<<

Non-Wood Forest Products in Europe

Ecologyand management of , tree products,understory plants andanimal products

Outcomes of theCOST Action FP1203 on EuropeanNWFPs

Edited by HARALD VACIK, MIKE HALE,HEINRICHSPIECKER, DAVIDE PETTENELLA &MARGARIDA TOMÉ Bibliographicalinformation of Deutsche Nationalbibliothek [the German National Library] Deutsche Nationalbibliothek [the German National Library] hasregisteredthispublication in theGermanNationalBibliography. Detailed bibliographicaldatamay be foundonlineathttp: //dnb.dnb.de

©2020Harald Vacik

Please cite this referenceas: Vacik, H.;Hale, M.;Spiecker,H.; Pettenella, D.;Tomé, M. (Eds)2020: Non-Wood Forest Products in Europe.Ecology andmanagementofmushrooms, tree products,understoryplantsand animal products.Outcomesofthe COST Action FP1203 on EuropeanNWFPs, BoD, Norderstedt,416p.

Coverdesign, layout,produced andpublished by:BoD –Books on Demand GmbH, In de Tarpen 42,22848 Norderstedt

ISBN:978-3-7526-7529-0 Content 5

1. Introduction...... 11 1.1Non-wood forest products...... 11 1.2Providingevidencefor NWFP collection andusage within Europe ...... 14 1.3Outline of thebook...... 15 1.4References ...... 17

2. Identificationand ecologyofNWFPspecies...... 19 2.1Introduction...... 19 2.2 Theidentification of NWFP in Europe...... 24 2.3The importance of theNWFPresource...... 30 2.3.1One specieswithmanyproducts ...... 31 2.3.2One productwithmanyspecies ...... 32 2.3.3One productwithmanyidentities ...... 33 2.4Ecologicalrequirements...... 35 2.5Conclusions ...... 39 2.6References...... 40

3. Data &models:importanceofassessing andforecasting non-wood forest products in Europe ...... 43 3.1Assessingand forecastingNWFPasatool forsustainable forest management ...... 43 3.2Anoverviewovercurrentdata on NWFP at European-level...... 47 3.2.1Analysisofthe geographical areasand thetypeofproducts more commonly inventoriedorincludedindatasets...... 47 3.2.2Aim andspatiotemporalextentofthe inventories...... 49 3.2.3Datacollectiontechniques...... 52 3.2.4Database information:length, units andavailability...... 56 3.3Anoverviewonexistingmodelsfor NWFP at Europeanlevel .....62 3.3.1Analysisofthe geographical areasand thetypeof products more commonly modelled ...... 62 3.3.2Descriptionofthe models andmethodologicalaspects ....63 3.3.3Model applications in practicalforestmanagement...... 65 3.4Identificationofgaps in knowledge...... 68 3.5Proposals, guidelines andrecommendations forthe future ...... 71 3.6References...... 73

4. Considering NWFPinmulti-purposeforestmanagement...... 79 4.1Introductiontomanagementconcepts...... 79 4.2Currentsituation regardingmanagementand regulation 6 of NWFP in Europe...... 84 4.3CurrentstatusofNWFPmanagementinEurope...... 88 4.3.1Generalmanagementapproaches...... 88 4.3.2Managementfor mushroomsand truffles...... 91 4.3.3Managementfor tree products...... 93 4.3.4Multi-purpose management of ...... 94 4.3.5ManagementofMediterranean stonepine...... 95 4.3.6ManagementofMaritimepine...... 95 4.3.7Resin production in ...... 97 4.3.8 Management of understory plants ...... 99 4.3.9Managementofgame, bird andwildanimals...... 101 4.4Options formulti-purpose management –managingNWFP with other products...... 103 4.4.1RelationofNWFPmanagement to multi-purposeforestmanagement...... 103 4.4.2Multi-purpose forest management planning at differentspatial levels in Catalonia ...... 107 4.4.3Managingoptimal co-production over temporal scales in Mediterraneanforests ...... 108 4.4.4NWFPinmulti-purpose forest management in theUkrainianCarpathians ...... 109 4.4.5Rewilding NWFP production in theNetherlands ...... 111 4.5Conclusions on NWFP management ...... 113 4.6References...... 116

5. Economics, marketing andpoliciesofNWFP...... 125 5.1Introduction...... 126 5.2NWFPproduction andconsumption monitoring: amodel example...... 129 5.2.1Forestryand theresearch on NWFP in theCzech Republic 130 5.2.2 Outputsofthe survey andtheirquality ...... 132 5.3Comparative analysisofNWFPvalue chain in SouthEastEuroperegion...... 136 5.3.1The collection of primary data ...... 137 5.3.2Researchresults...... 138 5.3.3NWFPvalue chainanalysis: thelessons learnt ...... 145 5.4Ananalysisoftrade patterns forselected NWFP ...... 146 5.4.1The European NWFP trade: an overallview...... 147 5.4.2Corktrade ...... 149 5.4.3Mushrooms trade...... 152 5.4.4Nutstrade ...... 155 5.4.5Berries trade...... 158 5.4.6Trade dependence: aproblem andanopportunity...... 162 5.5Developing NWFP:the roleofinnovation...... 162 5.5.1Innovations in NWFP...... 163 7 5.5.2The role of entrepreneurship...... 166 5.5.3The role of political-institutionalframeworks...... 167 5.5.4The role of social change ...... 171 5.5.5InnovationpatternsinEuropeanNWFP...... 173 5.5.6Support strategies forinnovations in NWFP ...... 175 5.6Promoting NWFP:branding, standardsand certification ...... 176 5.6.1BrandingofNWFP...... 177 5.6.2Mainstandards andcertificationschemes applicable to NWFP ...... 178 5.6.3Acomparativeanalysis...... 187 5.6.4Concludingconsiderations...... 188 5.7Wildgamemeatmarkets:the wild boar case in Italyand from avalue chainperspective ...... 190 5.7.1Methods forthe valuechainanalysisofthe meat markets. .192 5.7.2Meatconsumption andchainvalue: theItalian case study. .192 5.7.3Meatconsumption andchainvalue: theRomanian case study...... 196 5.7.4Wildgamemeatmarketislargely informal ...... 198 5.8 Conclusions ...... 200 5.9References...... 202

6. Mushrooms&truffles...... 213 6.1Introduction...... 214 6.2Characterizationoffungalcommunities andfungaldiversity ....220 6.2.1The useofbelowgroundcommunities to studyfruit bodyproduction ...... 221 6.2.2The useofspore trapstostudy fruitbodyproduction ....222 6.3Ecology of andtrufflespecies ...... 224 6.3.1Distributionpatternsand productivity ...... 224 6.3.2Impactofglobalchange on diversity, productivity anddistributionpatterns...... 225 6.4Towards mycosilviculture:fungaloriented forest management andplanning...... 227 6.4.1Silvicultural treatments andtheir impact on mushroom yields...... 229 6.4.1.1Thinning ...... 229 6.4.1.2Regeneration methods...... 231 6.4.1.3Pruning ...... 232 6.4.1.4Weed andshrub control...... 232 6.4.1.5Fertilization ...... 232 6.4.1.6Irrigation...... 233 6.4.1.7Prescribed burning...... 233 6.4.2Important edible commercial wild forest mushrooms. ....234 8 6.5Socioeconomylinkedtomushrooms andtruffles in ruralareas.. 237 6.6Conclusions ...... 247 6.7References...... 248

7. Non-wood tree products in Europe ...... 263 7.1Introduction...... 264 7.2Identification of non-woodtreeproductsrelevantfor Europe...264 7.3In-depthanalysisofthe most relevant non-wood tree ...... 265 7.3.1Christmas trees...... 265 7.3.2Chestnut...... 268 7.3.3Resin ...... 272 7.3.4Mediterranean nuts ...... 276 7.3.5Birch products in Finland...... 280 7.3.6Acorns...... 283 7.3.7Cork...... 285 7.4Conclusions ...... 291 7.5References ...... 292

8NWFPfromunderstoryplantsinEurope...... 305 8.1Introduction...... 305 8.2NWFPofunderstoryplantsinEuropeancountries ...... 307 8.2.1The importance andthe uses of understory plants in European countries...... 307 8.2.2The importance anduse of understory plants in Lithuania 309 8.2.3The importance anduse of understory plants in ..314 8.2.4Threats,exploitationand prospects of GreekMountainTea (Sideritis sp.) in Greece...... 316 8.3CommercialstatusofNWFPfromthe understory ...... 320 8.3.1Commercialstatusofwildharvested andcultivatedNWFPfromthe understory ...... 320 8.3.2Commercialization of medicinal andaromaticplantsinSerbia...... 324 8.4Forestgrazing by livestock...... 329 8.5Conclusions ...... 333 8.6References...... 334

9Forestproductsofanimalorigin...... 340 9.1 Introduction ...... 340 9.2Animals in theforest...... 341 9.2.1Who owns animal NWFP?...... 342 9.2.2RegulationofanimalNWFP...... 346 9.3Conservationand animalsNWFP...... 348 9.3.1Genetic conservation of exploited species ...... 349 9.3.2Exploitationtocontrol invasive species ...... 351 9 9.4Managed production of game ...... 353 9.5Managingfor game birds...... 356 9.6Official data sourcesonhunting...... 357 9.6.1Variables andsources of huntingstatistics...... 358 9.6.2Using trophy recordstotrack management objectives in theRepublicofCroatia ...... 360 9.7Re-wilding...... 362 9.8Conflict:it’snot theanimals –itisus! ...... 363 9.8.1Conflictswithforestry–examplesfromLithuania ...... 365 9.8.2Conflictswithother non-wood uses of forestsinFinland .368 9.8.3Conflictsand adaptiveinstitutions forferal goat management in GreatBritain ...... 370 9.8.4The social element in animal NWFP production ...... 372 9.9Markets forgame...... 374 9.9.1 Tradeingamemeat...... 376 9.9.2ImpactofEUmeathygieneregulations on game meat supply chains ...... 381 9.9.3EUfood safety lawfor meat...... 384 9.9.4EUfood hygienecompliantsupplychains...... 385 9.9.5Consumers’attitudetowards game meat ...... 386 9.10Forests andfisheries...... 388 9.10.1Tenureand rights...... 388 9.10.2Commercialinlandfisheries...... 390 9.11Beekeeping in theforest...... 391 9.11.1Legislation ...... 391 9.11.2Beekeeping ...... 391 9.11.3Trade in honeyand beeproducts...... 394 9.12UnderstandinganimalNWFP...... 396 9.13References...... 399

10 Conclusions...... 404 10.1 Conditions forNWFPmanagement...... 404 10.2 Importance of NWFP...... 406 10.3 Supporting themanagementofNWFP...... 407

11 Appendix ...... 410 11.1 Glossary ...... 410 11.2 Common Survey Questions: NWFP identification...... 414 11.3 List of species by NWFP category type...... 414 6. Mushrooms&truffles 213

Jose Antonio Bonet1, 7;SimonEgli 2;Irmgard Krisai-Greilhuber3;LauraBouri- aud4;CarlesCastaño 5;CarlosColinas6;Sergiode-Miguel 1, 7;TineGrebenc 8; LjijanaKeca9;Nenad Keca 10;JoaquinLatorre11;R.Louro 12;Pablo Martín- Pinto13;Juan Martínez de Aragón14;Fernando Martínez-Peña15;P.Oliveira16; J.A. Oria-de-Rueda17;TonyPla18;Celeste Santos-Silva19;Kalliopi Stara 20; Antonio Tomao21;AlexanderUrban22;EnricoVidale23;ŽeljkoZgrablic24

1. University of Lleida.Lleida,[email protected] 2. SwissFederal Research InstituteWSL.Birmensdorf, Switzerland. [email protected] 3. University of Vienna.Vienna, Austria. [email protected] 4. UniversitateaStefancel Mar. Suceava, Romania. [email protected] 5. SwedishUniversity of Agricultural Sciences.Uppsala,Sweden. [email protected] 6. University of Lleida.Lleida,[email protected] 7. JointResearch Unit CTFC-AGROTECNIO. Lleida,Spain,sergio.demiguel@ pvcf.udl.cat 8. Slovenian Forestry Institute. Ljubljana, Slovenia. [email protected] 9. University of Belgrade.Belgrade,[email protected] 10.University of Belgrade.Belgrade,[email protected] 11.CESEFOR Foundation.Soria,[email protected] 12.University of Evora. Evora, [email protected] 13.University of Valladolid.iuFOR UVa-INIA. Palencia, Spain, [email protected] 14.ForestSciencesCentreofCataloniaCTFC. Solsona,[email protected] 15.Agro-Food Research andTechnologyCentreofAragonCITA. Zaragoza, Spain. [email protected] 16.University of Evora. Evora, [email protected] 17.University of Valladolid.iuFOR UVa-INIA. Palencia, Spain, [email protected] 18.TrüffelgartenUrban &Pla OG.Unter-Oberndorf, Austria. [email protected] 19.University of Évora. Évora, [email protected] 20.University of Ioannina. Ioannina, Greece. [email protected] 21.University of Tuscia.Viterbo,[email protected] 22.University of Vienna.Vienna, Austria. [email protected] 23.University of Padua. Padova, Italy. [email protected] 24.Croatian ForestResearch Institute. Pazin, . [email protected] 6.1Introduction 214 Fungi areone of themostdiverse groups worldwide(Tedersoo et al. 2014), play- ingakey role in theecosystemfunctioning.Theirrelevance is notexclusively restricted to theirecologicalrole, butalsotothe economic potentialmainlyas afood source of theirfruit bodies. Wild forest mushroomsare amongthe most importantnon-timberforestproductsand they have been collectedand used by humansworldwide forthousandsofyears.Theyhavebeenvaluedasfood, traditionalsourceofnatural bioactivecompounds, medicine,tinder, handicrafts, cloths, ritual praxis,spiritual enlightenment, recreation andanumber of other purposes rangingfrominsecticidestosoilfertilizers(Wu et al. 2016;Yamin-Pas- ternak 2011; Peintner andPöder 2000). Archaeologicalfindings also suggestthat mushroomshavebeenused in religious ceremonies in many ancientcultures. Theirsudden appearance afterrainand thunderstorms, shortlife, polysemy andmarginalplace betweenthe pure andthe dangerousare themainreasons forconnectingthem with thesupernatural andthe spiritsworld.One of the most recognizable andwidelyencountered mushroomsinpopular cultureisthe magicred mushroom with thewhite warts, whichillustrates children books,the fly (Amanitamuscaria). It hasbeenclaimed to be thebasic componentof soma, thegood narcotic of ancientIndia,and is also knownfor itshallucinogenic andmagico-religious usebythe Siberian shamans, theMayas,the AztecIndi- and, themoderninhabitants of Mesoamerica, whileitiswellknown worldwide in moderntimes forits psychoactive properties (Schultes et al. 1992; Lowy 1974) together with other psychoactive magicmushrooms,e.g. Psilocybe spp. Fungi play also an importantrole in ourlifeasafood. Yeasts areessential for themakingofwine, breadand beer,moldsare importantfor cheese andsau- sage production,aswellasfor fermentation (Miso, Tempeh,Sufu, Soja-Sauce) whilemushrooms areknown to be used as food from archaeologicalrecords that associate edible mushroomswithpeoplewho livedinChile 13 000 years ago(Boa2004).According to Boa(2004)thereare over 200mushroomgenera, whichcontain species of usetopeopleworldwide,ofwhich 46%(atotal of 1154species recorded from 85 countries) areusedasfood, 20%havemedicinal properties andalmost10% have at presentother uses (e.g.ceremonial, as tinder, as naturaldyes). Nowadays, wild edible mushroomsare collectedand traded in more than 80 countriesworldwide.Furthermore, thereisagrowing awarenessthatmush- roomsmakeupavast,and generallyuntapped, source of newpharmaceutical products (Wu et al. 2016;Boa 2004). In Africa,almosthalfofthe countrieshave some traditionofwildediblemushroomcollection, particularly,incentral and southern regions, wheremushrooms provide anotable contribution to diets during themonthsofthe year when thefoodsupplyisextremely low. Moreover, nearly 15%ofthem also export smallquantitiesofwildediblemushrooms (e.g. cep, desert truffles, ),mainlytoEuropeancountries,suchasItaly butalsotoChina andJapan.Likewise, 45%ofAsian countriesalsopossess tra- ditionsofwildedible mushroom pickingand consumption, mainly Chinaand Russia andsurroundingcountries. Also,near20% of Asiancountries export 215 morels to nearby countriesand/ormatsutake to Japan, amajor importer of this mushroom species. Chinastandsout as theworld leadingproducer, user and exporter, mainly of matsutake and other medicinal mushrooms used in tradi- tional Chinesemedicine. RegardingAmerica,onlyfew countrieshavestrong traditions of collecting and consuming wild edible fungi, such as Mexico, Gua- temala andHonduras.Inthe United States of America(USA) andCanada,wild mushroom collection is much lower than that suggested by the vast mycologi- calknowledgeavailable andmostlycentred in thePacificNorthwest,yet,both are major exporters of matsutake to Japan. In more than 50% of all the South American countries, no information on wild pickingand con- sumption is available.Afew countries(e.g. Brazil andEcuador)doexportsmall quantities of edible mushroomslike Agaricus blazei (toJapan)and pine bolete (toUSA), whereasArgentina andChile have alocalized consumptionofmorels and/or Cyttaria spp. As forOceania,withthe exceptionofAustralia,where useful accounts of aboriginal usedoexist,fromthe greatmajorityofcountries we do nothaveinformation aboutcollectionand consumptionofwildedible mushroomsoronlyhaveweaktraditions(e.g. Fiji,New Zealandand PapuaNew Guinea). However, NewZealand hasarecognized production of Agaricus spp. and spp. (Boa 2004). InEurope, thereisalong traditionofcollectingwildediblemushrooms, mainly forself-consumption. This fact is well documented sinceRoman times, butre- cent archaeological findings(e.g. the“RedLady” of Cantabria) revealed that the consumptionofwildedible mushroomsinEuropeisolder, dating back to the Palaeolithic (Power et al. 2015). Nowadays,itisclear that most of theEuropean countriesvalue theirmycological resourcesand more than 50%havesome sort of legislationorguidelines formushroomharvesting, consumptionand commer- cialization(Peintner et al. 2013). Generally,countries fall into twocategories: first, nationswithweakeconomies,usually with asignificantlocal traditionofusing wild edible mushrooms; second,wealthier countriesthatimportbut maynot have astrongtradition of collecting.Romania is an exampleofthe first groupand theNetherlandsanexample of thesecond. Southwestern andCentral European populationsrevealamycophilic attitude andhavestrongtraditionsrelated to the consumptionofmanydifferentspecies of edible mushrooms. Forinstance, edible mushroom taxa listed to be commercialized in (122), Switzerland(114), Spain(93), Austria(92)and Italy(73)are much higher than in Croatia(27), Bosnia andHerzegovina(18)and Serbia (15).The overalldiversity of edible mushrooms authorized to be commercialized in Europeisveryhigh(268, 60 of whichcan be cultivated). Remarkably, only twofungal taxa areonall thelists:Cep ( edulis complex),and ( cibarius)(Peintner et al. 2013). Themycophilicormycolatrous (mushroom-loving) versus mycophobic(mush- room-fearing)dichotomy is basedonthe work of Wasson andWasson(1957) whocreated ascale of mycophilia andmycophobiasyndromes andattempted to placeonthisscale differentcountries around theworld based on theirown 216 studies. This dichotomy wascriticized forovergeneralization, polarization and forgivinglittleroomfor specific communitiesorindividuals differentiations (Yamin-Pasternak 2011; Letcher 2007). Detailed studiesofmushroomloreand thelinguisticdiversity of mushroom localnames suggestthatevenmushrooms areunderstudied becauseoftheir roleasoccasionalorfaminefoodofthe poor people have had their place in many local cultures and gastronomies (Stara et al. 2016;Vrachionidou 2007). Wild edible mushrooms represent a significant growing dietary supplement formanyEuropeanpopulations andanimportant marketable productfor rural economiesinmanycountries. Some populationshaveastrongtradition of wild edible fungicollectionand consumption, giventhatmushrooms constitute a necessaryportion of theirdiets.Moreover, sellingmushrooms is averycommon occupation whichconstitutes an extraincome, oftentax free,among theim- poverished populationsor/andincountries with weakened economies. Selling mushroomsseems awidespreadtraditioninCzechRepublic, Estonia,Greece, Hungary, Latvia, Lithuania,N.Macedonia,Polandand Russia amongothers. Con- trary, in Austria, Denmark,Germany,Norway, Sweden,and Switzerland, picking mushroomsisrather arecreationalactivitymostlyfor personal consumption. Here,mycophilic people areoften organized in mycologicalsocieties or local scientific groups forexchangingand sharingtaxonomic knowledgeonmush- roomsand organizingmushroomforays(Informationabout differentmycological societiesinEuropemay be foundonthe homepageofthe European Mycological Association(EMA2017)). In some countries(e.g. Finland, Italy, France,Spain and Portugal)thereare clear distinct localbehaviours amongthe populations: in some districtspeople areafraidand refusetoeat wild mushroom becauseof fear,while in otherspeopleloveeatingmushrooms.Thereare case studies(e. g. France,Spain,Finland,Switzerland,CzechRepublic)thatshowthe economic im- portance of wild edible mushroom exploitation in ruralareas. Forinstance, Sisak et al. (2016) demonstrates that thematerialvalue of collectedmushrooms could surpass 12%ofthe averageannualvalue (per hectare) of theintensive forestry timber production andhence that forest management fortimberproductioncan be smoothly combined with edible mushroom exploitation. Theexpansion in commercial harvesting in some countriesand international tradehas ledtoanincreaseofharvestingpressureand concerns aboutoverhar- vestingand damage to fungal resources(Boa2004).Some countriesorregions have introduced legalrestrictionsonthe harvesting of edible fungiinnatural habitats becausetheyfearthatthe removaloffruit bodies from theforest, often before sporedispersal,might impair theirreproduction.However,experimental studiesonthe effect of harvesting have revealed that long-termand systematic harvesting reducesneitherthe future yields of fruitbodiesnor thespecies rich- ness of wild forest fungi, irrespective of whetherthe harvesting techniquewas pickingorcutting (Egli et al. 2006;Norvell 1995;Pilz et al. 2003). However, after mass removaloffruit bodies, on alocal finescale establishmentofnewmycelia maybeslowerdue to competitionwithother fungi, becauselocal mass depositionfromfruit bodiesmay compensate forthe lowprobability that a 217 single sporewillgerminateand establishanew mycelium (Heegaard et al. 2016). Albeit poisonousmushrooms only represent averysmall fraction of allwild mushrooms, some of them aredeadlypoisonous, andingestion of those may result in seriousintoxication, includingdeath.The deathcap (Amanitaphal- loides) andrelated Amatoxin-containing Amanita species causedeadlyintoxi- cation worldwideevery year.InPoland, forexample,54persons died between 1953-1962 as a consequence of the consumption of A. phalloides (Grzymala 1965). Some countrieshaveestablished information/consultingservices, giving the opportunity to privatemushroomharvesterstopresent theirharveststotrained mushroom advisers sortingout thepoisonous mushrooms. Such servicesexist for exampleinFinland,inNorway(‘svamp police’),inItaly or in Switzerlandwhere a network of about300 mushroom checkpointsall over Switzerlandexists.

