Nondestructive Testing Handbook Glossary, Third Edition

Total Page:16

File Type:pdf, Size:1020Kb

Nondestructive Testing Handbook Glossary, Third Edition 16 C HAPTER Nondestructive Testing Glossary Richard D. Lopez, Iowa State University, Ames, Iowa From Nondestructive Testing Handbook, Third Edition: Volume 10, Overview © 2012. Reprinted with permission of The American Society for Nondestructive Testing Inc. Terms absolute pressure: Pressure above Introduction absolute zero value or pressure above that of space empty of all molecules. Equal to sum of local atmospheric Purpose pressure and gage pressure. absolute temperature: Thermodynamic Standards writing bodies take great pains temperature measured from absolute to ensure that their standards are zero temperature, expressed in definitive in wording and technical kelvin (K). accuracy. People working to written absorbed dose: In radiographic testing, contracts or procedures should consult amount of energy imparted to matter definitions referenced in standards when by an ionizing event per unit mass of appropriate. For example, persons who irradiated material at the place of work in accordance with standards interest. Absorbed dose is expressed in published by ASTM International are gray (Gy) or rad. See also dose rate; encouraged to refer to definitions in the dosimeter.14 ASTM standards.1 absorptance; absorptivity: Proportion (as The definitions in this Nondestructive a fraction of 1) of the radiant energy Testing Handbook volume should not be impinging on a material’s surface that referenced for tests performed according is absorbed into the material. For a to standards or specifications or in blackbody, this is unity (1.0). fulfillment of contracts. This glossary is Technically, absorptivity is the internal provided for instructional purposes. No absorptance per unit path length. In other use is intended. thermography, the two terms have sometimes been used interchangeably. On References absorption: In nondestructive testing, Definitions from other volumes of the reduction of the intensity of any form Nondestructive Testing Handbook are not of radiated energy as a result of energy referenced. This volume’s antecedent in conversion (absorption) in a medium, the second edition was the Nondestructive such as the conversion of sound Testing Handbook: Volume 10, energy into heat. Compare attenuation. Nondestructive Testing Overview (1996).2 absorption coefficient, linear (µL): However, most of the definitions in this Fractional decrease in transmitted glossary are from the various, superseding intensity per unit of absorber –1 15 method volumes.3-11 thickness. Expressed in units of cm . Measurement units and their symbols acceptable quality level (AQL): are covered in the introduction to this Maximum percent defective (or the volume. maximum percentage of units with For physical quantities and properties rejectable discontinuities) that, for the in materials science, the reader is served purposes of sampling tests, can be by reference books such as the CRC considered satisfactory as a process Handbook of Chemistry and Physics12 and average. Compare lot tolerance percent Leonard Mordfin’s Handbook of Reference defective. Data for Nondestructive Testing.13 acceptance criterion: Benchmark against which test results are to be compared for purposes of establishing the functional acceptability of a part or A system being examined. acceptance level; acceptance limit: absolute measurement: (1) Measurement (1) Test signal value used to establish made with an absolute coil. (2) the group to which a material under Measurement of a property without evaluation belongs (2) Measured value reference to another measurement of or values above or below which test that property. Compare comparative objects are acceptable. Compare measurement; relative measurement. rejection level. From Nondestructive Testing Handbook, Third Edition: Volume 10, Overview © 2012. Reprinted with permission of The American Society for Nondestructive Testing Inc. 516 Nondestructive Testing Overview acceptance standard: (1) Specimen, melting, phase transformations or similar to the product to be tested, thermal stresses. containing natural or artificial acoustic impedance (z): Frequency discontinuities that are well defined dependent property of a medium and similar in size or extent to the through which acoustic waves maximum acceptable in the product. propagate in units of kg·s–1·m–2. In its (2) Document defining acceptable simplified form, acoustic impedance is discontinuity size limits. See also the product of longitudinal ultrasonic reference standard; standard. wave velocity (m·s–1) and material –3 accommodation: Of the eye, adjustment density (kgm·m ). The relative of the lens’ focusing power by transmission and reflection at an changing the thickness and curvature interface are governed in part by the of the lens through its movement by acoustic impedances of the materials tiny muscles. on each side of the interface. accumulation test technique: In leak acoustic impedance, characteristic: In testing, detecting the total amount of ultrasonic testing, acoustic impedance leakage by enclosing the component typical or characteristic of a particular under test within a hood, bag, box, material. shroud or container. For pressure acoustic impedance, specific: In testing, any gas