a negligible reception... relevant papers published so far should be automatically accu- mulated and updated. -
Fritz London a Scientific Biography
Fritz London a scientific biography Kostas Gavroglu University of Athens, Greece CAMBRIDGE UNIVERSITY PRESS Contents Preface page xni Acknowledgements xxi 1 From philosophy to physics 1 The years that left nothing unaffected 2 The appeal of ideas 5 Goethe as a scientist 7 How absolute is our knowledge? 8 Acquiring knowledge 10 London's teachers in philosophy: Alexander Pfander and Erich Becher 11 Husserl's teachings 12 Abhorrence of reductionist schemata 14 The philosophy thesis 15 Tolman's principle of similitude 23 The necessary clarifications 25 Work on quantum theory 26 Transformation theory 28 Unsuccessful attempts at unification 31 2 The years in Berlin and the beginnings of quantum chemistry 38 The mysterious bond 39 London in Zurich 42 Binding forces 44 The Pauli exclusion principle 48 [ix] X FRITZ LONDON The early years in Berlin 49 Reactions to the Heitler—London paper 51 Polyelectronic molecules and the application of group theory to problems of chemical valence 53 Chemists as physicists? 57 London's first contacts in Berlin 59 Marriage 61 Job offers 64 Intermolecular forces 66 The book which could not be written 69 Leningrad and Rome 71 Difficulties with group theory 74 Linus Pauling's resonance structures 75 Robert Mulliken's molecular orbitals 78 Trying to save what could not be saved 82 3 Oxford and superconductivity 96 The rise of the Nazis 97 The changes at the University 102 Going to Oxford 105 Lindemann, Simon and Heinz London 106 Electricity in the very cold 110 The end of old certainties 113 The thermodynamic treatment -
PAUL SOPHUS EPSTEIN March 20, 1883-February 8, 1966
NATIONAL ACADEMY OF SCIENCES P AUL SOPHUS E PSTEIN 1883—1966 A Biographical Memoir by J E S S E W . M . D UMOND Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1974 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. PAUL SOPHUS EPSTEIN March 20, 1883-February 8, 1966 BY JESSE W. M. DuMOND AUL SOPHUS EPSTEIN was one of the group of prominent and P very gifted mathematical physicists whose insight, creative originality, and willingness to abandon accepted classical con- cepts brought about that veritable revolution in our under- standing of nature which may be said to have created "modern physics," i.e., the physics which has been widely accepted during the Twentieth Century. Paul Epstein's name is closely associ- ated with those of that group, such as H. A. Lorentz, Albert Einstein, H. Minkowski, J. J. Thomson, E. Rutherford, A. Sommerfeld, W. C. Rontgen, Max von Laue, Niels Bohr, L. de Broglie, Paul Ehrenfest, and Karl Schwarzschild. Paul Epstein was born in 1883 in Warsaw, which was then a part of Russia. His parents, Siegmund Simon Epstein, a busi- nessman, and Sarah Sophia (Lurie) Epstein, were of a moder- ately well-to-do Jewish family. He himself has told how, when he was but four years old, his mother recognized his potential mathematical gifts and predicted that he was going to be a mathematician. After receiving his secondary education in the Humanistic Hochschule of Minsk (Russia), he entered the school of physics and mathematics of the Imperial University of Moscow in 1901. -
The London Equations Aria Yom Abstract: the London Equations Were the First Successful Attempt at Characterizing the Electrodynamic Behavior of Superconductors
The London Equations Aria Yom Abstract: The London Equations were the first successful attempt at characterizing the electrodynamic behavior of superconductors. In this paper we review the motivation, derivation, and modification of the London equations since 1935. We also mention further developments by Pippard and others. The shaping influences of experiments on theory are investigated. Introduction: Following the discovery of superconductivity in supercooled mercury by Heike Onnes in 1911, and its subsequent discovery in various other metals, the early pioneers of condensed matter physics were faced with a mystery which continues to be unraveled today. Early experiments showed that below a critical temperature, a conventional conductor could abruptly transition into a superconducting state, wherein currents seemed to flow without resistance. This motivated a simple model of a superconductor as one in which charges were influenced only by the Lorentz force from an external field, and not by any dissipative interactions. This would lead to the following equation: 푚 푑퐽 = 퐸 (1) 푛푒2 푑푡 Where m, e, and n are the mass, charge, and density of the charge carriers, commonly taken to be electrons at the time this equation was being considered. In the following we combine these variables into a new constant both for convenience and because the mass, charge, and density of the charge carriers are often subtle concepts. 푚 Λ = 푛푒2 This equation, however, seems to imply that the crystal lattice which supports superconductivity is somehow invisible to the superconducting charges themselves. Further, to suggest that the charges flow without friction implies, as the Londons put it, “a premature theory.” Instead, the Londons desired a theory more in line with what Gorter and Casimir had conceived [3], whereby a persistent current is spontaneously generated to minimize the free energy of the system. -