CASE6.1:The most appreciatedmushrooms andtruffles speciesinEurope

Thereisahugevariabilityofmushroompreferences within European coun- tries, andevenbetween regionsinthe same country. Basedonthe work of Peintner et al. (2013) that liststhe edible mushroomsauthorized fortrade in 27 European countries, we mayconsider themostrelevantmushrooms andtruffles,which areauthorizedinatleast 7countries.The list includes 27 generawithatotal of 59 species:

Figure6.1:Marketedmushroomspecies.Fromlefttoright:Cantharellus cibarius(Photocredit: Željko Zgrablić), (Photo credit:Irmgard Krisai-Greilhuber), Lactariusdeliciosus (Photo credit:FriedrichReinwald), Tuberaestivum(Photocredit: IrmgardKrisai-Greilhuber), (Photocredit: Daniel Oliach). Agaricus arvensis,A.bisporus, A. bitorquis, A. campestris,A.silvaticus, A. silvi- 218 cola,Cyclocybe cylindracea, Amanitacaesarea, Armillaria mellea,Auricularia ssp., Boletusaereus, Imleriabadius, B. edulis,B.pinophilus, B. reticulatus, Calocybe gambosa, Calvatiagigantea,Cantharellus cibarius,Coprinuscoma- tus, Cortinariuscaperatus, cornucopioides,C.lutescens,C.tubae- formis,Hydnumrepandum,H.rufescens,Kuehneromycesmutabilis, deliciosus,L.deterrimus, L. salmonicolor,L.sanguifluus,L.semisanguifluus, L. volemus, Leccinumaurantiacum,L.scabrum, L. versipelle,Lentinulaedodes, Lepistanuda, Macrolepiota procera, Marasmiusoreades,Morchellaconica, M. elata, M. esculenta, M. gigas, Pleurotus cornucopiae, P. eryngii,P.ostreatus, Russulacyanoxantha,R.vesca,R.virescens,Suillusgranulatus, S. grevillei, S. luteus,S.variegatus, Tricholomaportentosum, Tuberaestivum, T. brumale, T. magnatum,T.melanosporum, Xerocomussubtomentosus.

CASE6.2:Mushrooms also causepoisonings

ThePublicNational PoisonsInformation Centresprovide an advisory ser- vice in case of suspected poisonings.The SwissNational PoisonsInforma- tion Centre,Tox Info Suisse,for example,registeredsince itsestablish- mentin1966over 12,000 mushroom-related calls(Schenk-Jäger et al.2016). Despitethe highly developedand effectivemushroomcontrol system in Switzerland, 32 mushroom-related A. phalloides –oramatoxin-intoxica- tionsbyrelated species were registered from 1995-2009, 5ofthem with fataloutcome (Schenk-Jäger et al. 2012).

Between2010and 2015 in Munich,the Giftnotruf Münchenregistered2661 cases of real and/or assumedmushroomintoxications.Theycan be sub- dividedin56cases of abuse(intentional consumption),25commercial accidents,2255householdaccidents, 11 suicideattemptsand 314others (Bettina Haberl andRudiPfab, unpubl.pers. comm.).

AccordingtoArif et al. (2016) in Austriain19years (1996-2014)the Poison Infor- mation Centre had1,072 inquiriesregarding mushroom ingestioninchildren (1-14years old).In68%,fungalparts were ingested raw(within thesecases Amanitaphalloides wasverified in 1.6%). In 32%ofthecases,mushrooms were consumed cooked and Amanitaphalloides wasverified in 3.5% of these cases.Three childrendeveloped serioussymptoms(2cases to liver trans- plantation,one child deceased). In 2016,the mushroom counsellingservice of themunicipalityofViennaaltogether gave advice 401times,with2samples of deadly poisonous, 30 poisonous, 132inedible,and 237ediblespecies. Even nowadays new, unusualfatal mushroom poisonings occurwhich are duetohitherto unnoticedtoxic species. Forinstance, it is notwell known 219 that sometimesmorelscan causeneurological symptoms similar to drunk- enness (one case in Austriainspring2016). Echinoderma aspera maycause alcohol abuse syndromes; Russula subnigricans caused fatal rhabdomyol- ysis in JapanwhileinChinathe “YunnanSuddenUnexplained Death-Syn- drome” generated by Trogia venenata caused hundreds of deaths. Further toxicspecies are Pleurocybella porrigens, Scleroderma spp., Omphalotus olearius and Clitocybe amoenolens, which recently have also been found in CentralEurope. Averydangerousand newphenomenon is confusionof highly valued medicinalfungi with toxicones, e.g. Ganodermalucidum with Ganodermaneojaponicum or with Podostroma cornu–damae,the latter is by farthe mostpoisonousmushroomexisting(Berndt 2016).

Figure6.2: Potentialconfusion within fungalspecies.Russula heterophylla (left) is an edible specieswhileAmanitaphalloides(right)ispoisonous(Photocredit: IrmgardKrisai-Greilhuber). Amanitaverna,commonlyknown as thefool’s mushroom, is adeadlypoisonousbasidiomycete, oneofmanyinthe genusAmanita(Photocredit: SimonEgli).

Fungi aremoreand more recognized internationallyasorganisms whichare in need of concernfor conservation measures,especially habitatprotection, as is thecasewithanimals andplants. Severalinternational societieswerefounded dealingwithconservationoffungi.For instance,the InternationalSociety for FungalConservation(ISFC)promotes conservation of fungiglobally(http:// www.fungal-conservation.org/).Ontheirhomepageitisstatedthatone of the main aims is to be aGlobalFederationfor FungalConservationGroups, sup- portingregionalornationaland localbodiesinfungalconservationactivities. TheGlobalFungalRed List Initiative (http:// iucn.ekoo.se/en/iucn/welcome) 220 wasstarted andfinally ledtothe inclusionoffungi in theIUCNRed List of Threatened Species.Thereare RedLists in many European countrieseither on alocal or national scale, e.g. Switzerland(Senn-Irlet et al. 2007), CzechRepublic (Holec andBeran 2006), (Wojewodaand Lawrynowicz2004),the Neth- erlands(Arnolds andVeerkamp2008),Sweden(Gärdenfors 2005), Germany (Bundesamt fürNaturschutz 2017), or Austria(Dämonand Krisai-Greilhuber 2017). In Europefinally in 2013the Bern Convention (CouncilofEurope) has createdaCharter forFungi-Gathering andBiodiversity(Brainerdand Doorn- bos 2013), see Union for the Conservation of Nature (www.iucn.org); which also includes aCodeofConductfor mushroom pickinginnature. This chapter will provide a characterisation of fungal communities and the differentapproachestostudy fruitbodyproduction(chapter6.2). Theecology of mushroom andtrufflespecies is introduced in chapter6.3 andthe necessary requirementsfor afungalorientedforestmanagementare discussedinchapter 6.4. Theroleoftrade as themaindriverofthe wild mushroomseconomy and othersocio-economic aspectsare describedinchapter 6.5.

6.2Characterizationoffungalcommunities and fungal diversity

Thegreat temporal andspatial variationinmushroomand truffle yields between andwithin years (Alday et al. 2017)makes thefine characterization of fungal communities difficult.The studyofthe presence/emergenceofmushrooms hasbeentraditionally based on thecollectionoffruit bodiesfrompermanent plotsortransects,which aresystematicallysampled once perweek(Bonet et al. 2012;MartínezdeAragón et al. 2007;Egli et al. 2006;Dahlberg1991).This data areveryvaluablesince,likeany otherforestresource, forest management plansdemandfirstthe estimation andevaluationofthe marketable resources in quantifiableterms (Díaz-Balteiro et al. 2003;Palahí et al. 2009). Despitethe relevanceofobtaining potentialmushroomproductions, an exten- sive sampling approach hastobeconducted forseveral years if thefinalobjective is to obtain representative data (MartínezdeAragón et al. 2007;Büntgen et al. 2013). This long-termsamplingisfollowedtogether with measurement of the environmentalcharacteristics of theplots,especially to understandthe causal factors affectingmushroomproduction (Vogt et al.1992).Similarly, thesam- plingscheme will depend on thepreviously establishedobjectives. Forinstance, measuringfruit body species richness requires as largesamplingplots or as long transects as possible (MartínezdeAragón et al. 2007), whereasthe useofsmaller sampling plotsortransects (100m2)isadvisable if theaim is to estimate fruitbody productivity (Dighton et al. 1986;Hintikka 1988;Smith et al. 2002; Martínez de Aragón et al. 2007). Duetothe high samplingfrequencyinthese plots, cautionis advised with theuse of heavyequipment or anyother factors such as trampling of theforestfloorcausing soil disturbance, whichcan negatively affect mush- room production (Wästerlund1989;Egli et al. 2006). In addition,any silvicultural 221 treatment, such as thinning,also needstobetaken into account, sinceithas been shownthatforestmanagement hasaneffectonthe mushroom production anddiversity (Bonet et al. 2012;de-Miguel et al. 2014,Egli et al. 2010,Tomao et al.,2019).Finally, to avoidlosingdata, temporal organizationofsamplings will be important, e.g.samplingatthe end of week in order to reduce theprobability of mushroom huntingbyother pickers(Martínez de Aragón et al. 2007). In addition, if theobjective is theuse of anon-destructive samplingapproach (i.e.fruit bodies areonlycounted in situ), fruitbodiesmight be marked with acolourstain to avoiddoublecountingone weeklater (Egli et al. 2006). If thesamplingapproachisbased on fruitbodycountsand weight measure- ment, samples are brought to the laboratory after sampling for fresh weight measurement andfruit body count(Martínez de Aragón et al. 2007). Moreover, sincefresh weight is biased by theactualweather conditions determiningthe watercontent of thefruit body, fruitbodiesshouldbedried in air-vented oven at 35-40 °C andweighed (Väre et al. 1996). Aclassification of themushrooms is necessary, especially if we arefocused in understandingtheircommercial status (e.g.ediblenon-marketed, marketed)togetherwiththe measurement of allofthe environmentalfactors of theplot, whichwillbelater used to design theforestmanagementplans to optimize mushroom production, accordingto anyspecific tree species (Martínez-Peña et al. 2012). Despite theneed of conducting fruitbodysamplings forfuturecommercial purposesbut also to better understandthe ecologyofthese species,the current methodologyusedtoestimatefungalproductivityisverylimitedwhenitcomes to hypogeousspecies such as truffles, or ephemeral species with averyshort lifespanoftheirfruit bodies, as well as species whichfruit very rarely andnot everyyear(Vogt et al. 1992). In addition,due to thehighcosts associatedwith thesesamplingapproaches,thereisaneed to improvethe tools to detectand quantify mushroom yields.Inthe next subchapters,wewillpresent some new promising approaches that mayhelpestimatingorpredictingthe mushroom production andapproximate itsdiversity both at ground levelbut also below- ground by usingmolecular genetictechniques.

6.2.1The use of belowground communities to studyfruit body production

Fruitbody-formingfungi in forest soilsare supportedbyavegetative system whichinvolvestwo main structures;the fungal myceliaand themycorrhizas. However, thesestructureshavebeenverydifficulttostudy,since fungal species living in soil arehighlydiverse (Buée et al. 2009)and,inthe case of fungal myce- lia, it is oftennot visibletothe humaneye.The useofnovel molecular techniques to studyfungalcommunities living belowgroundhas answered several ecological questionssuchasseasonality of soil mycelia(De la Varga et al. 2012;Jumpponen 222 et al. 2010)and is allowing theidentification of thefungalspecies living in soils (Nilsson et al. 2006;2012; 2013). Other techniques such as qPCR have also been developed with theaim to quantify thespecific fungal species living in soils, e.g. Lactariusvinosus (Castaño et al. 2016), Boletusedulis (De la Varga et al. 2013)and Tubermelanosporum (Liu et al. 2014;Parladé et al. 2013;Suz et al. 2006). Theuse of soil mycelia (also referred as extramatrical mycelia) has the advantage with respecttofruit bodies that it is much more stable across years,within theyear, hasmuch higher diversity (Buée et al. 2009) and shows manyother species not formingoronlyforminginconspicuousfruit bodies. However, moleculargenetic methodsneedtobeimprovedand need to circumvent currentbiasesand errors, so we can to differentiatebetween productive viable myceliaand other fungal DNA sources, such as propagules, very young mycelia, inactive or dead mycelia (Simmel 2016 a, b; Bässler et al. 2016). Afirststeptoovercomethese problems is theuse of metranscriptomics, whichcould provideinformation aboutthe active fungal community operatinginforestsoils. It is apparent that thefungalcommunity showsmuchhigher diversitybelow- ground ( andmycelia)thanaboveground evidence (fruit bodies) (Dahlberg et al. 1997;Gardesand Bruns1996; Koide et al. 2005),but community studiesfocused on understandingmorespecifically to what extent thesoilfungal myceliacan predictorestimate thepotential mushroom production aremissing. Thus, to date only fewexamplesreportcorrelations betweenfungalmycelia (Suz et al. 2008;Liu et al. 2016)ormycorrhizas (DelaVarga et al. 2012;Parladé et al. 2007)and theirfruit bodyproduction. Therefore, it is needed to understand if thereissuchrelationship, andifthismay dependonthe fungal species or the spatialscale considered,aswellaswhether they maybeaffectedbythe season- alityofthe fungal mycelia(De la Varga et al. 2013)orthe sampling design (e.g. plot size)(MartínezdeAragón et al. 2007). Thepotential useofsoilsamples or mycorrhizas to estimate mushroom production will be hopefully soon clarified once allthe methodologicalquestions areclarifiedand biases anderrorscoming from theuse of high-throughputDNA sequencingtechniques aresolved.

6.2.2The use of spore trapstostudy fruitbodyproduction

Fungalsporesorfungalpropagules couldbealsoused to estimate potential fruitbodyproductionasan alternativetothe useofmycorrhizas of fungal my- celia, yetnoevidenceofthe feasibilityofthisapproach hasbeenpresented so far. However, despitefew,recentstudies have providednew insights in such re- lationship (see discussioninPeayand Bruns2014) andthereisalso newevidence that it is possible to detect fruitbodyemergenceusing sporetraps together with molecular genetictechniques (Castaño et al. 2017,2019).

Theuse of sporetraps to detectand quantify fungal anduse such data as aproxy forthe colonizationpotential of fungal inoculum hasbeenmostly restricted to plantpathology(Jacksonand Bayliss2011).Literatureinthisfield 223 hasprovidedevidencethatthe useofspore trap sampleswithmolecular tech- niques (e.g.quantificationofthe sporeinnoculum by qPCR)isusefultoquantify thespore inocula of specific fungal pathogenssuchasFusarium circinatum (Schweigkoflerand Garbelotto2004) or Hymenoscyphusfraxineus (Chandelier et al. 2014). An important aspect concerning the use of these spore traps is that they should be easy to handle andeasy to replace, sincetheywillbemostlikely locatedinforests,whereaccessibilityisnot always easy.Inthissense,both passivefunnel andfilter trapswereshown to have fungal spores (Chandelier et al. 2014; Peay and Bruns 2014) (see Figure 6.3), which are most likely derived from thebiologicalactivityofthese organismsnearby. Oneofthe disadvantages of usingthese devicesisthatsporulation is very species-specificinterms of thequantityofreleased spores andmanybasidiomycetes (especially ectomyc- orrhizal)seemtodisperseless abundantly anddispersal is oftenrestrictedto averyshort period in theyear(Galante et al. 2011;Kivlin et al. 2014;Li2005). Furthermore, thetraditional identificationapproaches, e.g. microscopytech- niques,are almost prohibitiveunder this contextand wouldbeverytime-con- suming(West et al. 2008). Here,the useofhigh-throughput DNAsequencing represents another promising opportunity to characterize thesecommunities. Again, apartfromthe technicalconsiderations when usingmolecular tech- niques (see areviewinLindahl et al. 2013), otherfactors such as precipitation events,winddirection or specific traits (Oliveira et al. 2009;Burch andLevetin 2002; Troutt andLevetin 2001;diGiorgio et al. 1996)willmostlikelyaffectany hypothetical relationship betweensporesand fruitbodyyields andtherefore should be studiedand takeninaccountinfuture.