leaking from the ultrasonic testing, acoustic impedance component accumulates in the space in a particular test object or a defined (volume) between the component and volume of a specified material. the enclosure. For vacuum testing, any acoustic microscopy: In ultrasonic gas leaking into the component testing, general term referring to the accumulates in the leak detector use of high resolution, high frequency sampling the evacuated component. ultrasonic techniques to produce Accumulation of tracer gas in a images of features beneath the surface measured time period provides a of a test object. measure of the leakage rate. activation: In radiographic testing, accuracy: Degree of conformity of process by which neutrons bombard measurement to a standard or true stable atoms and make them value. radioactive. ACGIH: American Conference of activity: In radiographic testing, degree of Governmental Industrial Hygienists. radioactivity of a particular isotope. acoustic emission: (1) Transient elastic Activity is expressed as the number of waves resulting from local internal atoms disintegrating per unit of time. microdisplacements in a material. Measured in becquerels. acoustic emission activity: Number of AE: Acoustic emission testing. bursts (or events, if the appropriate acuity: See neural acuity, vision acuity. conditions are fulfilled) detected adhesive wear: See wear, adhesive. during a test or part of a test. agency: Organization selected by an acoustic emission count: Number of authority to perform nondestructive times the signal amplitude exceeds the testing, as required by a specification preset reference threshold. Sometimes or purchase order. called ringdown counts. agglomeration: Clustering where smaller acoustic emission event: Microstructural particles collide and adhere as groups. displacement that produces elastic aging: (1) The effect of long term waves in a material under load or environmental exposure on materials stress. or components. (2) Heat treatment acoustic emission hit: Acoustic emission method that alters material properties signal received on one channel. and microstructure because of the acoustic emission rate: Number of times duration of time at ambient (natural the acoustic emission signal amplitude aging) or elevated (artificial aging) has exceeded the threshold in a temperature. Aging is commonly specified unit of time. applied to alloys after hot working, acoustic emission signal: Electrical signal quenching from an elevated obtained through the detection of temperature or cold working. See also acoustic emission. precipitation hardening. acoustic emission testing (AE): Passive air flow: In leak testing, flow of air from nondestructive testing method that the probe inlet to the sensitive element monitors a component or assembly for of the halogen leak detector that transient elastic waves and converts carries the tracer gas from the leak to these ultrasonic waves into electrical the sensing diode. signals. Acoustic waves may be algorithm: Prescribed set of well defined produced by the formation or rules or processes for the solution of a movement of microstructural mathematical problem in a finite dislocations during crack propagation, number of steps.16 From Nondestructive Testing Handbook, Third Edition: Volume 10, Overview © 2012. Reprinted with permission of The American Society for Nondestructive Testing Inc. Nondestructive Testing Glossary 517 alkali ion diode: Sensor type for halogen analog-to-digital converter: Circuit gases. In this device, positive ions whose input is information in analog (cations) of an alkali metal are form and whose output is essentially produced on the heated surfaces the same information in digital (usually platinum) of the diode. One form.16 electrode is at a negative potential and angle beam: In ultrasonic testing, attracts cations that are released when ultrasound beam traveling at an acute a halogen gas passes between the angle into a medium. The angle of sensor electrodes. Provides an output incidence or angle of refraction is current to operate the indicator on the measured from the normal to the halogen leak detector. entry surface.15 alpha iron: See ferrite. angle beam test technique: In ultrasonic alpha particle: Positively charged helium testing, inspection technique in which ion emitted by certain radioactive transmission
Recommended publications
  • Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies
    Graduate Theses, Dissertations, and Problem Reports 2016 Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies Kara A. Savage Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Savage, Kara A., "Nondestructive Methods to Characterize Rock Mechanical Properties at Low- Temperature: Applications for Asteroid Capture Technologies" (2016). Graduate Theses, Dissertations, and Problem Reports. 6573. https://researchrepository.wvu.edu/etd/6573 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies Kara A. Savage Thesis Submitted to the Statler College of Engineering at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Mining Engineering Aaron Noble, Ph.D., Chair Brijes Mishra, Ph.D. Thomas Evans, Ph.D. Department of Mining Engineering Morgantown, West Virginia 2016 Keywords: Nondestructive Tests, Low-Temperature Rock Mechanics, Schmidt Rebound Hammer, Ultrasonic Pulse Velocity, Asteroid Capture Copyright 2016 Kara A.
