ENG470-Engineering Honours Thesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WO 2017/106925 Al 29 June 2017 (29.06.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/106925 Al 29 June 2017 (29.06.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, C22B 26/12 (2006.01) C22B 3/06 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (21) International Application Number: KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, PCT/AU20 16/05 1278 MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (22) International Filing Date: NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, 22 December 2016 (22. 12.2016) RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (25) Filing Language: English ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 20159053 17 22 December 201 5 (22. 12.2015) AU GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 2016900774 2 March 2016 (02.03.2016) AU TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (72) Inventor; and DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant : HUNWICK, Richard [AU/AU]; 59 Abing LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, don Road, Roseville, New South Wales 2069 (AU). -
(12) United States Patent (10) Patent No.: US 7.449,161 B2 Boryta Et Al
USOO74491.61B2 (12) United States Patent (10) Patent No.: US 7.449,161 B2 Boryta et al. (45) Date of Patent: Nov. 11, 2008 (54) PRODUCTION OF LITHIUM COMPOUNDS 4,207,297 A * 6/1980 Brown et al. ............. 423,179.5 DIRECTLY FROM LITHIUM CONTAINING 4,243,641 A * 1/1981 Ishimori et al. .......... 423/179.5 BRINES 4.261,960 A * 4/1981 Boryta ............. ... 423,179.5 4,271,131. A * 6/1981 Brown et al. ...... ... 423,179.5 4,274,834. A 6/1981 Brown et al. .............. 23,302 R (75) Inventors: Daniel Alfred Boryta, Cherryville, NC 4,463,209 A * 7/1984 Kursewicz et al. .......... 585/467 (US); Teresita Frianeza Kullberg, 4,465,659 A * 8/1984 Cambridge et al. ......... 423,495 Gastonia, NC (US); Anthony Michael 4,588,565 A * 5/1986 Schultze et al. .......... 423,179.5 Thurston, Edmond, OK (US) 4,747.917 A * 5/1988 Reynolds et al. ............ 205,512 4,859,343 A * 8/1989 Frianeza-Kullberg (73) Assignee: Chemetall Foote Corporation, Kings et al. .......................... 210,679 Mountain, NC (US) 4,980,136 A * 12/1990 Brown et al. ... 423,179.5 5,049,233 A 9, 1991 Davis .......................... 216.93 (*) Notice: Subject to any disclaimer, the term of this 5,219,550 A * 6/1993 Brown et al. ............. 423 (419.1 patent is extended or adjusted under 35 5,599,516 A * 2/1997 Bauman et al. .......... 423/179.5 U.S.C. 154(b) by 0 days. 5,939,038 A * 8/1999 Wilkomirsky ............... 423,276 5.993,759 A * 1 1/1999 Wilkomirsky ........... -
Federal LCA Commons Elementary Flow List: Background, Approach, Description and Recommendations for Use
EPA/600/R-19/092 | September 2019 | www.epa.gov/research The Federal LCA Commons Elementary Flow List: Background, Approach, Description and Recommendations for Use 0 Federal LCA Commons Elementary Flow List: Background, Approach, Description and Recommendations for Use by Ashley Edelen, Troy Hottle, Sarah Cashman Eastern Research Group Wesley Ingwersen U.S. EPA/National Risk Management Research Laboratory/ Land and Materials Management Division ii Notice/Disclaimer Although the U.S. Environmental Protection Agency, through its Office of Research and Development, funded and conducted the research described herein under an approved Quality Assurance Project Plan (Quality Assurance Identification Number G-LMMD-0031522-QP-1-0), with the support of Eastern Research Group, Inc. through EPA Contract Number EP-C-16-015, it does not necessarily reflect the views of the Agency, and no official endorsement should be inferred. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. iii Foreword The U.S. Environmental Protection Agency (U.S. EPA) is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, U.S. EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future. -
Kalenga Tite Mwepu a Dissertation Submitted in Partial Fulfillment of The