Figure6.3: Exampleofapassivesporetraps or funnel sporetrap(Left) andanactive(Burkard) sporetrap(Right)using asolar panelasasource of energy supply (Photo credits: CarlesCastaño). 6.3Ecology of mushroom and truffle species 224 Fungi exhibit ahighvariability in theirnutrition approachesand therelated ecology. Pathogenic fungifeed on thehosts that they attack,usually causing tree diseases andpotential landscape-leveldisturbancesinforests.Not many pathogenic fungiare considered commercialasopposed to saprotrophicor mycorrhizal fungi. As degradersofthe recalcitrant organicmatterneeded for nutrientcyclingand theforestsoildevelopment,manymushroom-forming saprotrophicfungi areeasilycultivatedand sold.Frequentlycultivatedgenera are Agaricus, Pleurotus, Ganoderma, Volvariella and Lentinus. The cultivated mushroomsare notregardedaswildmushrooms.Among commonly recognized non-woodforestproducts(e.g. wild edible mushrooms) we consider in this contextonlyspecies andgenerathatgrowinectomycorrhizal symbiosiswith living treesand shrubs or aresaprotrophicspecies in naturalhabitats.

6.3.1Distributionpatterns andproductivity

Awiderange of biotic andabiotic factorsinfluences fruitbodyproductivity. Thesefactors arecommonlyclassified into threemaingroups: (a)meteorolog- ical variables, e.g.,precipitation, temperature(Alonso Ponce et al. 2011; Wollan et al. 2008); (b)local site characteristics, e.g., soil,altitude, slopeaspect(de- Miguel et al. 2014;Bonet et al. 2004); (c) forest standstructure,e.g., tree species, standdensity,stand age(Bonet et al. 2008;North andGreenberg 1998). This subchapterwilldescribethe main ecological factorsaffecting thepresence of mushroomsand truffles, focusingontargetspecies such as Boletusedulis, Lactarius spp. and Tuber spp. (see management of such species in chapter6.4). Precipitation andtemperature arethe main ecological factorsaffecting fun- galdistributionand fruitbodyproductiononaglobalscale (Sato et al. 2012; Straatsma et al. 2001; Wardle andLindhal 2014;Wollan et al. 2008). Fungalyields vary strongly betweenyears (Alday et al. 2017), depending on wateravailabil- ityand temperature, but thesefactors alonedonot explainthe whole extent of this variation(Egli 2011). Thus, increased precipitationdirectlycausesthe fungal yieldtoincrease(Heegaard et al. 2016), butconditioned by other varia- bles such as wind or temperature. Temperatureisanother crucialvariablethat determines thestart of fruitbodyproductionduringyearly cycles(Wollan et al. 2008). Certainfungalspecies,asthe widely appreciated Amanitacaesarea and Boletusaereus,are thermophilic andthustheirdistributionisrestricted to warmer habitats of southern andcentral Europe (Breitenbach andKränzlin 1995;Papetti et al. 2011). Even forfungalspecies that show cosmopolitan distribution patterns, soil properties areoften acrucial factorthatinfluences fruitbodyproduction. The Boletusedulis groupisdistributed worldwide(Águeda et al. 2006;Hall et al. 1998a) but in certainhabitats, specificecologicalconditions arerequired. In Cistus ladanifer shrublands in Spain, fruitbodiesfromthisgroup areproduced only in strongly acidic soilswithverynarrowtexturalrange (AlonsoPonce et 225 al. 2011). Tuber magnatum is another example of a species whose occurrence is also linked with specific soil conditions, as described by Bragato et al. (2004; 2010) in Istria (Croatia), and by Hall et al. (1988b). Tuber melanosporum is lim- ited to alkaline soils(pH 7.5-8.5; Colinas et al. 2007), while Tuberaestivum is adaptedtoabroader rangeofecologicalconditions, andcan be foundinalmost everyEuropeancountry (Stobbe et al. 2013). AresultfromBonet et al. (2004) and more recently by de-Miguel et al. (2014) in the Spanish Pyrenees suggests that slope, aspect andgeographicexpositionare asignificantfactorfor fungal yield: northernaspects arefound to be more productive forsomefungalspecies in respecttosouthern, drieraspects.Fungalproductivityvariesalong arange of altitudes. Depending on the latitude, we may observe a variation of fungal yields in altitudesthatalso relates with climatic conditions.The general trend is an increase of mushroom collection once we increase thealtitudewithausual decrease at higher altitudesassociatedwithlow temperatures (Jangand Kim 2015;de-Miguel et al. 2014). In general,wemay confirmthatfungi aredistrib- uted over awiderange of altitudes, mostly depending on geographical position. Numerousectomycorrhizal fungiare species-specific towardshosttrees. Distributionofsuchspecies is oftenlimitedbythe distribution of thecorre- sponding plants.Asanexample, Lactariusdeliciosus groupismycorrhizal with Pinus sp.(Consiglioand Papetti2009; Heilmann-Clausen 2000)and its distribution coincideswiththe host tree distribution.Incontrast, Boletusedu- lis groupspeciesand Cantharellus cibarius have abroader association (Danell 1994;Hall et al. 1998a; Knudsenand Vesterholt 2012), linkedwithbroadleaved andconiferoushosttrees.Stand density canaffectectomycorrhizal fruitbody production in naturaland managedconditions(Tomao et al. 2017). Tubermel- anosporum requires lowdensity habitats while T. magnatum and T. aestivum fruits in stands with full canopy closure. Fungalspecies oftenfollowdifferent stages of forest succession, showingpreferencestowards either young, mature or oldforeststands(Northand Greenberg1998).Somespecies fruitregularly in allforesttypes in respecttoage classes,asBonet et al. (2004) outlinefor the Lactariusdeliciosus group.

6.3.2Impactofglobal change on diversity, productivity and distributionpatterns

Thecurrentawareness of theglobalenvironmental trends andclimatechange scenarioshas finally reachedthe politicalranks,due to thegrowing concerns on ourability to containthe declineoflife-supporting resources(Rockström et al. 2009). Accordingtothe European EnvironmentalAgency(EEA),bothcli- mate change andhuman activity aremajor driversoflossesinEuropeannat- ural resourcessuchasbiodiversity, soil,water andland(EEA2015).Inorder to understandthe real costslinkedtosuchlosses, integratingeconomictools for 226 theevaluationofecosystemservices, such as thosedeveloped by TEEB (TEEB 2017), is essential. They should help policy makers decide forthe conservation of NWFP such as mushrooms, both in themanagementofhumanactivityand in adaptation to climate change (Pedrono et al. 2016;Schulp et al.2014). Mushroom productivity can be affected by climatechangeattwo levels:more immediately,through phenologicalshifts; andultimately, throughhabitat re- placement. The former can be assessed through contemporary and retrospec- tive studies, andseveral reports have provided compelling evidence of such shifts (see review of Boddy et al. 2014). Thus,the comparison with historical recordshas revealed,for thesummer-autumn fruiting season,asignificant increase of itsduration formanymushroomspecies (but notfor all),withanav- eragefruitingtimelater in theyear, correlated with adelay in frosting andthus an extendedvegetationseason(Gange et al. 2007;Kauserud et al. 2012;Andrew et al. 2017). Duetothe dependence of fungionvegetation resources, it seems clearthatclimatewarmingaffects mushroom phenologiesindirectly(Sato et al. 2012;Kauserud et al. 2012;Gange et al. 2013), butclimatewarmingmay also driveaconcomitant increase in mushroom productivity directly, especially for saprobic species (Büntgen et al. 2013). Asimilarstudy forspring-fruiting spe- cies indicatedaslighttendencyfor earlierfruiting, correlated with elevated temperatures in winter andthe earlieronset of spring (Kauserud et al. 2010). Duetolanduse changesand climatechangeaconsiderable shiftinspecies compositionovertimemay also take place, as e.g. seen in thestudies of Simmel (2016b)and Stulik (2016) wherespecies numberswerequite similarbut species compositionhad changedovertime, resultinginalossofrareand redlisted species andanupriseofubiquitousspecies. Such shifts,while overshadowed in theshorter term by theunpredictabilityofmeteorologicalpatternsrelated to phenomenasuchasthe NorthAtlanticOscillation(CPC2017),spell aprogressive change in themanagementand utilizationofforestresources (de-Miguel et al. 2014). Thus, short-term policy responsesshould be directedatthe mitigation of climate impacts, whichismuchwiser than stayinginactiveand hoping for thebest(Pedrono et al. 2016). Modellingspecies distributions(Hijmansand Elith2016) accordingtorele- vant environmentalvariables provides potentialgeographicaldistributions for each species, andexamplesofthisapproach formushrooms have highlighted theroleoftemperature in thepresent (Wollan et al. 2008)and determined po- tentialrefugia in thepast(Sánchez-Ramírez et al. 2015). Future geographical displacementsofspecies duetoclimatechangecan also be predictedwith this approach,under currentassumptions of climatetrends, with compelling, albeit speculative, results. Thus, onesimulationofthe potentialforestcover in Europepredictsthat, by 2070–2100, most of France will notbefitforcentral Europeanoaksorbeech,but rather forMediterranean ,and Germanywill lose Norway andScots pine,justtonametwo examples (Hanewinkel et al. 2013). Theeconomiclossescalculatedfor Europe in that studyrefer to wood production,but similarefforts couldbeundertaken(in spiteofall uncertain- ties)for mushroomsand otherNWFP: on onehand, to estimate theimpacts of 227 habitat replacement (negativeaswellaspositive) andthe costsoftransition, andonthe other,toassess theconsequences of abandonmentofforest-based economic activities. Oneobviousoutcome of such long-termpredictions is to prompt thequestion of what can be done today,given therelativelyslowresponses by forest ecosys- tems,toensureanefficienttransitioninforestcover—and,withit, of mush- room production. The installation of prospectively more adapted forests must rely notonlyonclimate andsoilcharacteristics, but also on thebelow-ground connectivity with other ectomycorrhizal hosts (Perry et al. 1990; Büntgen and Egli 2014;Tubay et al. 2015;Lavorel et al. 2015). Once settled, such newplanta- tions have a good prospect for maintaining soil health and mushroom diversity (Oria-de-Rueda et al. 2010). However, in spiteofthe overallgood scores by Eu- ropeancountries,regarding theND-GAIN index(ND-GAIN2017),one studyhas detectedalack of attention, in theEuropeanpoliciesfor adaptation to climate change,tospecies interactions (van Teeffelen et al. 2014).

6.4Towardsmycosilviculture: fungal oriented forest managementand planning

Theincreasingimportanceofthe edible mushroomsand trufflesinthe local andglobalmarkets is also increasing theinteresttowardsuitable ways of man- agingand enhancingmushroomyields in forest ecosystems (Pilzand Molina 2002). Contrary to theso-called ‘direct’ NWFP,which areobtaineddirectly from aparticulartreespecies(e.g.,treefruits, cork), mushroomsare typically considered as indirectwildforestproductsthatcoexist with treesand whose provisionismodulated by an arrayofsiteand standconditions.Such ‘indirect’ wild forest products have been usuallyconsidered as side-products of agiven silviculturalregimeand notpartofapredefined productiongoalwithin the frameworkoftraditional timber-orientedforestry. Sinceforestfungi aretightly connectedtothe main element that characterize forest ecosystems (i.e., the trees),forestmanagementand silviculturaloperationsare likely to influence fungal andmushroomdynamics(Egli 2011). Silviculture has been defined as thearray of treatments that maybeapplied to forest stands to maintain andenhance theirutilityfor anypurpose (Smith 1986), includingbenefits derived either directlyorindirectlyfromthe trees themselves,other plants,water,wildlifeand mineralsfound in forested areas (Nyland2002).Therefore, silviculture hasbeenalwaysregardedasthe instru- ment formanagerstoretrievemultipleecosystem servicesfromforestsystems. Within this context, mycosilviculture maybedefinedasthe arrayofsilvicultural treatments andoperationsaiming at enhancingthe provisionofmushrooms andtruffles in ordertointegrate theseproductsintomultifunctional forest management planning.Indeed,previousresearch hasshown that mushrooms 228 can result in higher economic profitthantimberinMediterranean areaschar- acterized by areduced profitabilityoftimberharvesting(Palahí et al. 2009), and can also representaconsiderable proportion of thewholeforestvalue even in regionswhere timber-orientedforestryisprofitable(Tahvanainen et al. 2016). Although weather andsiteconditionshighlydetermine theoccurrence and productivity of mushroomsand trufflesinforests andagroforestrysystems (see chapter6.2), only thosevariables related to thestand structureand composition can be modifiedthrough mycosilvicultural operations in ordertoproposefun- gal-orientedmanagementrecommendations in large-scaleforestedlandscapes. An exceptiontothisare theintensively managed, cultivated systemsfor truffle production whereirrigation mayconstitute an additional management tool, thereforemodifyingthe micro-site moisture conditions.Thus, managers and landownerscan mainly affect certainecosystemattributessuchasstand age, standdensity,treespeciescompositionand forest cover(Tomao et al. 2017). Accordingly, themodification of therotationlength, standbasal area or tree species compositionthrough forest management is expected to have an im- pact on fungal dynamics. Similarly,differences in fungal productivity mayarise from applying either even-agedoruneven-aged forest management methods. In addition,the degree of mechanizationand associatedsoildisturbance from timber thinning andharvestingoperationsmay have an impact on theamount of mushroomsproducedinagiven forest area (see chapter4.3). Aset of silviculturalprocedurescovering, amongother operations, tending, thinning,pruning,harvestingand re-establishment of forest stands is referred to as asilvicultural system, whichcan be conductedonacontinuum of forest management intensityranging from extensivetointensive management sched- ules (Duncker et al. 2012): from rather passivesystems such as unmanaged forestsornaturereserves, throughsemi-naturalsystems of medium manage- ment intensity, to intensivelymanaged cultivated agroforestry systems (Table 6.1).However,the observed patternofoccurrence of mushroomsinacertain forest ecosystemfor total, edible and/or marketed productionsmay notbethe same forindividualtargetspecies sincefungalspecies have differentecological strategies.Thus, theliteraturereflectsverycontradictory effectsofsilvicultural treatments on theindividualspecies (e.g., Kardelland Eriksson 1987;Ohenoja 1988;Shubin1988;Kropp andAlbee 1996;Kranabetter andKroeger 2001;Egli et al.2010, Bonet et al. 2012). Additionally,mostofthe studiesare very localor regional,and consequently between-region differencesinterms of site char- acteristics, weather andforeststructure preventadopting general recommen- dations, andfurther in-depth analysisfocusingonindividualfungalspecies is recommended. Furthermore,the largeamount of potentialvariables related to mushroom productivity andtheirinterdependencemakes it difficult to give clear recommendationsfor managing mushroom yields.Since both positive and negative effectsofsilvicultural operations on mushroom yieldare theoretically possible,the main dilemmawhenconsideringmushroomand truffle production within theframework of mycosilviculture maybesummarized as follows: i) how can silviculturaltreatmentsenhance theprovision of edible fungi, andii) how 229 can silviculturalguidelines be modifiedand adaptedtoincreasethe production of target fungal species.

Table6.1: Silviculturalsystems associatedtotypical forest types producing mushroomsortruffles. Management intensityreferstothe periodicityofthe interventions.

Forest Silvicultural Silvicultural Management type regime operations intensity

NaturalUnmanaged forest /reserve IsolatedinterventionsPassive

Selectivecuttings, Continuous cover forestry Low –Medium Semi- thinningfromabove natural Shelterwoodmethods, Even-agedforestry Medium thinningfrombelow

Finalfelling,replanting, Intensiveeven-agedforestry High thinningfrombelow,pruning

Plantation Finalfelling,planting, fertiliza- Agroforestry /cultivation tion,weed andshrub control, Intensive irrigation

6.4.1Silvicultural treatmentsand their impact on mushroom yields

Silvicultural operations can affect theoccurrence, productivity andreproduc- tion of mushrooms. Understanding theecology of ectomycorrhizal fungiand theeffectofforestmanagement practicessuchasforestthinning, pruning, shruband weed controlorregeneration methodsmay contribute to improving naturalmushroomproductioninforestecosystems. In this chapter, we review thecurrentstate of theart of forest management practicesthatcan contribute to enhancingmushrooms andtruffles productivity andevaluatethe potential of mycosilviculture.

6.4.1.1Thinning

Forest thinningaimstomanage thecompetition amongtrees by removing some individualsinorder to favour thegrowthofthe remainingtrees. After tree removal,the remainingtrees can increase theirphotosynthetic activity andallocatemorecarbohydrates to theirrootsystem, whichbenefits mycor- rhizal fungal species. Other factorssuchasmicroclimatic changesinthe soil layerand soil disturbancearising from forestry operations mayalsoaffectboth 230 productivity andcompositionoffungalspecies (Bonet et al. 2012). While some studies have reported higher mushroom productivity in thinned stands (Kirsi andOinonen 1981;Shubin1988; Ohenoja1988; Egli et al. 2010; Bonet et al.2012),other authorshavenot foundsuchtrends(Kardelland Eriks- son 1987). A remarkable post-thinning increase in diversity and productivity of mycorrhizal fungihas been reported by Egli et al. (2010) in aSwiss forest,and Bonet et al. (2012) found an immediate positive effect of thinning on the yield of Lactarius group delicious (Figure6.4). Similarly, thinning of Cistus ladanifer scrublands can enhance the production of some valuable species such as Bole- tusedulis, corsicum or Lyophyllum decastes (Hernández-Rodríguez et al. 2015). On the other hand, other studies have observed an initial negative thinning reaction on mushroom yieldwithasubsequentrecoveryofthe pro- ductivityafter 3to6years (Pilz et al. 2006;Egli et al. 2010). This apparent con- tradiction mayprobablyarise from differencesinsoildisturbance caused by forest harvesting operations,which wasminimal,inthe experiment conducted by Bonet et al. (2012).Therefore, low-impact timber harvesting procedures (i.e., with limited soil disturbanceand compaction associated to mechanizationof forestry works) mayalso contribute to diminishingpotential negative impacts of thinning operations on mushroom yields and/or to further enhancingany positive thinningeffects on fungal fructification. Thinning intensityalsoseems to affect thesubsequentproductionofmush- rooms. In this regard,light to moderatethinningseems to enhancethe pro- ductivityofcertain mushrooms, includingimportant marketable speciessuch as the Lactariusdeliciosus group, whereasheavy thinning seemstoreducethe fruiting of target fungal species (Bonet et al. 2012).