    [Show full text]
  • Invention of Digital Photograph
    Invention of Digital photograph Digital photography uses cameras containing arrays of electronic photodetectors to capture images focused by a lens, as opposed to an exposure on photographic film. The captured images are digitized and stored as a computer file ready for further digital processing, viewing, electronic publishing, or digital printing. Until the advent of such technology, photographs were made by exposing light sensitive photographic film and paper, which was processed in liquid chemical solutions to develop and stabilize the image. Digital photographs are typically created solely by computer-based photoelectric and mechanical techniques, without wet bath chemical processing. The first consumer digital cameras were marketed in the late 1990s.[1] Professionals gravitated to digital slowly, and were won over when their professional work required using digital files to fulfill the demands of employers and/or clients, for faster turn- around than conventional methods would allow.[2] Starting around 2000, digital cameras were incorporated in cell phones and in the following years, cell phone cameras became widespread, particularly due to their connectivity to social media websites and email. Since 2010, the digital point-and-shoot and DSLR formats have also seen competition from the mirrorless digital camera format, which typically provides better image quality than the point-and-shoot or cell phone formats but comes in a smaller size and shape than the typical DSLR. Many mirrorless cameras accept interchangeable lenses and have advanced features through an electronic viewfinder, which replaces the through-the-lens finder image of the SLR format. While digital photography has only relatively recently become mainstream, the late 20th century saw many small developments leading to its creation.
    [Show full text]
  • Nondestructive Testing (NDT) and Sensor Technology for Service Life Modeling of New and Existing Concrete Structures
    NISTIR 7974 Nondestructive Testing (NDT) and Sensor Technology for Service Life Modeling of New and Existing Concrete Structures Kenneth A. Snyder Li-Piin Sung Geraldine S. Cheok This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.7974 NISTIR 7974 Nondestructive Testing (NDT) and Sensor Technology for Service Life Modeling of New and Existing Concrete Structures Kenneth A. Snyder Li-Piin Sung Materials and Structural Systems Division Engineering Laboratory Geraldine S. Cheok Intelligent Systems Division Engineering Laboratory December 2013 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director ii ABSTRACT Nondestructive test (NDT) methods and sensor technologies are evaluated in the context of providing input parameters to service life prediction models for reinforced concrete structures. Relevant NDT methods and sensors are identified that are based on diverse technologies including mechanical impact, ultrasonic waves, electromagnetic waves, nuclear, and chemical and electrical methods. The degradation scenarios of reinforcement corrosion, alkali-silica reaction, and cracking are used to identify gaps in available NDT methods for supporting condition assessment and service life prediction. Common gaps are identified, along with strategies for resolving those gaps. iii Disclaimer: Certain commercial products are identified in this paper to specify the materials used and
    [Show full text]
  • Use of Components Analysis to Identify Internal Heat in Breast Dynamic Thermal Images
    IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. X, NOVEMBER 2020 1 Use of components analysis to identify internal heat in breast dynamic thermal images Meir Gershenson Abstract — I suggest a method for biomedical imaging new ones. This process is called angiogenesis. The increase of with heat using principal and independent components blood flow at the cancerous site is associated with an increase analysis. This method produces novel results suggesting in the tissue’s ability to absorb heat. The bio heat transfer physiologic mechanisms. When using thermal imaging to equation describing thermal propagation is given by1 detect breast cancer, the dominant heat signature is of indirect heat transported by the blood away from the tumor i ͟ʚÈʛ ͎ʚr, ͨʛ Ǝ ̽ ∙ ͎ʚÈ, ͨʛ Ǝ͖͋ƍ͋͡ Ɣ 0 location into the skin. Interpretation is usually based on i/ vascular patterns and not by observing the direct ͖͋ Ɣ !͖̽ ʞ͎ʚr, ͨʛ Ǝ ͎ͤʚr, ͨʛʟ (1) cancerous heat. In this new method one uses a sequence of thermal images of the patient’s breast following external Typical values are taken from Azarnoosh J et al. 2 and are temperature change. Data are recorded and analyzed using independent component analysis (ICA) and principal given in Table 1. From the above table the increase in blood component analysis (PCA). ICA separates the image TABLE I sequence into new independent images having a common THRMOPHYSICAL PARAMETERS OF TYPICAL BREAST characteristic time behavior. Using the Brazilian visual lab Density Specific Thermal ωb Qm mastology data set, I observed three types of component heat C conductivity (s-1) *10 -3 (W/m3) images: Images corresponding to a minimum change as a (kg/m3) (J/kg K) ͟ (W/m) function of applied temperature or time, which suggests an Gland 1020 3060 0.322 0.34 – 1.7 700 association with the cancer generated heat, images in which a moderate temperature dependence is associated Tumor 1020 3060 0.564 6 - 16 7792 with veins affected by vasomodulation, and images of Blood 1060 3840 complex time behavior indicating heat absorption due to .