LITHIUM EXTRACTION FROM ZIMBABWEAN PETALITE WITH AMMONIUM BIFLUORIDE DIGESTION Kalenga Tite Mwepu A dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Applied Science (Chemical Technology) in the Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology. Supervisor: Prof. Philip Crouse Co-supervisor: Dr Salmon Lubbe February 2020 Declaration I, Kalenga Tite Mwepu, student No. 15261043, do hereby declare that this research is my original work and that it has not previously, in its entirety or in part, been submitted and is not currently being submitted, either in whole or in part, at any other university for a degree or diploma, and that all references are acknowledged. SIGNED on this ________________________ day of_____12/02______________ 2020. __________________ Kalenga Tite Mwepu ii Synopsis Lithium carbonate is the precursor for most other lithium compounds. The market demand for lithium is increasing because it is used for many applications such as the preparation of electrode material and electrolyte for lithium-ion batteries, for treatment of manic depression, production of electronic grade crystals of lithium niobate and tantalite, and preparation of battery-grade lithium metal. Previously reported methods of lithium extraction require high temperature calcination for phase transformation from α-spodumene into β-spodumene, that is energy consuming and costly. This step is required because of the higher chemical reactivity of β-spodumene. The objectives of this research were to investigate the viability of ammonium bifluoride digestion of the petalite concentrate from the Bikita deposits without the initial thermal conversion to β- spodumene, in order to produce a high purity lithium carbonate in a cost efficient way, and optimising the remaining process parameters of the full process. -
Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: a Review
resources Review Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review Laurence Kavanagh * , Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd and John Cleary EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny, Road, Co., R93-V960 Carlow, Ireland; [email protected] (J.K.); [email protected] (G.G.C.); [email protected] (A.L.); [email protected] (J.C.) * Correspondence: [email protected] Received: 28 July 2018; Accepted: 11 September 2018; Published: 17 September 2018 Abstract: Lithium is a key component in green energy storage technologies and is rapidly becoming a metal of crucial importance to the European Union. The different industrial uses of lithium are discussed in this review along with a compilation of the locations of the main geological sources of lithium. An emphasis is placed on lithium’s use in lithium ion batteries and their use in the electric vehicle industry. The electric vehicle market is driving new demand for lithium resources. The expected scale-up in this sector will put pressure on current lithium supplies. The European Union has a burgeoning demand for lithium and is the second largest consumer of lithium resources. Currently, only 1–2% of worldwide lithium is produced in the European Union (Portugal). There are several lithium mineralisations scattered across Europe, the majority of which are currently undergoing mining feasibility studies. The increasing cost of lithium is driving a new global mining boom and should see many of Europe’s mineralisation’s becoming economic. The information given in this paper is a source of contextual information that can be used to support the European Union’s drive towards a low carbon economy and to develop the field of research. -
WO 2014/138933 Al 18 September 2014 (18.09.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/138933 Al 18 September 2014 (18.09.2014) P O P C T (51) International Patent Classification: Jersey 08873 (US). LANGEVIN, Marie-Eve; 20 Worlds C25B 1/16 (2006.01) C25B 9/00 (2006.01) Fair Dr., Somerset, New Jersey 08873 (US). BOW 61/46 (2006.01) (74) Agent: BERESKIN & PARR LLP/S.E.N.C.R.L., S.R.L.; (21) International Application Number: 40th Floor, 40 King Street West, Scotia Plaza, Toronto, PCT/CA20 14/000264 Ontario M5H 3Y2 (CA). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 17 March 2014 (17.03.2014) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/788,292 15 March 2013 (15.03.2013) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (71) Applicant: NEMASKA LITHIUM INC. [CA/CA]; 450 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, rue de la Gare-du-Palais, ler etage, Quebec, Quebec G1K SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 3X2 (CA). -
High Purity Inorganics
High Purity Inorganics www.alfa.com INCLUDING: • Puratronic® High Purity Inorganics • Ultra Dry Anhydrous Materials • REacton® Rare Earth Products www.alfa.com Where Science Meets Service High Purity Inorganics from Alfa Aesar Known worldwide as a leading manufacturer of high purity inorganic compounds, Alfa Aesar produces thousands of distinct materials to exacting standards for research, development and production applications. Custom production and packaging services are part of our regular offering. Our brands are recognized for purity and quality and are backed up by technical and sales teams dedicated to providing the best service. This catalog contains only a selection of our wide range of high purity inorganic materials. Many more products