Figure6.4: ImmediateeffectofthinningonLactariusdeliciosusgroup yield in North-Eastern IberianPeninsula.Thinning treatmentswereconducted in August2009, rightbeforethe start of theautumnseason, whenLactariussp. fruits (Bonet et al. 2012). 6.4.1.2Regenerationmethods 231 Themainregeneration methodsmay be summarized in thefollowing concepts: clearcutting, shelterwood methodsand selectivecutting.Clearcuts andshelter- wood methodsare typicalofeven-aged forestry,sometimes characterized by thinningsduringthe rotation period andfinalfellings at theend of therotation, whichimplies theremovaloftreecover.Although shelterwood methodsmay be also regarded as transientstates toward uneven-agedforestry, selectivecutting is thetypical regenerationmethod(that also comprisestending, thinningand final cutting) in continuous cover forestry, where tree cover is always main- tained.Differencesincolonizationstrategies, useofthe available waterand nutrients,and competitiveabilities of differentfungi contribute to explaining that,generally,the number of fungal species increaseswithstand agewith apeakaroundcanopyclosure of theforeststand andthe fungal community compositionstabilizesatthe standreinitiationstage (Dahlberg2001; Twieg et al. 2007). Some fungiare able to rapidly colonize asiteafter disturbance by spores or resistantpropagules,whereasothersneed an intact mycorrhizal network that connects them to anothertreefor colonization. Afteroperations such as clearcuts,these patterns aremostpronounced when no stumps and living rootsfromwhich mycorrhizal fungicould recolonize newroots areleft over (Peter et al. 2013). Thus,negativeeffects of clearcuttingonmushroom productivity (atleast on theproductivityofmycorrhizal fungi) have been re- ported in previous research (Kardelland Eriksson 1987;Ohenoja1988).However, thepotential inoculuminthe soil of aclearcutareamay be rather similarto theadjacentforestarea(Harvey et al. 1980;Dahlbergand Stenstrom1991; Le Tacon1997).Atthe developmentstage of youngregenerated stands, mushroom productivity hasbeenfound to be recovered(Hintikka 1988). When vigorous adulttrees areleftinthestand,asinthe case of shelterwood or retentiontree methods(whichmay be also regarded as high intensityforestthinning),the mycorrhizal fungal diversityismuchhigher than in clearcutstands(Peter et al. 2013), sincethe remnanttrees actasfungalreservoirsallowingfungi to colonize thenew offspring. Similarobservationsweremadeafter windthrow, that should be considered as anatural clearcut. Tenyears afteraheavy windthrowevent, thenumberofinfective ectomycorrhizal fungiwas significantlyreduced,but thesoilstill containedenoughmycorrhizal fungitofully colonizeongrowing seedlings,even10years afterthe event(Egli et al. 2002). In general,inaneven-aged forestry framework, theintegration of mush- room production into forest management planningwillresultinlongerrotation lengths so that theforestcover allows formushroomproductionoveralonger period (Palahí et al. 2009;Bonet et al. 2012). In this regard,selectivecutting of differentintensities within theframework of continuous coverforestrymay avoidtemporalgapswithoutmushroomproductioninasmuchasthe forest cover(of host trees) remainsovertime(de-Miguel et al. 2014). 6.4.1.3Pruning 232 In principle,pruning mayhaveanimpactonmushroomproductivity if there- movaloflivingbranchesaffects significantlythe overallphotosynthetic activity of thetree, whichmay further affect theallocationofcarbohydrates to theroot system andmycorrhizal fungi. However, such an assumptionisjustbased on theoreticalconsiderations, sincenoexperiments have been carried outsofar. In this regard, the only group of fungi for which pruning of host trees is recom- mendedisrepresented by thegenus Tuber in cultivated andintensively man- aged agroforestry systems, beingthe main tree hosts Quercussp.and Corylus avellana. Thus, during the first years after plantation establishment, pruning is carried outprimarily forcorrecting structural defects of thehosttrees (Sourzat 2002) and favouring the desirable tree form associated with suitable conditions fortrufflefructification (Ricard2003).Such formationpruning or earlytraining aims at attainingatreecrown with theshape of an oval or an inverted cone by eliminating lowerbranches andbasal sprouts. Formationpruning maybegin in thethirdyeardependingonthe vigour of theplant andshould be of lowintensity (Bonet et al. 2009). This pruning proceduremay influencepositively Tuber,aiming at increasing theamount of lightthatreaches thegroundprovidingadditional spacefor installing irrigation systems, whichmay furtherincreasebothtruffle productivity andthe efficiencyoftrufflecollectioninthe future (Reyna 2012).

6.4.1.4 Weed and shrubcontrol

Weed andshrub controlisonlyconsidered as anormalpracticeinintensively managedtruffleplantations or agroforestry systems. During thefirst2to4 yearsafter plantation establishment, theareaaroundeachtreeshouldbekept free of weedsbyusing manual hoes (Bonet et al. 2009)ormulches (Olivera et al. 2014b).Thisissupposedtoincreasethe survival rate of thehosttrees by elim- inatingcompetitionfor waterand nutrients whileincreasingthe proliferation of mycelium.Inthe rows betweeneachtree, thelandshould be cultivated with suitable toolsallowingshallow treatments reaching asoildepth notgreater than 15 to 20 cm (Reyna 2012). Once thetypical ‘burnt’areaprovokedbythe truffle’s allelopathicactivityappears,somelandownersfurther suppressweed developmentbymeans of mechanical tools,i.e., with depth-control tinesreach- ingasoildepth notgreater than 10 cm,which also contributes to soil aeration.

6.4.1.5Fertilization

Previous research hasobservedapositiveeffectofsporadicfertilization on mushroom dynamics (Hora1959; Kutafyeva1975),although other studieshave reported adecrease in mycorrhizal productivity anddiversity in thethird or fourth year afterthe continuous applicationoffertilizers (Termorshuizen 1993;Ohenoja 1989;Cox et al. 2010; Lilleskov et al. 2011). Sinceectomycorrhizal 233 symbiosisisgenerally regarded as an adaptation to conditions of nitrogen (N) scarcity,whenNavailabilityincreases,trees allocate less carbontothe roots andmycorrhizal symbionts, andmoretothe abovegroundbiomass (Peter et al. 2013). Basedonthese assumptions, fertilizationofblack truffle plantations has been recommended only if the soil has an exceptionally low concentration of aparticularnutrientinorder to compensate forsuchdeficit(Olivier et al. 2012). However, a common practice in areas with acidic soils is to gradually add slow-releasecalcareous correctionswithCaCO3 before cultivatingthe land.It is worthhighlightingthatthese procedures aregenerally carried outininten- sively managedsystems andnot in naturalforeststands.

6.4.1.6Irrigation

Irrigation is notacommonpractice in forest stands, although apositiveeffect on mushroom yieldmight be expected (e.g.Wiklund et al. 1995;Sarjala et al. 2005). In blacktruffleplantations, regularwateringisrecommended during the first yearsuntil therootsystemiswellestablished and, lateron, in theproduc- tive phaseinorder to stabilizethe annual fluctuationsintruffleyieldcaused by interannualchanges in themeteorologicalconditions (Olivier et al. 2012). However, similartothe above-describedeffectoffertilization,excessofwater couldalsocause adecrease in theamount of blacktruffleproduction(Bonet et al. 2006;Olivera et al. 2011). Recent studies(Olivera et al. 2014a) highlightedthe need forintroducing moderate irrigation dosesinorder to increase thepres- ence of Tubermelanosporum.Accordingly,theyrecommend complementing naturalprecipitationupto50% of theevapotranspiration during thefirsthalf of thegrowing season,and allowing forsomeslightwater stress before the autumn rains.

6.4.1.7Prescribed burning

As alternativetothinning, vegetation maybealso managedbymeans of pre- scribed burning. Dependingonthe characteristicsand intensityofagiven burningprescription, aconsiderablepost-fireincreaseinsoilpHcanoccur, andnegativeimpacts can be caused to upperroots andmycorrhizas (Certini 2005). This effect couldbeespecially severeinthe presenceofgreat amounts of fuel load (i.e., vegetation biomass)aswellasinthe particular case that fire spreadsslowly throughoutthe target area to be managed. This couldeven entail thetotal destructionofthe rhizospheresystemwhose restorationcould take many years.Inastudy on theshort-termeffects of wildfireonfungal communities in Mediterraneanecosystems in north-western Spain, dominated by Pinuspinaster and Cistus ladanifer, Martin-Pinto et al. (2006) foundade- 234 crease in totalfungaldry weight in burned plotsalong with asignificantly lowerrichness,and diversityofmycorrhizal species andlower productionof edible fungi. However, although controlled burning needs to be applied with cautiontoavoid undesirableecologicaland economic effects, some fire-prone pyrophytic or pioneer taxa of edible fungi such as the genus can be favoured immediately afterfire events (e.g., Larson et al. 2016). Fernándezde Ana (2000) also observed an increase in the production of eques- tre, T. portentosum, Lactariusdeliciosus or mushroomsafter pre- scribed burning in forests of north-western Spain, using fire as management toolsothatthe tree root systemsweremaintainedalive afterthe prescribed burning. Thebenefits of prescribed burningfor promotingthe yield of certainmushroomspecies maybemoresuitableinareas wherethe soil pH is very lowsince burningmay notmodifydrastically theconditionsofsuchacidic soils, especially if thefuel load is small. On theother hand,wherethe burning bush is thickand thereislittlefuel load,thenthe fireeffectcan be similarto aslashing,inthe sensethatnosignificantalterations in theecosystemoccur.

6.4.2Importantediblecommercialwildforest mushrooms

Otherthanblack truffle (Tubermelanosporum)yields, whichhavebeenthe ob- ject of much research duetoits high economic valueand theprogressive shift of itsproduction from naturalforests to cultivated agroforestry systems, the edible commercial fungal species most studiedfromasilvicultural perspective so farhavebeenthe Boletusedulis groupand Lactariusdelicious group. Cepor boletes (Boletusedulis)representone of themostvaluable andtradedmush- room species worldwide, and Lactariusdeliciosus groupmushrooms arealso highly appreciated in some countriesand regions.

CASE 6.3: Silviculturalrecommendations forBoletus edulis production

Martínez-Peña et al. (2012) reportedthatthe optimalstand basalarea that seemstomaximize B. edulis production in Pinussylvestris forestsof centralSpain is around 40-45m2/ha (Figure6.5). Theinfluenceofforest standconditionswas also observed in Italy, whereSalerni andPerini (2004) foundthe greatestnumberofB. edulis fruitbodiesinthinnedstandswith moderatethinningintensity,whereasverylow production wasfound in thestandssubjected to heavythinning. Theauthors concludedthatthis speciesdoesnot need adense canopy in mixedforests (i.e., Abiesalba, with aminor presenceofPicea abies, Pinusnigra and Acer monspessulanum in that study),but an open andsunny habitatfor maximizing theiryields. 235 Theinfluence of clearing andthe burningofthe vegetation on B. edulis production in Cistus ladanifer scrublandecosystemsinWestern Spainhas been studied by Hernández-Rodríguez et al. (2015). Cistus scrublands are a source of highly appreciatedboletes,which normally appear afteradistur- bance, namelyclearingorfire.The authorsobservedthatthe production of B. edulis sporocarpsisexpectedtostart at about5years aftertreatment, whereasthe maximumproduction,which canachieve morethan50kg/ha/ yr is reachedat14years. Accordingtothisstudy, B. edulis production starts when themeanheightofthe scrublandreaches onemetre,and achieves its maximum at a mean height of 1.5 metres. The highest production was associated with ashrub canopy cover of 80 %, whichisreached alreadyat earlyages(before10years)and maintained during therestofthe life cycle of C. ladanifer,which also matches with thefindings of theaforesaid re- search conductedbySalerni andPerini (2004) in averydifferent ecosystem.

Figure6.5. Relationship betweenannual yieldofB.edulisand standbasalareainPinus sylvestris stands (Martínez-Peña et al. 2012).

Under boreal conditions,Tahvanainen et al. (2016) foundthat B. edulis yields increased along with standage untilacertain point(30 years),after whichthe yields startedtodecline.Theyalsoreportedthatthinning can improve B. edulis yields,although onlyslightly. Accordingtothe simulation results, advanced thinning(i.e. fiveyears earlierthanrecommendedfor timber production)was themostsuitableschedulefor B. edulis production. On theother hand,theyalsorealizedthat B. edulis, as an ectomycorrhizal fungal species, suffersfromregenerationcuttingsofsprucestands. In such forest systems, B. edulis production increasesalong with standdevelop- 236 ment so that thehighest yields areobtainedjustbeforethe first commer- cial thinning(at theage of 25-30years andstand basalareaof25m2/ha). TheyieldsofB. edulis increases afterthe first thinningand also afterthe second thinningbut to alesserextent. Thinningopens up thecanopyand rainfall is morelikelytowet theforestfloor, whichmay promotemushroom yields afterthinning.

CASE 6.4: Silviculturalrecommendations forLactarius groupdeliciosusproduction

Saffronmilkcaps(L. deliciosus)havebeendescribed as an earlycolo- nizerofplantations(early-stagefungi), andfound in greatest abundancein youngstands(Fernandez-Toirán et al. 2006). Martínez-Peña(2009)observed twopeaks of production in Scotspine(P. sylvestris)forests of differentage classes, thefirstpeakoccurring at theage of 16-30years andthe second oneatthe ageof70years. However,Bonet et al.(2004)found saffronmilk caps along allage classesand on allaspects of Pinussylvestris plantations in North-eastSpain.Suchanapparentcontradiction maybeexplained by thefactthatopenforestconditions with relativelylow basalareas typical of theearly stageofnatural forest succession(before canopy closure),but that canbefound also within mature stands,are favourable forsaffron milkcap production.Thus, theuse of silviculturaltreatments to decrease thedensity of older stands maycontributetoenhancing L. deliciosus pro- duction, assumingthatforeststand structureismorerelevanttosaffron milk capproductionsthanstand age. Theempirical models for L. group delicious developedbyBonet et al. (2008) andMartínez-Peña et al. (2012) further supportedthe importanceofstand basalareaasthe most relevant predictor, in termsofthe silviculture and forest managementfor Lactarius yields.Bonet et al. (2012) foundthatlight to moderatethinningtreatments (i.e., around 10 m2/haofbasal area re- moval) affected positively Lactarius yields during thefirsttwo yearsaf- terthe forest thinning, whereasheavy thinning(i.e. beyond 35 m2/haof removedbasal area)would result in areduction of fungal yields as com- paredwithunthinnedplots (Figure6.6). Preliminaryresults basedonthe continuousinventory of mushroomsduring theyears 2011-2015suggest that thethinning effect on theproduction of L. deliciosus groupmay fade away aftertwo or threeyears afterthinning. This suggests that L. delicio- sus grouphas ahighadaptiveabilitytodifferent standstructurespartly duetothe particular anddiverse habitatpreferences of theindividual speciesincludedinthe group deliciosus (, L. vinosus and L. sanguifluus). This also contributestotheideathatthe L. deliciosus groupprefersgrowing in relativelyopenforestconditionsand when stand 237 ageisclose to theperiodofhighest tree growth.Thiscoincidence sounds reasonablefromthe ecological pointofviewsince saffronmilkcapsare ectomycorrhizal fungithatgrowinsymbiosis with forest trees. Basedon that,one could expectthatthe maximummushroomproductivity matches with themaximum tree growth duetothehighquantityofcarbohydrates produced by thetrees andsharedwiththe mycorrhizalfungalcommunities. However,the analysis of such relationshipsconductedsofar have shown no clear temporal synchronization between annual mushroom yields and seasonalwoodformation,except forsomepinestandsgrowing on quite xericsites(Primicia et al. 2016).

Figure6.6: Relationship betweenthe annual yieldofLactariusgroup deliciosus andremoved basalareainthinninginthe years of study(Bonet et al. 2012).

6.5Socioeconomylinkedtomushrooms and trufflesinrural areas

Wild mushroomshavebeenusedand traded as food or medicinalproducts practicallyeverywhereinthe world(Boa2004).Eachcountry hasregulated the harvestingrightsdifferently, with directimpacts on thesocio-economicvalues createdthrough thewildmushroomuses. Wild mushroomsmay be commer- cialized as productsfor theinternational or nichemarkets,orasrecreational service, in whichapickerpurchases apicking permit forcollectingwildmush- rooms. Theeconomicperformance maybeverydifferent accordingtothe tar- 238 gets of policy makers.Thissubchapterreports aset of case studiesthrough whichwemay understand thecomplexity andthe potentialvalue of European forestsifproper policies areoffered.Movingfromthe case of export-oriented countrieslikeSerbia, we will describe thestrategic effect of wild mushroom tradeonthe remote ruralareas in Romania that arethe keysuppliers forSpain andItaly,countries wherethe commercializationofwildmushrooms is still an important activity forthe localniche markets, whileanew form of income is generated with thecommercialization of pickingpermits or with thenew establishmentoftruffleproductioninacountry. Tradeisthe main engine of thewildmushrooms economy that hashad apos- itivegrowthinterms of volumesand values recently at aglobalscale (Pettenella et al. 2014). AgeneraloverviewofEuropeantrade of wild mushroomsgives an understanding of thescale of themarketand theimplicationsthattrade might have on thetrans-boundaryeffects of national policy with regard to themarket. Thetrade balanceofEU28(external andinternalEU28trade)has been negative forthe freshand frozen mushrooms(Figure 6.7) accordingUN-Comtrade data, whileonlyafter 2012,the tradeofdried andpreserved mushroomsmoved to a positive netbalance, duetothe increment of pricesofChinese supply (Figures 6.8and 6.9).

Figure6.7: EU28 trade balancefor fresh andfrozenmushrooms otherthanAgaricusspecies in million €(HS-070959) 239

Figure6.8: EU28 trade balance fordried mushrooms otherthanAgaricus species in million €(HS-071239)

Figure6.9: EU28 trade balance forpreserved mushrooms otherthanAgaricusspecies in million €(HS-200390) Theestimations cannotbeprecisebecause aspecific overview of wild mush- 240 room tradewould need higher resolutiondata, whichmay be only available in some countriesthrough theirofficial statistics.Anyhow, theUN-Comtrade database representsakeydatasourcefor studying theglobaloverviewofa commoditytradedinternationally.Aprecise tradeoverviewcan be done only for specific commodities like truffles, clearly with a positive net balance both as freshand frozen productaswellasfinalproduct (see Figures6.10 and6.11), thanks for the natural availability of truffles in Europe and the limited capacity of truffle plantation outsideEurope.

Figure6.10: EU28trade balancefor fresh andfrozen in million €(HS-070952)

Figure6.11: EU28trade balancefor preservedtrufflesinmillion €(HS-200320) Internationaltrade is affected by national policies that maystimulate or inhibit wild mushroom production andexport. Forinstance, theWestern Balkans, as 241 well as Serbia,are knownfor arichspectrumofwildmushrooms that facil- itates alarge scaleuse. Thanks to theincreasingofEuropeandemand, Ser- biahas enabledcompaniestobecomemoreorientedtowards export of wild mushrooms (Keča et al. 2014); in 2007, Serbia exported a little over 7 million€ worthoffresh (chilled)forestmushroomstothe EU.Insecondplace was the export of driedforestmushrooms,atabout 6.2million€,followedbypreserved forest mushroomsat2.6 million€.The collection andexportofmushrooms is a highly regulated activity and the government establishes an annual quota forthe collection of wild mushrooms, limiting thetotal quantity available for exports for the stimulation of products with added value (Keča et al. 2015). The production of wild mushroomsisveryinconsistentdue to thevariability of the climatic conditions;consequently, thesuppliedquantityinthe market follows thewildmushroomavailabilityinthe forest (Figure 6.12).

Figure6.12: Productionofwild mushrooms in Serbia (intons) (Source: Keča et al. 2015).

Importantspecies such as Boletusedulis, Cantharellus cibarius, Craterellus cornucopioides, Lactariusdeliciosus, Marasmiusoreades, Tuberaestivum and T. magnatum arecollected by an estimated125 000 individualsinrural areas (Keča et al. 2015). Theforestproductivityisaroundthe 21.5 kg of wild mush- roomsper hectare(Keča et al. 2013), aquantity that maybetranslatedinterms of economic valuethatrangesapproximately betweenthe 40 and60€/ha consideringthe cepprice.Ingeneral,wildmushrooms pickersselltheirharvest to the“purchase stations”, whichare usuallylocated near thewildmushroom companies. Thepickers areacrucialelement of thesupplychain becausethey 242 representthe suppliers forthe 152registeredcompaniesdealingwithNWFP (MinistryofAgriculture andEnvironmental Protection,Internaldocument, 2015), amongwhich 51 of them deal with mushrooms. Asurveycarried outon 43 wild mushroom companies showed that each company has on average more than 10 permanentworkers,withanannualsupplycapacityofover50tonnes of mushroomsbothfor domestic andforeign markets(Keča et al. 2015). Moreo- ver, thesurveyhighlighted that thecompanies aregenerally involved in buying and processing of raw and semi-processed wild mushrooms, though they are moving quitefastonthe commercializationoffinalproducts.Wildmushroom prices dependonthe balanceofsupplyand demandthrough theyear(seeTable 6.2).The price usuallycoversthe main supply costslikethe feecosts forthe purchasing facilities, costs of raw materials, followed by the cost of cleaning, processing,packaging,transportation, as well as thecosts of promotionand the time of year when mushroomsare harvested. Almost allenterprisesindicated that theprice at whichtheysoldwas decidedona“costplus” basis, or in other words, aprice setupmultiplying thetotal cost by afactorthatcorresponds to thenet profit thesellerwants to have.