    [Show full text]
  • Guidelines for Pressure Vessel Safety Assessment
    11^^^^ United States Department of Commerce National Institute of Standards and Tectinology NIST Special Publication 780 Guidelines for Pressure Vessel Safety Assessment Sumio Yukawa NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY Research Information Center Gaithersburg, MD 20899 DATE DUE Demco. Inc. 38-293 NIST Special Publication 780 Guidelines for Pressure Vessel Safety Assessment Sumio Yukawa Materials Reliability Division Materials Science and Engineering Laboratory National Institute of Standards and Technology Boulder, CO 80303 Sponsored by Occupational Safety and Health Administration U.S. Department of Labor Washington, DC 20210 Issued April 1990 U.S. Department of Commerce Robert A. Mosbacher, Secretary National Institute of Standards and Technology John W. Lyons, Director National Institute of Standards U.S. Government Printing Office For sale by the Superintendent and Technology Washington: 1990 of Documents Special Publication 780 U.S. Government Printing Office Natl. Inst. Stand. Technol. Washington, DC 20402 Spec. Publ. 780 75 pages (Apr. 1990) CODEN: NSPUE2 CONTENTS Page ABSTRACT vii 1. INTRODUCTION 1 2. SCOPE AND GENERAL INFORMATION 1 2 . 1 Scope 1 2.2 General Considerations 3 3. PRESSURE VESSEL DESIGN 4 3.1 ASME Code 4 3.1.1 Section VIII of ASME Code 5 3.1.2 Scope of Section VIII 5 3.1.3 Summary of Design Rules and Margins 6 3.1.4 Implementation of ASME Code 9 3.2 API Standard 620 10 3.2.1 Scope of API 620 12 3.2.2 Design Rules 12 3.2.3 Implementation of API 620 12 3.3. Remarks on Design Codes 14 4. DETERIORATION AND FAILURE MODES 14 4.1 Preexisting Causes 14 4.1.1 Design and Construction Related Deficiencies.
    [Show full text]
  • Light Conversion, S/N Characteristics of X-Ray Phosphor Screens
    Light conversion, S/N characteristics of x-ray phosphor screens Item Type text; Thesis-Reproduction (electronic) Authors Lum, Byron Kwai Chinn Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 05:29:31 Link to Item http://hdl.handle.net/10150/557456 LIGHT CONVERSION, S/N CHARACTERISTICS OF X-RAY PHOSPHOR SCREENS by Byron Kwai Chinn Lum A Thesis Submitted To the Committee on COMMITTEE ON OPTICAL SCIENCES (GRADUATE) In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 19 8 0 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re­ quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg­ ment the proposed use of the material is in the interests of scholar­ ship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT
    Dipl.-Psych. Marija Bertović Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT BAM-Dissertationsreihe • Band 145 Berlin 2016 Die vorliegende Arbeit entstand an der Bundesanstalt für Materialforschung und -prüfung (BAM). Impressum Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT 2016 Herausgeber: Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87 12205 Berlin Telefon: +49 30 8104-0 Telefax: +49 30 8104-72222 E-Mail: [email protected] Internet: www.bam.de Copyright© 2016 by Bundesanstalt für Materialforschung und -prüfung (BAM) Layout: BAM-Referat Z.8 ISSN 1613-4249 ISBN 978-3-9817502-7-0 Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT Vorgelegt von Dipl. -Psych. Marija Bertovic geb. in Ogulin, Kroatien von der Fakultät V – Verkehrs- und Maschinensysteme der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Philosophie -Dr. phil.- genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. phil. Manfred Thüring Gutachter: Prof. Dr. phil. Dietrich Manzey Gutachter: Dr. rer. nat. et Ing. habil. Gerd-Rüdiger Jaenisch Tag der wissenschaftlichen Aussprache: 1 September 2015 Berlin 2015 D83 Abstract Non-destructive testing (NDT) is regarded as one of the key elements in ensuring quality of engineering systems and their safe use. A failure of NDT to detect critical defects in safety- relevant components, such as those in the nuclear industry, may lead to catastrophic consequences for the environment and the people. Therefore, ensuring that NDT methods are capable of detecting all critical defects, i.e. that they are reliable, is of utmost importance. Reliability of NDT is affected by human factors, which have thus far received the least amount of attention in the reliability assessments.