from our full range of over 46,000 items are available in our main catalog or online at www.alfa.com. APPLICATION FOR INORGANICS High Purity Products for Crystal Growth Typically, materials are manufactured to 99.995+% purity levels (metals basis). All materials are manufactured to have suitably low chloride, nitrate, sulfate and water content. Products include: • Lutetium(III) oxide • Niobium(V) oxide • Potassium carbonate • Sodium fluoride • Thulium(III) oxide • Tungsten(VI) oxide About Us GLOBAL INVENTORY The majority of our high purity inorganic compounds and related products are available in research and development quantities from stock. We also supply most products from stock in semi-bulk or bulk quantities. Many are in regular production and are available in bulk for next day shipment. Our experience in manufacturing, sourcing and handling a wide range of products enables us to respond quickly and efficiently to your needs. CUSTOM SYNTHESIS We offer flexible custom manufacturing services with the assurance of quality and confidentiality. -
Pfs Update Confirms Potential of Low-Cost Lithium Hydroxide Production
For immediate release 17 June 2019 EUROPEAN METALS HOLDINGS LIMITED PFS UPDATE CONFIRMS POTENTIAL OF LOW-COST LITHIUM HYDROXIDE PRODUCTION European Metals Holdings Limited (“European Metals” or “the Company”) is pleased to announce the results from the successful update of the process flowsheet previously developed to enable the production of lithium hydroxide (LiOH.H2O). This work has been completed in conjunction with test-work confirming the production of battery grade lithium hydroxide from Cinovec ore. These results significantly enhance the forecast economics of the Cinovec Project. HIGHLIGHTS (all $ figures in this release are US Dollars and increases refer to the 2017 PFS Lithium Carbonate study): • Net estimated overall cost of production post credits: $3,435 / tonne LiOH.H2O • Project Net Present Value (“NPV”) increases 105% to: $1.108B (post tax, 8%) • Internal Rate of Return (“IRR”) increased 37% to 28.8% (post tax) • Total Capital Cost: $482.6M • Annual production of Battery Grade Lithium Hydroxide: 25,267 tonnes • Studies are based on only 9.3% of reported Indicated Mineral Resource and a mine life of 21 years processing an average of 1.68 Mtpa ore • The process used to produce lithium hydroxide allows for the staging of lithium carbonate and then lithium hydroxide production to minimize capital and startup risk and enables the production of either battery grade lithium hydroxide or carbonate as markets demand European Metals Managing Director Keith Coughlan said, “I am very pleased to report to shareholders on the completion of this update to our 2017 Preliminary Feasibility Study for the Cinovec project which adds significantly to the already robust forecast economics for the project. -
Sonora Project)
SONORA LITHIUM PROJECT FS TECHNICAL REPORT TECHNICAL REPORT ON THE FEASIBILITY STUDY FOR THE SONORA LITHIUM PROJECT, MEXICO January 2018 January 2018 Prepared For Bacanora Minerals Ltd Prepared by Ausenco Services Pty Ltd 144 Montague Rd South Brisbane Australia Effective Date: December 12, 2017 Issue Date: January 25, 2018 101304-FS-0004-Tech Report rev 0.docx SONORA LITHIUM PROJECT FS TECHNICAL REPORT CERTIFICATE OF QUALIFIED PERSON I, Joel A. Carrasco, P.E., do hereby certify thhat: 1. I am a Principal Engineer, Solum Consulting Group, 350 S Jackson st. #454 Denver, Colorado 80209 USA. 2. This certificate applies to the technical report titled “Technical Report on the Feasibility Study for the Sonora Lithium Project, Mexico, January 2018” (the “Technical Report”), prepared for Bacanora Minerals Limited; 3. The Effective Date of the Technical Report is 12 December 2017. 4. I am a graduate of Texas Tech Univerrsity, Texas with a Bachelor of Scieence degree in Civil Engineering. I have worked as a Civil Engineer continuously for a total off 15 years since my graduation from University. My relevant experience has been working as Project Manager for multi-national engineering companies on feasibility studies and engineering designs of tailings facilities; 5. I am registered as a Professional Engineer in the State of Arizona (Licence # 52000). 6. I havve read the definition of “Qualified Person” set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experrience, I fulfil the requirements to bee a “Qualified Person” for the purposes of NI 43-101. -
Lithium Resources and Requirements by the Year 2000