Table6.2: Averagepricesofforestmushrooms in Serbia (Source: Keča et al. 2015)

ProductAverage price(€/kg) DryChanterelles 12.25-53.9 DryBoletes 9.3-49.1 FreshChanterelles3.43-16.38 Brined Chanterelles 2.25-12.26 Brined Bolete 2.25-11.77 Deep frozen mushrooms5.40 FreshBolete2.21-2.94

Anothercaseofanexport-oriented countryisRomania,inwhich thewild mushroom tradeallowsthe transfer of aconsistentflow of moneytoremote ruralareas. Well recognized forthe richness of itsforests,Suceava is an ad- ministrative unitlocated in North-EastRomania with good naturalconditions formushroomproduction. Mushroom collection is traditionallypracticed by householdmembers forpersonalconsumptionand by poorsegmentsofthe ruralpopulationtosupplylocal markets. Foralmostten years, therehas been an intensivetrading of mushroomsand alongthe main road crossing theregion. Alongsidethis, an export-orientedmushroombusinessisflourish- ing, with collection points allaroundthe Suceavacounty. This facilitates the transfer of theharvest to alarge processingcentreinWestern Romania. The officialproductionsoldevery year by thenationalforestadministrationinSu- ceavaregionaccountsonaverage for150 tonnes,though specific studiesseem to indicate aproductionof50tonnessoldonthe informalmarket(Bouriaud et al. 2015a).The mushroom business in theregionisbased on an estimated number of 600to700 pickers. Less than 100ofthemare sellingthe mushrooms 243 directly at theroadsideorinthe farmers’ markets, andsome500 to 600sell the collected mushrooms to the trading firms or intermediaries. In Suceava, thereare in totalten firms legallyregistered,which rely also on an undefined number of intermediaries acting on behalf of other firms located in Suceava or othersurroundingregions.For instance, thestudy conductedbyBouriaud et al. (2015a) indicates at least seven firms in this semi-legal situation, but the real number maybesubstantially higher. Pickers can generate an important income from wild mushroom collection. This is done on afamilyoragroup networkbasis with an averagenumberof four persons in case of families or eight in case of larger networks organized during theseason (May to September). Formostofthe pickers, theincome from mushroom sellingrepresentsthe only or asubstantial part of thefamily income (Bouriaud et al. 2015b).Inagood season,theycan sell between10to 60 kg of mushroomsper day(usuallycep andchanterelle, but also Armil- laria spp. at theend of theseason).The quantities unsold at theend of the daywillbeconsumedbythe household.Atapriceof2,5 €/kg (cep,end of 2014 season), andanumberof30working days,the monthlyincomevaries between750 €and 4,500€inthe case when mushroomsare sold directlyin thefarmers’ market or next to theroad. Theincomeissharedamongst the collectors,thatmeans on averagefourpeople (family) or eight(larger pickers’ networks), whichmeans that theincomemay reach up to 2,500€for afamily with oneortwochildren.Thisdataisconfirmedinanother studypublished in aGermannewspaper (Cadenbach 2015), whichquotesa22 €incomeper day perpersonfrommushroompicking by Romapeople in WesternRomania. All theseresults do notconsider thepickers’costs fortransportation that varies between10and 100kmtoreach thecollectingplacesbytrain or car. When theproductionissold to intermediaries,the estimatedincomeisless than half of this figure(onefamilymay getbetween 500to1,000 €incomeper season) meaningthatpickers earn more when sellingthe harvestdirectlytothe final customer alongthe road than when sellingtothe firms.Thisisdue to thefact they do notpay anytax andtheydonot payany feefor theright to collect themushrooms in theforests,arightwhich is normally reserved to theforest owner,but rarelyenforced. Theincomegenerated by wild mushroom picking is used forimmediate consumptionlikefood,firewood, sometimessomething forthe home (e.g.aTV) or forpayingschool-related items(theschool is free of tax, butsomesocialcategoriescannotaffordtopay appropriateshoes and clothesfor sendingchildren to school).Almostall thepickers areentitledand receivesocialassistancefromlocal government,astheybelongtoaverypoor social category.For this reason,someofthe people interviewedwerereluctant to speakabout theirmushroom-relatedincome. On theother hand,inthe ru- ralareas wherethe pickerslive, thereare scarce employmentopportunities. Forinstance, amunicipalityof5,000 inhabitants mayhaveonly240 employed people. In general,the active population in ruralareas is occupied with sub- 244 sistenceagriculture.However,mostofthe pickersdonot ownland. They sell thereforetheirtraditional knowledgeonmushroompicking,getting an income critically needed forfamilywelfare. The two examples of Serbia and Romania show how important the economy of wild mushroom business is forrural development; especially thecaseofRo- mania demonstrates the crucial importance on household welfare where the stateoften failstosupport economically poorsegmentsofthe ruralsociety. Despite the fact that many authors bind NWFP with poverty (Marshall et al. 2006), thewildmushroomeconomy maybeanimportant source of income for theforestmanagersinthe industrialized countriesevenifthe wild mushrooms aresoldmoreasaservice rather than aproduct. Oneexample of howedible mushrooms can impact in a rural development is the case of Castilla y León region in Spain. Theregionhas more than 4.5millionproductivehectares, of which1.5 millionhectaresare forestswithgreat capacity forthe production of edible wild mushroomswithahighmarketvalue.These includespecies rec- ognized around theworld as theblack truffle (Tubermelanosporum), cep(Bo- letusedulis group), saffronmilkcaps(Lactariusdeliciosus group),chanterelles (Cantharellus cibarius), St.George’smushrooms (Calocybegambosa), morels (Morchella spp.), andmorethan50other wild edible species. Castilla yLeónalso hascenturies-old forestsand ahighlevel of useand management of mycological resourcesthat, although stillverymuchemerging,isone of themostdeveloped in Spain(Martínez-Peña et al. 2012). It is estimatedthatevery year therural areascommunities of Castilla yLeónreceive an averageof251,029 mushroom tourists from theurban areasofdifferent Spanishregions includingCastillay León.These harvesters (touristsand day-trippers) spend moneyinthe rural areasduringtheirharvestingvisits. Theregionalsoattractsother tourists and day-trippers everyyearfor mycologicalculture or food, whoare notnecessarily harvesters (Latorre 2014). It is estimatedthatthe mycologicalsectorofCastilla yLeóncan,inagood year,generate up to 65 million€,ofwhich 20%isdirect income from harvesters sellingmushrooms, 40%isvalue addedbythe agro- food industry,39% is valueaddedbymycotourism and1%isownership rights (MartínezPeña et al. 2015). Thesamesourcealsocalculatedthatapproximately 50%ofrestaurants in theregionserve wild mushrooms, thus generatingadded valuegreater than 9million €/year.Average yearly costsfor amycotourist was estimatedof130.6 €. Nevertheless theestimationmay be higher or lowerif we consider that amycotouristsinCastillayLeón whostayedovernight spent 214.7€per person peryearorday-trippersthatspend approximately72.8€ perpersonper year.Applyingthisvalue to thetotal number of mycotourists estimatedabove,the totalaverage spendingofmycotouristsinCastillayLeón is estimatedat32.7million€(Latorre 2014). Aftermorethanten years of con- solidation of theprogram of of Castilla yLeónand around 8.5mil- lion €investedbythe regional government andprovincialcouncils(52%),the EuropeanUnion (38%)and theSpanish State(10%),CastillayLeónisaregion recognised internationally28 .The system currentlyrunswithoutapublicsub- sidy thankstothe averageannualincomeof0.5 €per hectaregeneratedby 245 thesaleofharvestingpermits,which guarantees thecontrol of mushroom use andrespectstheirownership rights,while also allowing locals andvisitorsto collectmushrooms.InJune2016, theprogram had408,893 hectares of public forestsinCastillayLeónwheremushroomharvestingwas regulatedthrough theissue of permits.

CASE 6.5: Truffle cultivationinAustria – domesticationofanectomycorrhizal gourmetfungus?

In Austria, localtrufflingwas almost forgotten, andtrufflecultivation had notyet been established. Thelegal status of harvesting wild trufflesin Austriaiscomplex (ninedifferent federal laws regulating nature protection andfungi collection.Aproject(1998-2002; Austrian Research Promotion Agencyco-funded),laidthe foundation fordocumenting truffling in Austria (e.g.Urban andMader 2003), forthe discovery of previously notreported truffle species(e.g. T. brumale;Urban andPla,unpubl.), andfor research on truffle cultivation.The projectresultedinthe foundation of TrüffelGar- ten(supportedbyINITS,anincubator foracademic spin-offs),acompany producingcontrolledmycorrhized seedlingsand providingconsultationfor truffle plantation establish- andmanagement. Theinitiatorsoftruffleculti- vation in Austriadid notpromote harvesting of wild trufflesor, specifically, thetrainingoftrufflehunting dogs,toavoid conflicts with stakeholders andnature conservation.Wild truffle populationsare primarilyconsidered as avaluable geneticresourcefor truffle cultivation (Urban andPla 2009).

ThemainTuber speciescurrently cultivated in AustriaasaNWFPisT. aes- tivum f. uncinatum,the Burgundytruffle.The differenteco-and genotypes of Tuberaestivum s.l. (Molinier et al. 2016)coverawide amplitude of eco- logicalconditionsand habitatcharacteristics.Its cultivation hasalarge potentialinAustria (Chevalier 2012), buttruffleorchard managementis less studied, compared to thePérigordtruffle (Tubermelanosporum). The Tuber aestivum/uncinatum European ScientificGroup (TAUESG) promotes research andexchangeonthisspecies on aEuropeanscale.InAustria, most habitats currentlyknown areinplanar, collineand submontane zones, typically on lime-richsoils,suggestingthatthisspecies is limitedbycolder climates andthe moreacidicsoils prevailing at higher elevations.

28 Seefor instance thethree main Projects relatedtomycotourism developed by Castilla y Leon: www.micocyl.es, www.micosylva.com,www.mercasetas.es Sincethe foundation of TrüffelGartenin2003, many plantationshavebeen 246 establishedinAustria andinother European countries, by privateinitia- tive andinvestment.Thisresulted in amultitude of experiments with little scientificmonitoring, duetoalack of funding. Sincethe first harvestofa cultivated Burgundy truffle in October2008, theresults areincreasingly promising, however,due to alackofirrigation facilities in most plantations, highly dependentonclimaticconditions.In2016, afterabundant precipi- tation in spring and summer, the season provided a major harvest by July (Figure6.13) in aplantationfirstestablished in 2004. In several other planta- tions, first harvests were recorded (http://www.trueffelgarten.at/aktuell/).

Truffle cultivation in CentralEuropeopens up many possibilitiesfor gas- tronomy,tourism,rural economy andsustainable development. More fundedresearchisneededtooptimize plantationsmaking yields more reliable andamplifyingthe success of truffle cultivation as aNWFP.

Figure6.13: TruffleproductioninAustria (Photo credits: A. Urban)

Thebrief descriptionofthe above-mentionedcasestudies show therealpossi- bility to develop awider income portfoliofromthe forest sector. Achievingthis with wild mushroomsisnot easy but potentiallywildmushrooms can readily contribute to householdincomes andwelfare in remote ruralareas. Commonly policy makers paylittleattention to theeconomy that canbegeneratedfrom wild mushroomsand other NWFP,but thereisaclear need forcompanies and citizens to promoteaslowchange toward agreener economy. In arecentstudy (Vidale et al. 2016), it washighlighted that thefuturepoliciesonwildmushroom collection should go farbeyondthe harvestlimitations in termsofquantity. They also should consider thesenew professional activities of theforestsec- torwithin afiscal system that takesintoaccount thehigh-risk annual weather conditions on yields, as in thedescribed Serbiancase. 247

6.6Conclusions

Forest fungiplayakeyroleinforestecosystemfunctioning by contributing to nutrientturnoverfromlitterand wood,treenutrition andcarbonsequestration. Fungi arealso an importantpiece of thebiodiversitypuzzle. Approximately 12,500 fungal species of macrofungi alonegrowinEurope, whichmeans that fungal species richness is higher than in the case of animals or plants. In ad- dition,wildediblefungi arealsoconsidered avaluableNWFPthroughoutthe world. Fungal fruitbodieshavebeentraditionally used by differentcivilizations up to thepoint that more than 1,100fungalspecies areconsumedworldwide as food or medicine (the number risesto2,800 species if uses such as cosmeticsor toxicology arealsoconsidered). However, theknowledgeonmushrooms andthe species used vary amongdifferent regionsofthe world. Forinstance, 268fungal species areauthorized fortrade in allthe Europeancountries with relevantdif- ferences betweencountries. In spiteofthe growinginterestinmushrooms and trufflesinEurope, little is knownabout fungal productivity as well as aboutthe differentfactors influencingthe presence of thefungalfruit bodiesindifferent forest ecosystems.Thisismainlydue to theshort aboveground appearance of thosespecies whichimplies conducting long-termmonitoringand repetitive inventoriesinorder to properly characterize fungal communities in target eco- systems.The consequenceisthe scarce scientific information on fungal ecology andproductivitythroughoutEurope. This also impliesthatforestmanagers whowishtooptimize forest conditions forenhancingmushroomproduction do nothavesufficientsite-specificorspecies-specific informationavailable for developingasuitablefungal-orientedforestmanagementbymeans of theso- called mycosilviculture.Thischapter aimedtocompile thescattered available information on fungal ecology, productivity andsocioeconomics, summarizing thesuitable techniques andtools forenhancing mushroom andtruffleproduc- tion within thecontext of themultifunctionalityofEuropeanforestecosystems. In spiteofthe growinginterestonthe forest mushroomsand theconsequent increase of research efforts, gaps of knowledgestill exist. As aconclusionof thechapter,the authorsidentified theneed of further research in thenextkey points:

• Thereisanunbalancedknowledgeabout fungiinEurope. Therefore, thereisa need forincreasingresearch effortstowards developing themissing national redchecklistsofendangeredfungi species. •The factors affectingmushroomemergenceneed to be furtherunderstood. Besidesthe effectsofsite, standand weather variablesonmushroomyields, theinteractionsofthese variablesalso need to be clarified. •Scenarios forlandscape change associatedwithglobalchangeare needed 248 andhow this mayaffectthe fungal communities. • Long-termeffects of forest management practicesneed to be monitoredand analyzed.Forestmanagement practiceswhich favour mushroom yields need to beidentified. • Besides Tuber species,(semi)cultivation of otherectomycorrhizal species need to be studied. • Moreresearch on fungal communitiesisneededwithbroadleavedtreespecies, rather than coniferous species. • Thereisaneed to carry outlong-term studiesonthe dynamics of fungal communities. • Thereisaneed to estimate theeconomicimpactofthe global climatechange on mushroom fruiting andthustrading possibilitiesatdifferent scales (from localtoglobal). •Thereisaneed to highlightthe real valueofthe mushroom market (informal market)and itscontributiontothe ruraleconomies andespecially to low income groups. •HarmonizationofpoliciesatEuropeanscale (for example: toxicology.–i.e.: Tricholomaequestre)are necessary.