    [Show full text]
  • Overview of Camera Systems Used in Beam Instrumentation
    Beata Walasek-Höhne verview of Video Cameras used in Beam Instrumentation FAIR GmbH | GSI GmbH Outline: Taking an Image . Source of light more details: talk of E. Bravin „Transverse Profile measurements“ . Optics more details: talk of S. Gibson „Introduction to optics“ . Image sensors . Analog i. Video Tube . Solid state sensors i. CCD ii. CMOS iii. CID . Radiation hardness . Digitizer more details: talk of M. Gasior „Analog Digital Conversion“ . Post processing FAIR GmbH | GSI GmbH 2 Source of light . light is represented as both a particle (photon) and electromagnetic wave . photons have a defined energy . energy correlates to wavelength 풉풄 푬 = 흀 . wavelength corresponds to color . number of the photons corresponds to intensity . visible light is a very narrow band in the electromagnetic spectrum FAIR GmbH | GSI GmbH 3 Source of light 600mbar Kr 600mbar Kr © GSI, www.gsi.de Ruby-Ceramics (Chromox) screen at LHC for injection and first turn, protons at 450 GeV © CERN, www.cern.ch YAG:Ce at FLASH © DESY, www.desy.de FAIR GmbH | GSI GmbH 4 Source of light 600mbar Kr 100 mm © GSI, www.gsi.de FAIR GmbH | GSI GmbH 5 Analog Video Cameras © Pete Simpkin, Marconi vidicon Camera www.bbceng.info FAIR GmbH | GSI GmbH 6 Analog Video Cameras . early 1900s first experiment in image transmission . in 1930s new electronic designs based on a cathode-ray video camera tube, including two versions dissector tube (Philo Farnsworth) and iconoscope (Vladimir Zsworykin) Dissector tube © Television News magazine, 1931 FAIR GmbH | GSI GmbH 7 Analog Video Cameras . analog system became the standard in the television industry and remained in wide use until the 1980s Iconoscope © Radio News magazine, 1945 FAIR GmbH | GSI GmbH 8 Analog Video Cameras: Vidicon .
    [Show full text]
  • Methods for Nondestructive Testing of Urban Trees
    Review Methods for Nondestructive Testing of Urban Trees Richard Bruce Allison 1,2,*, Xiping Wang 3,* and Christopher A. Senalik 3 1 Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA 2 Allison Tree Care, LLC, Verona, WI 53593, USA 3 USDA Forest Service, Forest Products Laboratory, Madison, WI 53726-2398, USA; [email protected] * Correspondence: [email protected] (R.B.A); [email protected] (X.W.); Tel.: +1-608-848-2345 (R.B.A); +1-608-231-9461 (X.W.) Received: 21 September 2020; Accepted: 30 October 2020; Published: 16 December 2020 Abstract: Researchers have developed various methods and tools for nondestructively testing urban trees for decay and stability. A general review of these methods includes simple visual inspection, acoustic measuring devices, microdrills, pull testing, ground penetrating radar, x-ray scanning, remote sensing, electrical resistivity tomography and infra-red thermography. Along with these testing methods have come support literature to interpret the data. Keywords: decay; defect; hazard assessment; inspection; nondestructive testing; urban trees 1. Introduction Trees within an urban community provide significant ecological, economic and social benefits, making a city more livable and comfortable for its inhabitants [1]. However, as large physical wooden structures in close proximity to dense populations of people and property, tree failure can cause harm. Urban forest managers use biological and engineering principles to determine a tree’s structural soundness and estimate the probability of failure. Nondestructive testing (NDT) methods by locating and quantifying wood decay and defect are used to measure the physical condition of trees within the urban forest to promote public safety and property protection.