Lithium Resources and Requirements by the Year 2000 GEOLOGICAL SURVEY PROFESSIONAL PAPER 1005 Lithium Resources and Requirements by the Year 2000 JAMES D. VINE, Editor GEOLOGICAL SURVEY PROFESSIONAL PAPER 1005 A collection of papers presented at a symposium held in Golden, Colorado, January 22-24, 1976 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director First printing 1976 Second printing 1977 Library of Congress Cataloging in Publication Data Vine, James David, 1921- Lithium resources and requirements by the year 2000. (Geological Survey Professional Paper 1005) 1. Lithium ores-United States-Congresses. 2. Lithium-Congresses. I. Vine, James David, 1921- II. Title. HI. Series: United States Geological Survey Professional Paper 1005. TN490.L5L57 553'.499 76-608206 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02887-5 CONTENTS Page 1. Introduction, by James D. Vine, U.S. Geological Survey, Denver, Colo ______________-_______-_-- — ------- —— —— ——— ---- 1 2. Battery research sponsored by the U.S. Energy Research and Development Administration, by Albert Landgrebe, Energy Research and De velopment Administration, Washington, D.C., and Paul A. Nelson, Argonne National Laboratory, Argonne, Ill-__- —— -____.—————— 2 3. Battery systems for load-leveling and electric-vehicle application, near-term and advanced technology (abstract), by N. P. Yao and W. J. Walsh, Argonne National Laboratory, Argonne, 111___.__________________________________-___-_________ — ________ 5 4. Lithium requirements for high-energy lithium-aluminum/iron-sulfide batteries for load-leveling and electric-vehicle applications, by A. -
Using Tourmaline As an Indicator of Provenance
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2016 Using Tourmaline As An Indicator Of Provenance: Development And Application Of A Statistical Approach Using Random Forests Erin Lael Walden Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Walden, Erin Lael, "Using Tourmaline As An Indicator Of Provenance: Development And Application Of A Statistical Approach Using Random Forests" (2016). LSU Master's Theses. 4490. https://digitalcommons.lsu.edu/gradschool_theses/4490 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. USING TOURMALINE AS AN INDICATOR OF PROVENANCE: DEVELOPMENT AND APPLICATION OF A STATISTICAL APPROACH USING RANDOM FORESTS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements of the degree of Master of Science in The Department of Geology and Geophysics by Erin Lael Walden B.S., Louisiana State University, 2008 December 2016 In memory of Wayne Douglas Walden ii ACKNOWLEDGMENTS My sincere and endless gratitude goes to Darrell Henry, who provided funding for two years and saw me through personal and academic hurdles with tireless patience and understanding. His insight and communication improved this manuscript greatly. I must also thank Barbara Dutrow for her suggestions and contributions, and Brian Marx for his expertise in statistics and help with programming. -
LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, E.G. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE {(Roofi
CPC - C04B - 2021.08 C04B LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE {(roofing granules E04D 7/005)}; CERAMICS (devitrified glass-ceramics C03C 10/00); REFRACTORIES; TREATMENT OF NATURAL STONE Definition statement This place covers: Chemical aspects of the processing of lime, magnesia or dolomite and of molten slag. Compositional aspects of: • inorganic binders, such as hydraulic cements ; • mortars, concrete and artificial stone, e.g. the choice of fillers or active ingredients therefore; • shaped ceramic products, e.g. clay-wares, refractories , non-oxides. Physico-chemical aspects of methods for obtaining mortars, concrete, artificial stones or ceramics , e.g. for delaying the setting time of mortar compositions. Treatment including defibrillating of materials such as fillers , agglomerated or waste materials, or refuse to enhance their filling properties in mortars, concrete or artificial stone. Porous mortars, concrete, artificial stone or ceramic ware, and the preparation thereof. Methods and apparatus for: • burning or slaking lime; • obtaining mineral binders, e.g. Portland cement or hemihydrate plaster; • the expansion of mineral fillers , such as clay, perlite or vermiculite. After- treatment of artificial stones, mortars, concrete and ceramics , e.g. coating or impregnation of green concrete after primary shaping. Non-mechanical treatment of natural stone. Processing powders of inorganic compounds in preparation to the manufacturing of ceramic products . 1 C04B (continued) CPC - C04B - 2021.08 Definition statement The joining of burned ceramics with other articles by heating. References Limiting references This place does not cover: Granulating apparatus B01J 2/00 Mechanical features relating to the working of mortars, concrete, stone, B28 clay-wares or ceramics , e.g.