6.7References

Águeda,B.; Parladé, J.;deMiguel, A. M.;Martínez-Peña, F. 2006.Characteriza- tion andidentificationoffield ectomycorrhizae of Boletusedulis and Cistus ladanifer. Mycologia, 98(1): 23-30. Alday, J.G.;Bonet,J.A.; Oria-de-Rueda, J.A.;MartínezdeAragón,J.; Aldea, J.; Martín-Pinto,P.; de-Miguel,S.; Hernández-Rodríguez, M.;Martínez-Peña,F. 2017.Recordbreakingmushroomyields in Spain. FungalEcology,26: 144-146. Alonso Ponce, R.;Águeda, B.;Agreda, T.;Modrego,M.P.; Aldea, J.;Fernán- dez-Toirán, L. M.,Martinez-Peña,F.2011. Rockrosesand Boletusedulis ec- tomycorrhizal association:realized niche andclimaticsuitability in Spain. FungalEcology, 4(3): 224-232. Andrew,C.; Heegaard,E.; Kirk,P.M.; Bässler, C.;Heilmann-Clausen,J.; Krisai- Greilhuber,I.; Kuyper,T.; Senn,B.; Büntgen, U.;Diez, J.;Egli, S.;Gange,AC; Halvorsen, R.;Høiland,K.; Nordén,J.; Rustøen, F.;Boddy,L.; Kauserud,H.2017. Bigdataintegration:Pan-Europeanfungalspecies observations’assemblyfor addressing contemporary questionsinecology andglobalchangebiology. FungalBiology Reviews31: 88–98. Arif,T.; Schiel,H.; Bartecka-Mino, K. 2016. Amanitaphalloides ingestioninchil- dren in Austria, 1996 to 2014.PosterAbstract300.36thCongress of the EuropeanAssociation of PoisonsCentres andClinical Toxicologists. 24-27 May2016. Madrid. Arnolds, E.;Veerkamp, M. 2008.BasisrapportRodeLijst Paddenstoelen.–Ned- erlandse Mycologische Vereniging, Utrecht. 249 Bässler, C.,J.; Müller,M.W.; Cadotte, C.;Heibl,J.H.; Bradtka, S.;Thorn,S.; Hal- bwachs, H. 2016.Functionalresponseoflignicolousfungalguildstobark beetle deforestation. Ecological Indicators 65:149-160. Berndt, S. 2016. Aktuelles aus der Mykologie: wenig bekannte Pilzvergiftungen. BiologieinunsererZeit 3/2016(46):170-176. BoaE.2004. Wild edible fungi: Aglobaloverviewoftheiruse andimportanceto people.Non-Wood Forest Products report nº 17.Rome: FAO, ISBN 9251051577. http://www.fao.org/docrep/007/y5489e/y5489e00.htm. Boddy, L.;Büntgen,U.; Egli,S.; Gange, A.C.;Heegaard, E.;Kirk, P.M.;Mohammad, A.;Kauserud, H. 2014.Climatevariation effectsonfungalfruiting. Fungal Ecology,10: 20-33. Bonet,J.A.; De-Miguel, S.;MartínezdeAragón, J.; Pukkala, T.;Palahí,M.2012. Immediate effect of thinning on theyieldofLactarius group deliciosus in Pinuspinaster forestsinNorth-Eastern Spain. Forest Ecologyand Manage- ment,265:211-217. Bonet,J.A.; Fischer,C.R.; Colinas, C. 2006.Cultivation of black truffle to promote reforestationand land-use stability. Agronomy,26: 69-76. Bonet,J.A.; Fischer,C.R.; Colinas, C. 2004.The relationship betweenforest ageand aspect on theproductionofsporocarpsofectomycorrhizal fungi in Pinussylvestris forestsofthe centralPyrenees. Forest ecology andman- agement, 203(1):157-175. Bonet,J.A.; Oliach,D.; Fischer, C.R.;Olivera,A.; Martínez de Aragón,J.; Colinas, C. 2009.Cultivation methodsofthe blacktruffle, themostprofitableMedi- terraneannon-wood Forest product: astate of theart review. EFIproceed- ings,57: “Modelling, valuingand managing Mediterraneanforestecosystems fornon-timbergoodsand services”.Pp: 57-71. Bonet,J.A.;Pukkala, T. ;Fischer,C.R.;Palahí, M.;MartínezdeAragón, J.; Colinas, C. 2008.Empirical modelsfor predicting theproductionofwildmushrooms in Scotspine(Pinussylvestris L.)forests in theCentral Pyrenees. Annals of Forest Sciences,65: 1-8. Bouriaud,L.; Nichiforel,L.; Jitariuc,I.; Nastase, C.;Ursache, I.;Ipsilat,I.; Cârciu, C.;Luchian,L.2015a.Regionalstate of NWFP. Project deliverableStarTree (EUproject 311919)D1.3Regional state of theNWFPsector report:Suceava region. Bouriaud,L.;Nichiforel,L.;Moyer,A.; Jitariuc,I.2015b.Non wood forest prod- ucts supply chaininSuceava county,Romania.Presentationto7thStarTree project meeting,Hamburg,Germany,11th–13thNovember, 2015. Bragato, G.;Sladonja, B.;Peršurić, Đ. 2004.The soil environmentfor Tubermag- natum growth in Motovunforest, Istria. Natura Croatica, 13(2): 171-185. Bragato, G.;Vignozzi, N.;Pellegrini,S.; Sladonja,B.2010. Physical characteristics of thesoilenvironment suitable for Tubermagnatum production in fluvial landscapes. Plantand soil, 329(1-2): 51-63. Brainerd,S.; Doornbos, S. 2013.Europeancharter on fungi-gatheringand bio- 250 diversity. (https://wcd.coe.int/com.instranet.InstraServlet?command=com. instranet.CmdBlobGet&InstranetImage=2515600&SecMode=1&Do- cId=2037384&Usage=2)(accessed:21.03.2017). Breitenbach,J.; Kränzlin,F.1995: FungiofSwitzerland.Vol.4.MykologiaLuzern, Luzern. Buée, M.; Reich, M.; Murat, C.; Morin, E.; Nilsson, RH.; Uroz, S.; Martín, F. 2009. 454Pyrosequencinganalysisofforestsoils reveal an unexpectedly high fun- galdiversity. NewPhytologist,184(2): 449-456. Bundesamt für Naturschutz, 2017. Rote Liste gefährdeter Tiere, Pflanzen und PilzeDeutschlands, Bd.8:Pilze (Teil1)–Großpilze.Naturschutz undBiolo- gische Vielfalt 70/8, Landwirtschaftsverlag,Bonn-BadGodesberg. Büntgen, U.;EgliS.2014. Breaking newgroundatthe interfaceofdendroecology andmycology. Trends PlantSci. 19:613 –614 Büntgen, U.;Peter,M.; Kauserud,H.; Egli,S.2013. Unravelingenvironmental driv- ersofarecentincreaseinSwiss fungifruiting. Glob.ChangeBiol. 19:2785.2794. Burch,M.; Levetin, E. 2002.Effects of meteorological conditions on spore plumes. InternationalJournal of Biometeorology,46: 107-117. Cadenbach,C.2015. GuterStiel.Seite2:Sie habenbereitsein wenigAroma verloren, gewinnen nunaberumso mehr Wert. SüddeutscheZeitung Magazin 43/2015. Castaño, C.;Parladé,J.; Pera, J.; Martínez de Aragón,J.; Alday, J.G.;Bonet,J.A. 2016.Soildryingprocedure affectsthe DNAquantification of Lactariusvi- nosus butdoes notchangethe fungal communitycomposition. , 26(8):799-808. Castaño, C.;Bonet,J.A.; Oliva, J.;Farré,G.; Martínez de Aragón,J.; Parladé, J.;Pera, J.;Alday,J.G.2019. Rainfallhomogenizes whilefruitingincreases diversityof sporedepositioninMediterranean conditions.FungalEcology,41: 277-288. Castaño, C.;Oliva,J.; Martínez de Aragón,J.; Alday, J.G.;Parladé,J.; Pera,J.; Bonet,J.A.2017. Mushroom emergencedetectedbycombining sporetrap- ping with moleculartechniques. Appliedand environmentalmicrobiology. DOI: 10.1128/AEM.00600-17 Certini, G. 2005.Effects of fireonproperties of forest soils: areview. Oecologia, 143: 1-10. Chandelier, A.;Helson, H.;Dvorak, M.;Gischer,F.2014. Detectionand quantifica- tion of airborneinoculumofHymenoscyphuspseudoalbidus usingreal-time PCRassays. PlantPathology,95: 220. Chevalier, G. 2012.Europe, acontinent with high potentialfor thecultivation of theBurgundytruffle(Tuberaestivum/uncinatum). Acta Mycologica,47 (2): 127–132. CPC(ClimatePredictionCentre) 2017.http:// www.cpc.ncep.noaa.gov/data/ teledoc/telecontents.shtml (accessed 21.03.2017). Colinas, C.;Capdevila, J. M.;Oliach, D.;Fischer, C.;Bonet,J.A.2007. Mapa de ap- titudparaelcultivo de trufanegra (Tubermelanosporum Vitt.) en Cataluña. Ed. Centre Tecnologic Forestal de Catalunya, Solsona,134 p. Consiglio, G.;Papetti,C.2009. Atlantefotograficodei fungid’Italia. Vol3.A.M.B. Centro StudiMicologici,Vicenza. 251 Cox, F.; Barsoum, N.; Lilleskov, E.A. ; Bidartondo, M.I. 2010. Nitrogen availability is aprimary determinant of conifermycorrhizas across complexenviron- mental gradients. EcologyLetters,13:1103-1113. Dämon, W.;Krisai-Greilhuber,I.2017. DiePilze Österreichs. Verzeichnisund Rote Liste2016. Teil Makromyzeten. Austrian MycologicalSociety, Wien. Dahlberg, A. 1991. Dynamics of ectomycorrhizal fungi in a Swedish coniferous forest:afive year survey of epigeous sporocarps.Swedish Univ.Agricultural Science,Dep.ForestMycologyand Pathology. Uppsala. 23pp. Dahlberg,A.2001. Community ecologyofectomycorrhizal fungi: an advancing interdisciplinaryfield. NewPhytologist,150:555-562. Dahlberg, A.; Jonssen, L.; Nylund, J. 1997. Species diversity and distribution of biomass aboveand belowgroundamong ectomycorrhizal fungiinanold- growth Norway spruce forest in southSweden. Canadian JournalofBotany, 75:1323-1335. Dahlberg,A.; Stenström, E. 1991.Dynamic changesinnurseryand indigenous mycorrhizaofPinussylvestris seedlingsplanted out in forest andclearcuts. Plantand Soil,136(1): 73-86. Danell,E.1994.Formation andgrowthofthe ectomycorrhizaofCantharellus cibarius. Mycorrhiza,5(2), 89-97. De la Varga, H.;Águeda, B.;Ágreda, T.;Martínez-Peña,F.; Parladé, J.;Pera, J. 2013. Seasonal dynamics of Boletusedulis and Lactariusdeliciosus extraradical mycelium in pine forestsofcentral Spain. Mycorrhiza,23: 391-402. De la Varga, H.;Águeda, B.;Martínez-Peña,F.; Parladé, J.;Pera, J. 2012.Quantifi- cation of extraradical soil mycelium andectomycorrhizas of Boletusedulis in a Scotspineforestwithvariablesporocarp productivity. Mycorrhiza,22: 59-68. De-Miguel, S.;Bonet,J.A.; Pukkala, T.;MartínezdeAragón, J. 2014.Impactof forest management intensityonlandscape-level mushroom productivity:a regional model-basedscenarioanalysis. Forest,Ecology andManagement, 330: 218-227. Di Giorgio, C.;Krempff,A.; Guiraud, H.;Binder,P.; Tiret, C.;Dumenil,G.1996. Atmosphericpollutionbyairbornemicroorganismsinthe city of Marseilles. AtmosphericEnvironment,30: 155-160. Díaz-Balteiro, L.;Álvarez,A.; Oria de Rueda, J.A. 2003.Integración de la produc- ción fúngicaenlagestión forestal.Aplicaciónalmonte “Urcido” (Zamora). InvestigaciónAgraria.SistemasyRecursos Forestales,12: 5-19. Dighton, J.;Poskitt,J.M.; Howard,D.M.1986.Changes in occurrenceofbasidio- mycete fruitbodiesduringforeststand development with specific reference to mycorrhizal species. Trans. Br.Mycol.Soc., 87(1): 163-171. Duncker,P.S..;Barreiro, S.M.; Hengeveld,G.M.; Lind,T.; Mason, W.L.;Ambrozy, S.;Spiecker, H. 2012.Classificationofforestmanagement approaches:anew conceptualframework andits applicabilitytoEuropeanForestry. Ecology andSociety,17(4):51. EEA(European EnvironmentAgency) 2015.http:// www.eea.europa.eu/soer- 252 2015/europe/climate-change-impacts-and-adaptation(accessed 21.03.2017). Egli,S.2011. Mycorrhizal mushroom diversityand productivity—anindicator of forest health? Annals offorestscience, 68(1), 81-88. Egli,S.; Ayer,F.; Peter, M; Eilmann, B.;Rigling,A.2010: Is forest mushroom pro- ductivity driven by tree growth? Results from a thinning experiment. Ann. For. Sc., 67:509 Egli, S.; Peter, M.; Buser, C.; Stahel, W.; Ayer, F. 2006. Mushroom picking does notimpairfutureharvests–resultsofalongtermstudy in Switzerland. Biol. Conserv., 129: 271-276. Egli, S.; Peter, M.; Falcato, S. 2002. Dynamics of ectomycorrhizal fungi after windthrow. For. Snow Landsc.Research 77,1/2:81-88. EMA, 2017.EuropeanMycological Association. http://www.euromould.org/ links/socs.htm (accessed 21.03.17). FernandezdeAna,F.J.2000.Elfuego ylos hongos del suelo.Cuadernos de la SociedadEspañoladeCiencias Forestales,9:101-107. FernándezToirán, L. M.;Ágreda, T.;Olano,J.M.2006.Stand ageand sampling year effect on theFungalfruit bodycommunity in Pinuspinaster forestsin centralSpain. Can. J. Bot,84: 1249-1258. Galante, T.E.;Horton, T.E.;Swaney, D.P. 2011.95% of basidiosporesfallwithin 1 m. of thecap:afield-and modelling-based study. Mycologia,103:1175-1183. Gange, A.C.;Mohammad, A. B.;Damialis, A. ;Gange,E.G.2013. Mushroom phe- nologicalchanges:Arolefor resource availability? Proc.Natl. Acad.Sci. USA 110: E333-E334. Gange, A. C.;Gange,E.G.; Sparks,T.H.; Boddy, L. 2007.Rapid andrecentchanges in fungal fruiting patterns. Science: 316(5821):71-71. Gärdenfors,U.(ed.).2005. The2005Red List of SwedishSpecies. ArtData- banken,SLU,Uppsala.496 pp. Gardes,M.; Bruns, T.D. 1996.Community structureofectomycorrhizal fungiin aPinus muricata forest:above-and below-ground views. Canadian Journal of Botany,74: 1572-1583. Grzymala, S. 1965.Les recherchessur la frequencedes intoxicationspar les champignons. Bull.Med.Legale,8(2), 200-210 Hall,I.R.;Lyon, A. J.;Wang, Y.;Sinclair, L. 1998a. Ectomycorrhizal fungiwith edible fruiting bodies2.Boletusedulis. Economic botany, 52(1): 44-56. Hall,I.R.;Zambonelli, A.;Primavera, F. 1998b. Ectomycorrhizal fungiwithedi- blefruitingbodies3.Tubermagnatum, . Economic Botany, 52(2): 192-200. Hanewinkel,M.; Cullmann,D.A.; Schelhaas, M.J.; Nabuurs,G.J.; Zimmermann N.E. 2013.Climatechangemay causeseverelossinthe economic valueof Europeanforestland. Nature Climate Change, 3: 203-207 Harvey,A.E.; Jurgensen, M.F.;Larsen, M.J. 1980.Clearcutharvestingand ecto- mycorrhizae: survival of activity on residual rootsand influenceonaborder- ingforeststand in westernMontana.CanadianJournal of Forest Research, 10(3): 300-303. 253 Heegaard,E.; Boddy, L.;Diez, J. M.;Halvorsen,R.; Kauserud,H.; Kuyper,T.W.; Bässler, C.;Büntgen,U.; Gange, A. C.;Krisai-Greilhuber,I.; Andrew,C.J.; Ayer, F.;Høiland,K.; Kirk,P.; Egli,S.2016. Fine-scalespatiotemporaldynamicsof fungal fruiting: prevalence, amplitude,range and continuity. Ecography 40: 947–959. Heilmann-Clausen, J.; Verbeken, A.; Vesterholt, J. 2000. The genus Lactarius. Fungi of NorthernEurope–Vol. 2. Svampetryk, Danish MycologicalSociety. 287 pp. Hernández-Rodríguez, M.;OriadeRueda,J.A.; Pando,V.; Martín-Pinto,P.2015. Impact of fuel reductiontreatmentsonFungalsporocarpproductionand diversityassociatedwith Cistus ladanifer L. ecosystems. Forest,Ecology and Management,353:10-20. Hijmans, R.J.; Elith,J.2016. http://rspatial.org/sdm/ (accessed 21.03.2017). Hintikka,V.1988. On themacromycete flora in oligotrophicpineforests of dif- ferentagesinsouthFinland.ActaBotanicaFennica,136:89-94. Holec, J.;Beran,M., (Herausg.) 2006.Red list of fungi(macromycetes)ofthe CzechRepublic. Príroda, Praha, 24:1-282. Hora, F. G. 1959.Quantitativeexperiments on toadstoolproductioninwoods. Trans. Brit.Mycol. 1-14. Jackson, S.L.;Bayliss,K.L.2011. Sporetraps need improvement to fulfilplant biosecurityrequirements. PlantPathology,60: 801-810. Jang,S.K.;Kim,S.W.2015.Relationshipbetween Ectomycorrhizal Fruiting Bodies andClimatic andEnvironmental FactorsinNaejangsanNationalPark. Mycobiology, 43(2), 122-130. Jumpponen, A.;Jones,K.L.;Mattox, J.D.;Yaege,C.; Mattox,J.D.; Yaege, C. 2010. Massivelyparallel 454-sequencing of fungal communities in Quercusspp. indicates seasonal dynamics in urbanand ruralsites. Mo- lecularEcology,19(Suppl 1):41-53. Kardell, l. ;Eriksson, L. 1987.Kremlor,riskor, soppar.Skogsbrukmetodernas inverkan pa produktionen av matsvampar.SverigesSkogsvardsforbundsFid- skrift 2(87): 3-24. Kauserud,H.; Heegaard, E.;Semenov,M.A.;Boddy,L.; Halvorsen, R.;Stige, L.C.;Sparks, T.H.;Gange,A.C.; Stenseth N.C. 2010.Climate change and spring-fruitingfungi. Proc.R.Soc.B., 277: 1169-1177. Kauserud,H.; Heegaard,E.; Büntgen, U.;Halvorsen,R.; Egli,S.; Senn-Irlet,B.; Krisai-Greilhuber,I.; Dämon, W.;Sparks, T.;Norden,J.; Hoiland, K.;Kirk, P.; Semenov,M.; Boddy,L.; Stenseth,N.C.2012. Warming-induced shiftinEu- ropeanmushroomfruitingphenology. ProceedingsoftheNationalAcademy of Sciences, 109(36),14488-14493. Keča,L.; Keča,N.; Marčeta, M. 2015.Non-woodforestproducts,Socio-economic andecologicalaspects. University of Belgrade,Faculty of Forestry Press., 262. Keča,L.; Keča,N.; Rekola, M. 2013.Value chains of Serbiannon-woodforest 254 products. International Forestry Review, 15(3): 315–335. Keča,L.; Marčeta, M.;Keča, N. 2014.Value chainanalysisofforestmushrooms in Serbia. Proceedings of II InternationalCongress “Food Technology, Quality andSafety”,NoviSad. Kirsi, M.;Oinonen,P.1981.Mushroomyields in 10-year-old coppiceafter spray- ingwithMCPA. Karstenia,21: 1-8. Kivlin,S.N.; Winston,G.C.;Goulden, M.L.;Treseder,K.K.2014. Environmen- talfilteringaffects soil fungal communitycompositionmorethandispersal limitation at regional scales. FungalEcology,12: 14-25. Knudsen, H.;Vesterholt, J. 2012.Funga Nordica:agaricoid,boletoidand cyphel- loid genera. Nordsvamp, Copenhagen,Denmark. Koide, R.X; Xu,B.; Sharda,J.2005. Contrastingbelow-ground viewsofanecto- mycorrhizal fungal community. NewPhytologist,166:251-262. Kranabetter, J.M.;Kroeger,P.2001. Ectomycorrhizal mushroom response to partialcutting in awestern hemlock-westernredcedarforest. Can. J. For. Res.,31: 978-987. Kropp,B.R.; Albee, S. 1996.The effectsofsilvicultural treatments on occurrence of mycorrhizal sporocarps in a Pinuscontorta forest:apreliminary study. Biological conservation,78(3):313-318. Kutafyeva, N.P. 1975.Vlijanieudobrenii na urozai gribov vsosnjakah srednego Priangarja.(Summary:Effects of fertilizersonmushroomyieldinpineforest alongthe middle Angara). Mikol. Fitopatol., 9, 288-293. Larson,A.J., C. A. Cansler, S. G. Cowdery, S. Hiebert, T. J. Furniss,M.E.Swan- son, andJ.A.Lutz. 2016.Post-firemorel (Morchella)mushroomproduction, spatialstructure,and harvestsustainability. Forest Ecologyand Management, 377: 16-25. Latorre, J. 2014.Diagnóstico einnovaciónaplicadaala gestiónyvalorización del micoturismoenCastillayLeón.Universidad Católica SanAntonio de Murcia. Lavorel, S.;Colloff,M.J.; Mcintyre,S.; Doherty,M.D.; Murphy,H.T.; Metcalfe, D.J.;Dunlop, M.;Williams, R.J.; Wise,R.M.; Williams, K.J. 2015.Ecological mechanisms underpinningclimateadaptationservices. Glob.ChangeBiol. 