The Original Remark of Fritz London in 1938 ' Linking the Phenomenon of Superfluidity in He II with Boee-Einetein Con
IC/65A63 INTERNAL REPORT (Limited distribution) The original remark of Fritz London in 1938 ' linking the phenomenon of superfluidity in He II with Boee-Einetein con- •-International Atomic Energy Agency densation ( BEC ) has inspired a great deal of theory and ana experiment. On the other hand, the excitation spectrum was put I '!:-f. .Uni,ted^.Kati>ifis Educational Scientific and Cultural Organization on a solid microscopic basis by the remarkable variational 2 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS calculation of Peynman and Cohen ( PC ), which connected the excitation Bpectrum with the dynamic structure factor obtained from inelastic neutron acatteringt and at the same BIOPHYSICS AND THE MICROSCOPIC THEORY OF He II * time pointed out the relevance of backflow. In spite of the importance of the FC variational calculation, which was later J. Chela-Florea ** improved upon by the Monte Carlo calculation of the excitation International Centre for Theoretical Physics, Trieste, Italy spectrum of He II, a few questions remain unanswered. Chief among these are: and (a) What ie the microscopic nature of He II? In particular, H.B. Ghassit what is the nature of the roton? Department of Physics, University of Jordan, Amman, Jordan (b) Are there any new excitations contributing to the disper- and International Centre for Theoretical Physics, Trieste, Italy sion relation? (c) How good is the PC wave function? (d) What is the connection between BEC and superfluidity? ABSTRACT The difficulty in obtaining completely satisfactory ans- Bose-Einstein condensation and solitonic propagation have recently wers to the above questions lieB partly in two experimental teen uhovn to be intimately related in "biosysteras. -
Wolfgang Pauli 1900 to 1930: His Early Physics in Jungian Perspective
Wolfgang Pauli 1900 to 1930: His Early Physics in Jungian Perspective A Dissertation Submitted to the Faculty of the Graduate School of the University of Minnesota by John Richard Gustafson In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Advisor: Roger H. Stuewer Minneapolis, Minnesota July 2004 i © John Richard Gustafson 2004 ii To my father and mother Rudy and Aune Gustafson iii Abstract Wolfgang Pauli's philosophy and physics were intertwined. His philosophy was a variety of Platonism, in which Pauli’s affiliation with Carl Jung formed an integral part, but Pauli’s philosophical explorations in physics appeared before he met Jung. Jung validated Pauli’s psycho-philosophical perspective. Thus, the roots of Pauli’s physics and philosophy are important in the history of modern physics. In his early physics, Pauli attempted to ground his theoretical physics in positivism. He then began instead to trust his intuitive visualizations of entities that formed an underlying reality to the sensible physical world. These visualizations included holistic kernels of mathematical-physical entities that later became for him synonymous with Jung’s mandalas. I have connected Pauli’s visualization patterns in physics during the period 1900 to 1930 to the psychological philosophy of Jung and displayed some examples of Pauli’s creativity in the development of quantum mechanics. By looking at Pauli's early physics and philosophy, we gain insight into Pauli’s contributions to quantum mechanics. His exclusion principle, his influence on Werner Heisenberg in the formulation of matrix mechanics, his emphasis on firm logical and empirical foundations, his creativity in formulating electron spinors, his neutrino hypothesis, and his dialogues with other quantum physicists, all point to Pauli being the dominant genius in the development of quantum theory. -
50 Years of BCS Theory “A Family Tree” Ancestors BCS Descendants
APS March Meeting 2007 50 Years of BCS Theory “A Family Tree” Ancestors BCS Descendants D. Scalapino: Ancestors and BCS J. Rowell : A “tunneling” branch of the family G. Baym: From Atoms and Nuclei to the Cosmos Supraconductivity 1911 H. Kamerlingh Onnes `(Gilles Holst) finds a sudden drop in the resistance of Hg at ~ 4.2K. R(ohms) T 1933 Meissner and Ochsenfeld discover that superconductors are perfect diamagnets --flux expulsion Robert Ochsenfeld 1901 - 1993 Phenomenolog` y • 1934 Casimir and Gorter ‘s two-fluid phenomenological model of thermodynamic properties. • 1934 Heinz and Fritz London’s phenomenological electrodynamics. F. London’s suggestion of the rigidity of the wave function. • 1948 Fritz London, “Quantum mechanics on a macroscopic scale, long range order in momentum.” Fritz London (1900-1954) 1950 Ginzburg-Landau Theory n∗ ! e∗ β f(x) = Ψ(x) + A(x)Ψ(x) 2 + α Ψ(x) 2 + Ψ(x) 4 2m∗ | i ∇ c | | | 2 | | β +α Ψ(x) 2 + Ψ(x) 4 | | 2 | | V. Ginzburg L. Landau 1957 Type II Superconductivity Aleksei Abrikosov But