    [Show full text]
  • Non-Destructive Testing for Plant Life Assessment
    Non-destructive testing for plant life assessment TRAINING COURSE SERIES VIENNA, 2005 26 TRAINING COURSE SERIES No. 26 Non-destructive testing for plant life assessment INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 2005 The originating Section of this publication in the IAEA was: Industrial Applications and Chemistry Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria NON-DESTRUCTIVE TESTING FOR PLANT LIFE ASSESSMENT IAEA, VIENNA, 2005 IAEA-TCS-26 ISSN 1018–5518 © IAEA, 2005 Printed by the IAEA in Austria August 2005 FOREWORD The International Atomic Energy Agency (IAEA) is promoting industrial applications of non- destructive testing (NDT) technology, which includes radiography testing (RT) and related methods, to assure safety and reliability of operation of industrial facilities and processes. NDT technology is essentially needed for improvement of the quality of industrial products, safe performance of equipment and plants, including safety of metallic and concrete structures and constructions. The IAEA is playing an important role in promoting the NDT use and technology support to Member States, in harmonisation for training and certification of NDT personnel, and in establishing national accreditation and certifying bodies. All these efforts have led to a stage of maturity and self sufficiency in numerous countries especially in the field of training and certification of personnel, and in provision of services to industries. This has had a positive impact on the improvement of the quality of industrial goods and services. NDT methods are primarily used for detection, location and sizing of surface and internal defects (in welds, castings, forging, composite materials, concrete and many more).
    [Show full text]
  • United States Patent [191 [11] 4,095,775 Hotham [45] Jun
    United States Patent [191 [11] 4,095,775 Hotham [45] Jun. 20, 1978 [54] PARTICLE EVALUATOR Primary Examiner-Conrad J. Clark Attorney, Agent, or Firm—Reed C. Lawlor [76] Inventor: Geoffrey A. Hotham, 1130 Channel Dr., Santa Barbara, Calif. 93108 [57] ABSTRACT [21] App1.No.: 642,915 The invention is employed for evaluating particles, such as droplets of aerosol sprays suspended in a gaseous [22] Filed: Dec. 22, 1975 medium. A stream of the particles to be analyzed is [51] Int. Cl.2 ................... .. G01N 21/00; G01N 21/18; ?owed into a narrow sample zone across the optical axis GOZB 21/34 of a beam of light. Scattered radiation from the particles [52] US. Cl. .................................. .. 356/102; 356/ 181; is focused on the image plane in which a photosensitive ' 250/574; 350/95 surface is located. Images of particles formed there are [58] Field of Search ............. 356/102, 103, 246, 181; reproduced on a ?uorescent or phosphorescent display 250/574; 350/63, 89, 95 screen of a cathode ray tube. A scale on the screen is employed for measuring the dimensions of the particles. [56] References Cited The con?nement of the stream of the mixture to about U.S. PATENT DOCUMENTS the depth of focus of the objective lens of the camera reduces effects of out-of-focus particles and permits 3,609,043 9/1971 Simmons et a1. .................. .. 356/102 evaluation of individual particles. 3,614,231 10/1971 Sham ..................... .. 356/102 3,646,352 2/ 1972 B01 et al. .. 356/ 102 3,720,470 3/ 1973 Berkham ...........................
    [Show full text]
  • Camera Sensors
    Welcome Processing Digital Camera Images Camera Sensors Michael Thomas Overview Many image sensors: Infrared, gamma ray, x-rays etc. Focus on sensors for visible light (slightly into infrared and uv light) Michael Thomas, TU Berlin, 2010 Processing Digital Camera Images, WS 2010/2011, Alexa/Eitz 2 The beginnings First Video camera tube sensors in the 1930s Cathode Ray Tube (CRT) sensor Vidicon and Plumbicon for TV-Broadcasting in the 1950s – 1980s Vidicon sensors on Galileo-spacecraft to Jupiter in 1980s Michael Thomas, TU Berlin, 2010 Processing Digital Camera Images, WS 2010/2011, Alexa/Eitz 3 The Photoelectric-Effect How to convert light to electric charge? Inner photoelectric-effect at a photodiode: Photon excites electron creating a free electron and a hole The hole moves towards the anode, the electron towards the cathode Now we have our charge! Michael Thomas, TU Berlin, 2010 Processing Digital Camera Images, WS 2010/2011, Alexa/Eitz 4 Charge-Coupled Device (CCD) Integrated circuit Array of connected capacitors (Shift register) Charge of capacitor is transfered to neighbour capacitor At the end of chain, charge is converted into voltage by charge amplifier Transfer stepped by Clock-Signal Serial charge processing Michael Thomas, TU Berlin, 2010 Processing Digital Camera Images, WS 2010/2011, Alexa/Eitz 5 CCD-Sensor Each capacitor is coupled with a photodiode All capacitors are charged parallelly Charges are transferred serially Michael Thomas, TU Berlin, 2010 Processing Digital Camera Images, WS 2010/2011, Alexa/Eitz
    [Show full text]