21:12-31. Le Tacon, F. 1997.Versune meilleure priseencomptedes champignonsmy- corhiziensdanslagestionforestière. RevueForestièreFrançaise,XLIX:245- 255 Letcher, A. 2007.Shroom: aculturalhistory of themagic mushroom.Ecco, New York. Li,D.W. 2005.Release anddispersal of basidiosporesfromAmanita muscaria var. alba andtheirinfiltration into aresidence. MycologicalResearch,109: 1235-1242. Lilleskov,E.A.; Hobbie,E.A.;Horton,T.R.2011. Conservation of ectomycorrhizal fungi: exploringthe linkages betweenfunctionaland taxonomicresponses to anthropogenicNdeposition. FungalEcology,4:174–183. Lindahl, BD.; Nilsson, RH.;Tedersoo, L. ;Abarenkov, K. ;Carlsen,T.;Kjøller,R.; Kõljalg, U. ;Pennanen,T.;Rosendahl, S. ;Stenlid,J.;Kåuserud, H. 2013.Fungal 255 community analysisbyhigh-throughput sequencing of amplified markers– user’s guide. NewPhytologist,199:288-299. Liu, B. ;Fischer,C.;Bonet, J.A. ;Olivera, A. ;Inchusta,A.; ColinasC.2014. Pattern of Tubermelanosporum extramatricalmyceliumexpansion over a20-year chronosequence in Quercus ilex-truffle orchards. Mycorrhiza, 24 (1) supple- ment:47-54. Liu, B.; Bonet, J.A.; Fischer, C.R.; Martínez de Aragón, J.; Bassie, L.; Colinas, C. 2016. Lactariusdeliciosus Fr.Soilextraradicalmyceliumismoreresilient to forest thinning than mushroom fruiting andcan be used to estimate po- tentialstand fruitbodyproductivity. Forest,Ecology andManagement,380: 196-201. Lowy,B.1974. Amanitamuscaria andthe Thunderbolt legend in Guatemalaand Mexico. Mycologia 66:189-191. Marshall,E.; Schreckenberg, K.;Newton, A. C. 2006.Commercialization of Non-timberForestProducts: FactorsInfluencing Success. LessonsLearned from Mexico andBolivia andPolicyImplicationsfor Decision-makers. Book, Cambridge, UK:TrafficInternational. Martínez de Aragón,J.; Bonet J.A.;Fischer C.R.;Colinas C. 2007.Productivityof ectomycorrhizal andselectededible saprotrophicfungi in pine forestsofthe pre-Pyrenees mountains, Spain: Predictive equationsfor forest management of mycologicalresources. Forest,Ecology andManagement,282:63-69 Martínez-Peña, F.;de-Miguel,S.; Pukkala, T.;Bonet,J.A.; Ortega-Martínez, P.; Aldea, J.;MartínezdeAragón, J. 2012.Yield models forectomycorrhizal mush- roomsinPinussylvestris forestswithspecial focusonBoletusedulis and Lac- tarius groupdeliciosus. Forest Ecologyand Management, 282:63–69. Martínez-Peña, F.;Picardo,A.; Redondo,C.; Latorre, J. 2015.Micocyl.es: El pro- gramademicologíadeCastillayLeón. BoletínMicológicodeFAMCAL, 10,1–149. Martínez-Peña, F. 2009.Produccióndecarpóforosmacromicetosepígeos en masas ordenadas de Pinussylvestris.L.Disseration,ETSIMontes. Universi- dadPolitécnicadeMadrid. Martín-Pinto,P.; Vaquerizo, H.;Peñalver, F.;Olaizola, J.;Oria-de-Rueda, J.A. 2006.Early effectsofawildfireonthe diversityand production of fungal communitiesinMediterranean vegetation typesdominated by Cistus ladan- ifer and Pinuspinaster in Spain. Forest Ecologyand Management 225(2006) 296–305. Molinier,V.; Murat, C.;Peter,M.et al.,2016: SSR-basedidentification of genetic groups within Europeanpopulations of Tuberaestivum Vittad. Mycorrhiza 26:99. ND-GAIN2017. http://index.gain.org/ranking(accessed 21.03.2017). Nilsson, R.H. ;Ryber, M. ;Kristiansson, E. ;Abarenkov, K. Larsson,K.H.;Kõljalg, U. 2006.Taxonomic reliabilityofDNA sequencesinpublicsequencedata- bases:afungalperspective.PLoSOne,1:e59. Nilsson, R.H. ;Taylor, A.F.S. ;Bates, S.T. ;Thomas, D. ;Bengtsson-Palme,J.; 256 Callaghan,T.M.;Douglas,B.;Griffith, G.W. ;Ucking, R.L. Suija, A.V.E. ;Tay- lor, D.L.E.E.;Teresa, M. ; Kõljalg, U. ; Abarenkov, K. ; Tedersoo, L. ; Bahram, M. ;Bruns, T.D. ;Drenkhan, T. ;Eberhardt,U.;Dueñas, M. ;Grebenc,T.; Hartmann,M.;Kirk,P.M.;Kohout, P. ;Larsson,E.;Lindahl,BD. ;Lücking, R. ; Martín, M.P. ; Matheny, P.B.;Nguyen, N.H.; Niskanen, T. ; Oja, J. ; Peay, K.G. ;Peintner, U. ;Peterson, M. ;Põldmaa, K. ;Saag, L. ;Saar, I. ;Schüßler, A. ; Scott, J.A.;Senés, C. ; Smith, M.E.;Telleria, M.T. ; Weiss, M. ; Larsson, K.H. 2013.Towards aunifiedparadigmfor sequence-basedidentification of fungi. MolecularEcology,22, 5271–7. Nilsson, H.;Tedersoo, L.;Abarenkow,K.; Ryberg,M.Kristiansson, E.;Hart- mann,M.; Schoch,C.; Nylander, J.;Bergsten, J.;Porter, T.;Jumpponen,A.;, Vaishampayan,P.; Ovaskainen,O.; Hallenberg,N.; Bengtsson, J.;Eriksson, M.;Larsson,K.H.; Larsson, E.;Koljalg,U.2012. Five simple guidelines for establishing basicauthenticityand reliability of newlygeneratedfungalITS sequences. MycoKeys,4:37–63. North, M.;Greenberg, J. 1998.Stand conditions associatedwithtruffleabun- danceinwestern hemlock/Douglas-firforests. Forest Ecologyand Manage- ment, 112(1), 55-66. Norvell, L. 1995.Lovingthe chanterelletodeath?The 10 year chanterellepro- ject. McIlvanea 12,6–25. Nyland,R.D.2002Silviculture: Conceptsand Applications,2nd Edition. The McGraw-HillCompanies, Inc. NewYork. 704pp. Ohenoja, E. 1988.Effectofforestmanagementproceduresonfungalfruit body production in Finland. Acta Bot. Fennica, 136: 81-84. Ohenoja, E. 1989.Forestfertilization andfruitingbodyproductioninfungi.Atti delCentroStudi perlaFloraMediterranea, 7: 233-252. Oliveira, M.;Ribeiro,H.; Delgado, J.L.;Abreu,I.2009. Theeffects of meteorolog- ical factor sonairborneFungalspore concentrationintwo areasdiffering in urbanisation level. InternationalJournal of Biometeorology,53: 61-73. Olivera, A.;Bonet,J.A.; Oliach,D.; Colinas, C. 2014a. Time anddoseofirrigation impact Tubermelanosporum proliferationand growth of Quercusilex seedling hostsinYoung black truffle orchards. Mycorrhiza,24(1) supplement: 73-78. Olivera, A.;Bonet,J.A.;Palacio,L.; Colinas, C. 2014b.Adequateweed suppres- sion strategies can promote T. melanosporum mycelial expansionand seed- ling growth in newly establishedblack truffle plantations. Annals of Forest Sciences,71(4):495-504. Olivera, C.;Fischer,C.R.; Bonet, J.A.;MartínezdeAragón,J.; Colinas, C. 2011. Weed management andirrigation arekey treatments in emerging blacktruf- fle (Tubermelanosporum)cultivation.New Forests, 42 (2): 227-239. Olivier, J.M.;Savignac, J.C. ;Sourzat,P.2012. Truffe et Trufficulture.Ed. Fanlac. París. Oria-de-Rueda, J.A.;Hernández-Rodríguez, M.;Martín-Pinto, P.;Pando,V.; Olaizola, J. 2010.Could artificialreforestationsprovide as much production anddiversity of fungal species as naturalforeststandsinmarginalMediter- ranean areas?. Forest,Ecology andManagement,260:171-180. 257 Palahí,M.; Pukkala, T.;Bonet,J.A.; Colinas, C.;Fischer,C.R.; Martínez de Aragón, J. 2009.Effectofthe inclusionofmushroomvaluesonthe optimalmanage- ment ofeven-agedpinestandsofCatalonia. Forest Science,55(6):503-511. Papetti, C.;Consiglio, G.;Simonini, G. 2011.Atlante fotografico dei fungid’Italia. Vol. 1, A.M.B. Centro StudiMicologici,Vicenza. Parladé, J.; de-la-Varga, H. ; de-Miguel, A.M. ; Sáez, R. ; Pera, J. 2013. Quantifi- cation of extraradical mycelium of Tubermelanosporum in soilsfromtruffle orchards innorthernSpain.Mycorrhiza, 23: 99-106. Parladé, J.;Hortal, S.;Pera, J.;Galipienso,L.2007.Quantitativedetection of Lactariusdeliciosus extraradical soil mycelium by real-timePCR andits ap- plication in the study of fungal persistence and interspecific competition. JournalofBiotechnology,128:14-23. Peay,K.G.; Bruns, T.D. 2014.Spore dispersalofbasidiomycete fungiatthe land- scapescale is driven by stochastic anddeterministic processesand gener- ates variabilityinplant-fungalinteractions. NewPhytologist,204:180-191. Pedrono, M.;Locatelli,B.; Ezzine-de-Blas,D.; Pesche,D.; Morand, S.;Binot,A. 2016.ImpactofClimateChangeonEcosystemServices. in:E.Torquebiau (ed.), ClimateChangeand AgricultureWorldwide,Springer, Netherlands. Ch.19, pp:251-261. Peintner,U.; Pöder,R.2000.Ethnomycologicalremarks on theIceman’sfungi. In:BortenschlagerS,Oeggl K(eds) TheIcemanand hisnatural environment. Springer,Vienna.Pp: 143-150. Peintner,U.; Schwarz,S.; Mesic´,A.; Moreau, P-A.;Moreno, G.;Saviuc,P.2013. Mycophilic or Mycophobic?Legislation andGuidelines on Wild Mushroom Commerce Reveal DifferentConsumptionBehaviour in EuropeanCountries. PLoS ONE,8(5): e63926. Perry, D.A.;Borchers, J.G.;Borchers, S.L.;AmaranthusM.P.1990. Species Mi- grations andEcosystemStability During Climate Change:The Belowground Connection. Conservation Biology,4:266-274. Peter, M.;Buée, M.;Egli, S. 2013:Biodiversityofmycorrhizal fungiasacrucial player in forest ecosystemfunctioning.In: KrausD., Krumm F. (eds.) Integra- tive approaches as an opportunity forthe conservation of forest biodiversity. European Forest Institute.pp. 170-179. Pettenella, D.;Vidale, E.;DaRe, R.;Lovric, M. 2014.NWFPinthe international market:currentsituation andtrends.Project deliverableD3.1. StarTree pro- ject (EUproject 311919).Legnaro (Padova),Italy. Pilz,D.; Norvell, L.;Danell, E.;Molina, R. 2003.Ecology andManagement of Commercially HarvestedChanterelleMushrooms.Gen.Tech. Rep.PNW- GTR-576. Portland OR:DepartmentofAgriculture, Forest Service, Pacific NorthwestResearch Station, pp.1–83. Pilz,D.; Molina R. 2002.Commercial harvests of edible mushroomsfromthe forestsofthe Pacific NorthwestUnitedStates:issues, management,and 258 monitoring forsustainability. Forest,Ecology andManagement, 155(1):3-16. Pilz, D.; Molina, R.; Mayo, J. 2006. Effects of thinning Young forests on chante- rellemushroomproduction. JournalofForestry, 104(1):9-14. Power, R.; Salazar-García, D.; Straus, L.; Morales, M.; Henry, A. 2015. Microre- mainsfromElMirón Cave humandentalcalculussuggest amixed plant-an- imal subsistence economy during the Magdalenian in Northern Iberia. Jour- nalofArchaeological Science,60: 39-46. Primicia,I.; Camarero,J.J.; Martínez de Aragón,J.; de-Miguel,S.; Bonet,J.A. 2016.Linkagesbetween climate,seasonalwood formationand mycorrhizal mushroom yields. Agricultural and ForestMeteorology,228:339-348. Reyna, S. 2012.Truficultura. Fundamentos ytécnicas. Ed.Mundiprensa. Madrid. 720pp. Ricard, J.M. 2003.Latruffe. Guidetechniquedetrufficulture. Centre technique interprofessionnel desfruitsetlégumes.Paris.268 pp. Rockström, J.;Steffen,W.; NooneK., PerssonÅ., Chapin,III F.S.,LambinE.F., Lenton T.M.,SchefferM., FolkeC., SchellnhuberH.J., NykvistB., de Wit C.A.,HughesT., vander Leeuw S.,Rodhe H.,Sörlin S.,Snyder P.K.,Costanza R.,Svedin U.,FalkenmarkM., KarlbergL., Corell R.W.,Fabry V.J., Hansen J., Walker B.,LivermanD., Richardson K.,Crutzen P.,FoleyJ.A.2009. Asafe operatingspace forhumanity. Nature 461:472-475. Salerni, E.;Perini,C.2004. Experimental studyfor increasing productivity of Boletusedulis s.l. in Italy. Forest,Ecology andManagement,201(2): 161-170. Sánchez-Ramírez,S.; Tulloss, R.E.;Guzmán-Davalos, L.;Cifuentes-Blanco, J.; Valenzuela, R.;Estrada-Torres, A.;Ruán-Soto, F.;Díaz-Moreno, R.;Hernan- dez-Rico,N.; Torres-Gómez, M.;León, H.;Moncalvo, J.-M.2015. In andout of refugia: historical patterns of diversityand demography in theNorth Amer- ican Caesar’s mushroom species complex. Molec. Ecol. 24:5938-5956. Sarjala, T.;Savonen,E.-M. ;Potila, H. 2005.Effectofirrigationonfruitbodypro- ductionofmushrooms in aFinnish Scotspineforest. Abstract bookofthe IV InternationalWorkshop Edible Mycorrhizal Mushrooms. Murcia,Spain.Pp: 113. Sato,H.; Morimoto, S.;Hattori,T.2012. Athirty-yearsurveyreveals that eco- systemfunctionoffungi predicts phenology of mushroom fruiting. PloS one, 7(11),e49777. Schenk-Jäger, K.M.;Rauber-Lüthy, C.;Bodmer, M.;Kupferschmidt,H.; Kul- lack-Ublick, G.A.;Ceschi, A. 2012.Mushroompoisoning:astudy on circum- stancesofexposureand patterns of toxicity. European JournalofInternal Medicine 23:e85-e91. Schenk-Jäger, K.M.;Egli, S.;Hanimann, D.;Senn-Irlet, B.;Kupferschmidt, H.; Büntgen, U. 2016.Introducingmushroomfruitingpatternsfromthe Swiss National Poisons InformationCentre. PLoS ONE 11:e0162314. Schulp,C.J.E.; Thuiller,W.; VerburgP.H.2014. Wild food in Europe: Asynthesis of knowledgeand data of terrestrialwildfood as an ecosystemservice. Eco- logicalEconomics,105:292-305. Schultes,R.E.; Hofmann, A. ;Rätsch, C. 1992.Plantsofthe Gods. Theirsacred, healingand hallucinogenic powers.Healing ArtsPress,Rochester-Vermont. 259 Schweigkofler,W.; O’Donell,K.; Garbelotto,M.2004. Detectionand quantifi- cation of airborne conidia of Fusarium circinatum,the causal agentofpine pitchcanker,fromtwo California sitesbyusing areal-timePCR approach combined with asimplespore trapping method. App. Environ. Microbiol., 70(6): 3512-20. Senn-Irlet, B.; Heilmann-Clausen, J.; Genney, D.; Dahlberg, A. 2007. Guidance forConservationofMacrofungiinEurope. Document prepared forThe Di- rectorate of Culture and Cultural and Natural Heritage Council of Europe, Strasbourg.The EuropeanCouncil forConservationofFungi (ECCF)within theEuropeanMycological Association (EMA). Shubin,V.I.1988. Influenceoffertilizers on thefruitingofforestmushrooms. Acta Bot. Fennica, 136:85-87. Simmel J. 2016a. Chapter7–conclusions andperspectives. In Simmel J.:Cryp- togams as indicatororganismsinecology andconservationbiology.79-82. DissertationUniversityofRegensburg. Simmel J. 2016b: Chapter6–shifts in species compositionofmacromycete assemblages in thenaturereserve „Sippenauer Moor“– an assessment using species identities,Ellenberg indicatorvalues, andfunctionaltraits. pp.68-78. DissertationUniversityofRegensburg. Sisak, L.;Riedl,M.; DudikR.2016. Non-market non-timber forest products in theCzechRepublic–Theirsocio-economiceffects andtrendsinforestland use. Land UsePolicy,50: 390-398. Smith, J.E.;Molina, R.;Huso, M. M.;Luoma,D.L.; McKay, D.;Castellano, M.A.;Val- achovic,Y.2002. Species richness,abundance andcompositionofhypogeous andepigeousectomycorrhizal fungal sporocarps in young, rotation-age,and old-0growth stands of Douglas-fir(Pseudotsuga menziesii)inthe Cascade RangeofOregon,USA. Canadian JournalofBotany,80(2):186-204. Smith, D.M. 1986.The practice of silviculture.8th ed.JohnWiley &Sons, New York. Sourzat, P. 2002.Guide pratique de trufficulture.Ed. Stationd’expérimentations surlatruffe. Le Montat.France. 119pp. Stara, K.,Bonet,J.A.;Wong, J. ;Avdibegović,M.;Barstad, J. ;Bouriaud, L. ;Da- nutChira, D. ;Dickinson,B.;Egli, S. ;Ehrlich,P.;Karpavičienė,B.;Grebenc, T. ;Hale, M. ;Kadlec, J. ;Karadžić, D. ;Kasparavičius, J. ;Keča, L. ;Keča, N. ; Korjus, H. ;Kovalcik, M. ;Krisai-Greilhuber,I.;Kušan, I. ;Dinca,L.;Magnús- dóttir,L.;Martín-Pinto,P.;MartínezdeAragón, J. ;Molinier,V.;Kängsepp, V. ;Korjus, H. ;Mumcu Küçüker, D. ;Nahm, M. ;Nedanovska, V. ;Nedelin, T. ;Oria-de-Rueda, J.A. ;Rasztovits, E. ;Riedl,M.;Salo, K. ;SantoseSilva, C. ;Sheppard, J. ;Sitta,N.;Staniszewski, P. ;Stoyanova, M. T. ;Suriano, E. ;Tomao,A.;Toscani, P. ;Zalitis, T. ;Zgrablić, Ž. 2016. Non Timber Forest products linguisticdiversity.The case of mushrooms. Conference Wild Forest Products in Europe,StarTree, 13-14October 2016.BookofAbstracts 44. Stobbe,U.; Egli,S.; Tegel, W.;Peter,M.; Sproll,L.; Büntgen, U. 2013.Potential 260 andlimitationsofBurgundytrufflecultivation. Appliedmicrobiologyand biotechnology, 97(12):5215-5224. Straatsma, G.; Ayer, F.; Egli, S. 2001. Species richness, abundance, and phenol- ogyoffungalfruit bodiesover21years in aSwiss forest plot. Mycological Research, 105(05):515-523. Stulik, M. 2016.Die Fruktifikationder Makromyceten aufProbeflächen in der Lobau im zweiten Halbjahr 2015 im Vergleich mit den Jahren 1980–1994.– Diploma-Thesis University of Vienna. Suz, L. M.; Martín, M.P.; Colinas, C. 2006. Detection of Tuber melanosporum DNAinsoil. FEMS MicrobiolLett,254(2): 251-257. Suz, L.M.;Martín, M.P.;Oliach,D.; Fischer, C.R.;Colinas,C.2008. Mycelial abun- danceand other factorsrelated to truffle productivity in Tubermelano- sporum-Quercusilex orchards. FEMS Microbiol. Lett,285(1): 72-78. Tahvanainen, V.;Miina, J.;Kurttila, M.;Salo, K. 2016.Modelling theyields of marketed mushroomsinPiceaabies stands in Eastern Finland. Forest,Ecol- ogyand Management,362: 79-88 Tedersoo,L.; Bahram,M.; Põlme, S.;Kõljalg,U.and other 54 coauthors2014. Globaldiversity andgeographyofsoil fungi. Science,346 (6213). TEEB (The EconomicsofEcosystems &Biodiversity).2017. http://www.teebweb. org/resources/ecosystem-services/ (accessed 21.03.2017) Termorshuizen,A.J.1993. Theinfluenceofnitrogenfertilisers on ectomycor- rhizas andtheirfungalcarpophores in youngstandsofPinussylvestris. For. Ecol.Manag., 57,179-189. Troutt,C.; Levetin, E. 2001.Correlationofspringspore concentrations and meteorologicalconditionsinTulsa,Oklahoma. InternationalJournal of Bi- ometeorology,45: 64-74. Tomao, A.;Bonet,J.A.; Castaño, C.;de-Miguel,S.2019. Howdoes forest manage- ment affect fungal diversityand communitycomposition?Currentknowl- edgeand future perspectives forthe conservation of forest fungi. Forest, Ecologyand Management.https://doi.org/10.1016/j.foreco.2019.117678. Tomao, A.;Bonet,J.A.; Martínez de Aragón,J.; de-Miguel,S.2017. Is silviculture able to enhancewildforestmushroomresources?Currentknowledgeand future perspectives. Forest,Ecology andManagement,402: 102-114(DOI: 10.1016/j.foreco.2017.07.039). Tubay, J.M.;Suzuki, K.;Uehara, T.;Kakishima,S.; Ito, H.;Ishida, A.;Yoshida,K.; MoriS., RabajanteJ.F., MoritaS., Yokozawa M.,Yoshimura J. 2015.Microhabi- tatlocalityallowsmulti-species coexistenceinterrestrial plantcommunities. ScientificReports 5: 15376. Twieg, B.D.;Durall, D.M.;Simard,S.W. 2007.Ectomycorrhizal fungal succession in mixedtemperate forests. NewPhytologist,176(2): 437-447 Urban, A.;Mader,A.2003: Über Trüffelvorkommen (Tuberaestivum)imsüdli- chen Niederösterreich:Einfluss desNiederschlagsauf dieFundmenge. Ös- terr.Z.Pilzk. 12:193-204. Urban, A.;Pla T. 2009:Conservationstrategiesfor Tuberaestivum. Österr.Z. Pilzk.19: 273-279. 261 vanTeeffelen,A.; Meller,L.; vanMinnen, J.;Vermaat,J.; Cabeza,M.2014. Howcli- mate proofisthe EuropeanUnion’s biodiversity policy? Reg. Environ. Change, 15:997-1010. Väre, H.; Ohenoja, E.; Ohtonen, R. 1996. Macrofungi of oligotrophic Scots pine forestsinnorthernFinland.Karstenia,36: 1-18. Vidale, E.; Da Re, R.; Pettenella, D. M. 2016. Trends, rural impacts and future developments of regional WFPmarket. Legnaro(Padova), Italy. Vogt,K.A.; Bloomfield,J.; Ammirati,J.F.; Ammirati,S.R.1992. Sporocarpproduc- tion by basidiomycetes with emphasis on forest ecosystems. In: Carol, G.C., Wicklow, D.T. (Eds). TheFungalCommunity.M.Decker, NewYork. p: 563-579. Vrachionidou,M.2007. Cultural andsocialvalue of mushrooms. Unpublished PhDthesis. Universtiy of Ioannina, Ioannina –Greece(in Greek). Wardle, D. A.;Lindahl,B.D.2014. Disentanglingglobalsoilfungaldiversity. Science, 346(6213),1052-1053. Wasson,V.; Wasson,R.G.1957. Mushrooms, Russia,and history. Volume II.Pan- theonBooks,New York. Wästerlund,I.1989.How is theoccurrenceofmushroomfruitbodiesinfluenced by thesilvicultural treatments?. SvensBot.Tidskr., 83:103-12(in Swedishwith English Summary). West,J.S.; Atkins, S.D.;Emberlin,J.; Fitt,B.D.L.2008. PCRtopredict risk of air- bornedisease. Trends in Microbiology,16: 380-387. Wicklund,K.; Nilsson, L.O.;Jacobsson,S.1995. Effect of irrigation,fertilization andartificial droughtonbasidiomaproductioninaNorwaysprucestand. Canadian JournalofBotany,73(2):200-208 Wojewoda,W.; Lawrynowicz, M. 2004.Red list of threatened macrofungi in Po- land (3rd edn)[Czerwonalista grzyböwwielkoowocnikowych zagrozonychw Polsce(wyd. 3)]. In Zarzycki,K., MirekZ.(Eds.): List of slimemoulds, algae, macrofungi,mosses, liverworts andplantsthreatenedinPoland. Krakow: Inst.Bot.Pol.Acad.Sci. Wollan,A.K.; Bakkestuen,V.; Kauserud,H.; Gulden,G.; Halvorsen, R. 2008. Modellingand predicting fungal distribution patterns usingherbarium data. JournalofBiogeography, 35(12),2298-2310. Wu,Y.; Choi,M-H.; Li,J.; Yang,H.;Shin,H-J.2016. Mushroom Cosmetics: The Presentand Future. Cosmetics,3(3): 22-35. Yamin-Pasternak,S.2011.Ethnomycology:Fungi andMushrooms in Cultural Entanglements. In: Anderson,EN, Pearsall,D.; Hunn,E.; Turn,N.Ethnobiol- ogy.Wiley-Blackwell,New Jersey.Pp: 230-231. 11 Appendix 409