the question remained: “How does it work?” R.P. Feynman ,1956 Seattle Conference But the question remained: “How does it work?” A long list of the leading theoretical physicists in the world had taken up the challenge of developing a microscopic theory of superconductivity. A.Einstein,“Theoretische Bemerkungen zur Supraleitung der Metalle” Gedenkboek Kamerlingh Onnes, p.435 ( 1922 ) translated by B. Schmekel cond-mat/050731 “...metallic conduction is caused by atoms exchanging their peripheral electrons. It seems unavoidable that supercurrents are carried by closed chains of molecules” “Given our ignorance of quantum mechanics of composite systems, we are far away from being able to convert these vague ideas into a theory.” Felix Bloch is said to have joked that ”superconductivity is impossible”. -
The Handwriting's on the Wall
Focal Point The handwriting’s on the wall Lab researcher leaves his mark among the greats It’s not often a researcher is remembered in the good a speaker he is.’” Balatsky said. “Of course, I presence of Albert Einstein, Enrico Fermi, J. Robert could not eat very much, as the pressure was on.” Oppenheimer, Ernest O. Lawrence, Max Planck, John Some time later, during the questions and discussion von Neumann, or other titans of science who have that followed the colloquium, several people came up left their mark on human understanding during the to Balatsky and said they enjoyed his talk very much. past century. Along with their mark on physics, these “I didn’t see anyone out in the halls laughing, so I scientists literally left their mark on a wall—the wall of guess I did okay,” he said with signature good humor. Leiden University. “Then Jan Zaanen, the organizer, comes over with Condensed-matter theorist Alexander Balatsky recently this very fancy screwdriver and leads me to the wall,” joined a handful of Los Alamos researchers who have Balatsky recalls. “They have glass over the wall, and had the privilege of signing their names alongside the glass is held in place with these special screws. He signatures of preeminent scientists who have given removed the glass, I signed the wall, and he put the colloquia at the Lorentz Institute at Leiden University glass back up. Even though it happened very quickly, in the Netherlands. one has a sense of touching something important . Alexander Balatsky of “It is quite an honor to speak at the Institute,” Balatsky a piece of science history.” Condensed Matter and said. -
General Relativity Conflict and Rivalries
General Relativity Conflict and Rivalries General Relativity Conflict and Rivalries: Einstein's Polemics with Physicists By Galina Weinstein General Relativity Conflict and Rivalries: Einstein's Polemics with Physicists By Galina Weinstein This book first published 2015 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2015 by Galina Weinstein All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-4438-8362-X ISBN (13): 978-1-4438-8362-7 “When I accompanied him [Einstein] home the first day we met, he told me something that I heard from him many times later: ‘In Princeton they regard me as an old fool.’ (‘Hier in Princeton betrachten sie mich als einen alten Trottel’.) […] Before he was thirty-five, Einstein had made the four great discoveries of his life. In order of increasing importance they are: the theory of Brownian motion; the theory of the photoelectric effect; the special theory of relativity; the general theory of relativity. Very few people in the history of science have done half as much. […] For years he looked for a theory which would embrace gravitational, electromagnetic, and quantum phenomena. […] Einstein pursued it relentlessly through ideas which he changed repeatedly and down avenues that led nowhere. The very distinguished professors in Princeton did not understand that Einstein’s mistakes were more important than their correct results. -
The Discovery of Superfluidity Sebastien Balibar
The discovery of superfluidity Sebastien Balibar To cite this version: Sebastien Balibar. The discovery of superfluidity. 2006. hal-00113242 HAL Id: hal-00113242 https://hal.archives-ouvertes.fr/hal-00113242 Preprint submitted on 11 Nov 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The discovery of superfluidity S´ebastien Balibar∗ Laboratoire de Physique Statistique de l’Ecole Normale Sup´erieure associ´eaux Universit´es Paris 6 et 7 et au CNRS 24 Rue Lhomond, 75231 Paris Cedex 05, France Superfluidity is a remarkable manifestation of quantum mechanics at the macroscopic level. This article describes the history of its discovery, which took place at a particularly difficult period of the twentieth century. A special emphasis is given to the role of J.F. Allen, D. Misener, P. Kapitza, F. London, L. Tisza and L.D. Landau. The nature and the importance of their respective contributions are analyzed and compared. Of particular interest is the controversy between Landau on one side, London and Tisza on the other, concerning the relevance of Bose-Einstein condensation to the whole issue, and also on the nature of thermal excitations in superfluid helium 4.