11.1 Glossary

Aromatic plants Plants that produceand exude aromaticsubstancesmainlyvolatile compoundsknown as essential oils that broadlyusedinfoodindustry, cosmetics, animal breeding, agriculture. Ascomycete Fungithat, together with theBasidiomycete, from thesubkingdomDikarya of thekingdom Fungi. Ascomyceteare thelargest phylumofFungi with over64,000 species, includingspecies of commercial interest such as morels or truffles. Basalarea Is theareaofagiven section of land that is occupiedbythe cross-section of tree trunks andstems at thebase. Basidiomycete Fungithat, together with theAscomycete,fromthe subkingdom Dikarya of thekingdom Fungi. Basidiomyceteincludesvalued speciessuchaschantarelles or boletes. Bioavailible Theavailabilityofchemicalorcompoundfor absorptionbyplantoranimal tissue in adefinedformorstate. Brand unique design,sign, symbol,words,oracombination of these, employed in cre- atinganimagethatidentifiesaproductand differentiates it from itscompetitors. Over time,thisimagebecomes associated with alevel of credibility,quality,and satisfaction in theconsumer‘s mind(Source:http://www.businessdictionary.com). Decision support system (DSS) Atoolthatprovides supporttosolve decision problems by integrating user interface, simulator,expertrules,stakeholder preferences,data- base managementand optimization algorithms. Certification (from ISO) theprovision by an independentbodyofwrittenassurance (a certificate)thatthe product, serviceorsysteminquestion meetsspecific require- ments (standard). Formofsymbiotic relationship that occurs betweenafungalsymbiont andthe rootsofvarious plantspecies that acts as ahost Ectomycorrhizal Thesymbiotic relationship betweenafungusand thetissues of various plantspecies. Empirical model Amodel that is developed usingstatistical techniques andcalibrated with an empiricaldataset measured in thefield. Epigeous fungi Thefruit body of thefungi growsonorclose to theground. Expert-based model Amodel that is developed usingadataset of quantitative expert judgements when empiricaldataare notavailable or cannot be measured. Explanatory variable In amodellingframework,eachofthe factors–continuousor categorical–thatinfluences andcauses changesoverthe response variable,which is thefocus of theresearch.When themodel is expressed as amathematical equation, theexplanatory variablesare thosewhose valueisgiven as an inputofthe model. Also knownasindependentvariable or predictor. Forest inventory Collection,summarizationand processing of theinformation related 410 with thestock,availability, potential useand spatial distribution of agiven biological resource locatedinthe forest Forest model Adynamic representation of theforestand itsbehaviour, at whatever level of complexity,based on aset of (sub-)models or modules that together determine thebehaviourofthe forest as defined by thevalues of aset of statevariablesaswell as theforestresponses to changesinthe driving variables Forest Ownership Refers to thelegal righttofreelyand exclusivelyuse,control,transfer, or otherwise benefit from aforest(treesgrowing on land classifiedasforest).Own- ership canbeacquired throughtransfers such as sales, donations, andinheritance. Forest Statistics Acompilation of statistics at national or regionallevel providingin- formation on production,harvestingand trade statistics forforestproducts.Apart, general information on such topicsaswoodlandarea, annual planting activity, forest ownership,employment, finance &prices… is also provided Future-proof food (NWFPand wild forest products) following thedefinition given by theECinthe European Research &Innovation forFood&Nutrition Securityreport (EC, 2016) future-prooffoodare more sustainable,resilient,responsible,diverse, competitive,and inclusivefoodproducts: •Sustainable:withrespect to naturalresourcescarcityand in respectofplanetary boundaries; • Resilient: with respecttoadaptingtoclimate andglobalchange, includingextreme events andmigration; •Responsible:withrespect to beingethical,transparent andaccountable; • Diverse:withrespect to beingopentoawiderange of technologies, practices, approaches, cultures andbusinessmodels; •Competitive:withrespect to providingjobsand growth; •Inclusive: with respecttoengagingall food system actors,includingcivilsociety, fightingfoodpoverty, andprovidinghealthy food forall. Grazing intensity Theproportion of thecurrent season’sforage production that is con- sumedortrampled GrowingStock Volume over bark of allliving treeswithacertain minimum diameter at breast height.Includesthe stem from ground level up to atop, excludingbranches (but consideringalimitdiameter;branches>7cm count),twigs, foliage, flowers, seeds, androots. Growth andyield model Aset of models that predicts thestructureand development (regeneration, incrementand mortality) of aforeststand. Hypogeous fungi Thefruit body of thefungi growsbelow-ground. Ideotype Thedescription of theidealised appearanceofaplant variety(seeDonald 1968). Informal economy system of trade or economic exchange used outsidestate controlled or moneybased transactions. Practicedbymostofthe world‘spopulation,itincludes barter of goods andservices, mutual self-help,odd jobs, street trading, andother such directsaleactivities. Income generated by theinformaleconomy is usually not recorded fortaxation purposes andisoften unavailablefor inclusioningross do- mestic productcomputations. (Source: http://www.businessdictionary.com). Livestockgrazing Thegrazing of domesticanimalsthatare raised on afarm. In some cases,the term is referred only to theruminants (cattle, sheepand goats). 411 ManagementPlan Supports theplanningofmanagementactivitiesonaforest area that hasalong-termmanagementgoals,which is periodically revised. Theplanmay refertoforestmanagementunitlevel or smallerunits (standsorcompartments)and describesactivitiesplanned forindividual operational units butmay also provide general strategies planned to reachmanagementgoals. Medicinalplants Plants that areusedbyhumansfor therapeutic, tonic, purgative, or anyother health-promotingpurposes.Itcould be used anypartofthe plants (leaves, roots, seeds, bark). Model Amathematical description of therealworld in asimplifiedway. Multi-purpose management Forestareadesignatedprimarily formorethanone purpose andwherenone of thesealone is considered as thepredominantdesignatedpur- pose.Forest managementmight focusonprovisioningservicesinthe form of wood, butalsoattheco-production of other products (likenon-woodforestproducts), livestockgrazing,recreationalorwatershed services includingthe conservation of ecosystems andbiodiversity. Mycelium Vegetative part of afungusconsistingofamassofbranching, thread-like hyphae. Fungal colonies composed of mycelium arefound in andonsoiland many other substrates Mycosilviculture Array of silviculturaltreatmentsand operations aimingatenhancing theprovision of mushrooms andtruffles in order to integrate theseproducts into multifunctionalforestmanagementplanning. National Forest Inventory Thesystematiccollectionofdata andforestinformation such as,situation,propertyand protection regime,nature,legal status, probable evolution, production capacity,etc., of alltypes of forest goods at acountrywide levelfor making high-level policy decisionsand broad-scale resource monitoring. Non-timber forestproducts (NTFP) NTFP is oftenusedasasimilar term fornon-wood forest products (NWFP).The main differencebetween NTFPsand NWFPis, that NWFP excludeall woodproductsand NTFPsdonotexclude wood products such as fu- el-wood,artisanal useofwood or charcoal. Non-wood forest products (NWFP) Alltangiblegoodsofbiologicalorigin(with theex- ceptionofwoodproducts)thatare derived from forestsand wooded land,and also from treesoutside theforest(seeFAO 1999 andBelcher2003). “DirectNWFP”are oftenconsidered as products that aredirectlyderived from apar- ticulartreespecies i.e. cherries or walnutsfrom Prunus avium or Juglans regia re- spectively. “IndirectNWFP”are oftenconsideredasspecies that co-exist with trees when provided with certainsiteconditions that theoverstory bestow forexample mushrooms andtruffles,e.g. Boletusedulis. Nutraceutical Astandardised nutrient of pharmaceutical-grade. Permanentplot Plot installedwiththe main aimofcontinuousresearch on theevolu- tion,dynamicsand continuousresourceassessmentofthe forests. They arecom- monlyestablished andmeasuredatthe startofaninvestigation andsubsequently remeasured at fixed intervalsoveraperiodofafew to many years. For theperiod of observation,permanentplots providepointsinarealgrowthand yieldseries, as 412 opposed to artificial growth andyield series constructedfromsinglemeasurements of stands subjectivelyselectedtorepresent successivestagesindevelopment. Plantation Forestpredominantlycomposed of treesestablishedthroughplantingand/ or deliberateseeding. Includesrubberwood,corkoak andChristmas tree plantations. Process-basedmodel Amodel that describesand simulates thebehaviorofasystem derived from aset of functional components andtheir interactionswitheachother andthe system environment, throughphysicaland mechanisticprocesses occurring over time. Production Forest Forestareadesignatedprimarily forthe production of wood, fibre, bio-energy and/or non-wood forestproducts. Rawmaterials Thebasic plantmaterial from whichaproductismade. Resource assessment Theinterpretation andevaluation of data obtained from inven- tory againstsomeobjectiveorstandard, aimingtoattain theoptimal utilization of theresourceunder theconstraints given in theframework of theforestmanagement planning. Sampling inventory Asample-basedsurveyofthe forestresource. Themainaim is to quantify theabundanceofagiven biological resource (timber,biomass,NWFP…) in the forest usingsound statisticallybased procedures andoptimal sampling techniques. Saproxylic Organismsthatfeedondeadwood. Silviculture Thecombination of differentforestmeasures(e.g. planting,tending, thin- ning) to ensure continuousand sustained production of adefinedproduction goal includingbenefitsthatcan be directlyorindirectlyderived from trees, plants,water andwildlifewithin forested areas. Simulator Atoolthatusesmathematical models forcalculation andpresentation of outcomes of aset of standmanagement scenarios. Standbasal area Thesum of thecross-sectionalareas at breast height (1.30meters aboveground)oftrees growing within aforeststand,using square meters perhectare as thetypical measurementunit. Stocking rate Therelationship betweenthe number of animalsand thetotal area of thelandthatisutilizedover aspecifiedtime. Traceability in supplychain traceability is theabilitytoidentify,track andtrace ele- mentsofaproductasitmoves along thesupplychain from rawgoods to finished products. Transect Sampling techniquebased on making observationsofthe subject resource walkingalong apreparedtrail of known length.Itiswidelyusedfor monitoringwild animals, or plantspecies whichformdense contiguouscover,e.g.groundflora Understory plants Allthe plantspecies belowthe canopy.Insomecases,the term “understory” used only forspecies of shrubsize or smaller. Valuechain theset of activitiesfor producingand marketing aproductorservice in- volving theacquisition andconsumption of resources –money, labour,materials, equipment,buildings,land, administration andmanagement. Wild products Plantresources that aregrown in naturalecosystemsand arecollected by humans forfood, dietarysupplements or medicinalproposes. 11.3 List of speciesbyNWFPcategorytype 415

Mushrooms andTruffles Tree Products Understory Plants Animal Origin Agaricus spp. AbiesalbaAlliumursinum Alcesalces Albatrelluspes-capraeAbiesfraseri unedo Alectorisbarbara AmanitacaesareaAbies koreanaArctostaphylosuva-ursiAlectoris chukar Armillaria mellea Abieslasiocarpa Arnicamontana Alectorisgraeca Boletus(Xerocomus) badiusAbiesnobilisAsparagusacutifoliusAlectoris rufa Boletusaereus Abiesnordmanniana Cistusladanifer Anas platyrhynchos Apis mellifera Boletusaureus Aesculus hippocastanumClematisvitalba (inc.subsp mellifere) BoletusedulisArgania Spinosa Convallariamaialis Capra aegagrus Boletusmamorensis Betula pendulaDactylisglomerata Capra ibex BoletusreticulatusBetula pubescens Sphagnum spp. Capreolus capreolus CantharelluscibariusCarpinusbetulusPolytrichumspp. Castor fiber Cantharelluslutescens Castanea sativa Pleurozium schreberiCervuselaphus Pseudoscleropodium Chlorophyllum rhacodes Ceratoniasiliqua Columbapalumbus purum Chlorophyllum olivieriCornusmas EmpetrumnigrumCornu aspersa Chlorophyllum brunneum Corylusavellana Filipendulaulmaria Coturnixcoturnix CraterelluscornucopioidesFagus sylvatica Fragaria vescaDamadama Craterellus lutescens Frangulaalnus Frangula alnusDe-domesticated cattle Ganodermalucidum IlexaquifoliumGaliumodoratum Lepuscapensis GyromitraesculentaInonotusobliquusGentianalutea Lepuseuropaeus Lactariusdeliciosus Juglans regiaGeranium sylvaticum Lyrurustetrix (group deliciosus) Lactarius deterrimusJuniperus communisHippophaerhamnoidesMartenmarten Hyacinthoidesnon- Lactarius rufusLarix decidua Odocoileus virginianus scripta Lactarius trivialis MalussylvestrisHypericumperforatumOryctolaguscuniculus PiceaabiesJuniperus communisOvismusimon Picea glaucaLycopodiumclavatum Pacifastacus leniusculus Leccinum scabrumPicea omoricaMyrtuscommunisPhasianus colchicus LentinulaedodesPicea parryanaOriganumcompactum Rangifer tarandus Marasmiusoreades Piceapungens Origanum vulgareRupicapra rupicapra Mattirolomyces terfezi- Salmotrutta(inc. subsp. Pinus cembra Ribesspicatum doides Fario) Morchella conica Pinus contorta Rosa caninaSus scrofa Morchella elataPinushalepensis Rosmarinus officinalis (inc.subsp.Barbarous) Morchella esculentaPinus nigraRubus chamaemorus Tetrao urogallus Morchella vulgaris Pinus pinaster Rubusfruticosus Pleurotus ostreatusPinus pineaRubus hirtus RussulacyanoxanthaPinus strobus Rubusidaeus Suillus grevilleiPinus sylvestrisSideritis spp. Pistachialentiscus Thymus satureioides (inc.var.Chia) Terfezia arenaria Populusspp. Thymus vulgaris 416

Tirmania spp. Prunus amygdalusThymuszygis TricholomacaligatumPrunusavium Thymus mastichina TricholomaequestrePseudotsuga menziesiiUrticadioica TuberaestivumQuercusrobur Vaccinium myrtillus Tubermagnatum QuercuspetraeaVacciniumoxycoccos TubermelanosporumQuercussuber Vaccinium vitis-idaea QuercusilexValeriana celtica Robinia pseudoacacia Salixviminalis Sambucusnigra Sorbus aucuparia Sorbus torminalis Tiliacordata Tiliaplatyphyllos Tiliarubra Tiliatomentosa Tiliaargentea