Defensive Behaviour in a Boigine Snake: First Record of Throat Inflation in Psammoph/S

Total Page:16

File Type:pdf, Size:1020Kb

Defensive Behaviour in a Boigine Snake: First Record of Throat Inflation in Psammoph/S ISRAEL JOURNAL OF ZOOLOGY, Vol. 33, pp. 69-71, printed March 1985 DEFENSIVE BEHAVIOUR IN A BOIGINE SNAKE: FIRST RECORD OF THROAT INFLATION IN PSAMMOPH/S YEHUDAH L. WERNER Department of Zoology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel Numerous species of the snake genus Psammophis Boie, 1827 (Colubridae: Boiginae) are common in Africa and southern Asia, mainly in arid and sandy habitats (Loveridge, 1940; Smith, 1943; FitzSimons, 1962; Reinhard & Vogel, 1975). In many parts of Israel (and of Sinai) Psammophis schokari (Forssk1ll, 1775) is one of the commonest snakes, whereas in southernmost Israel (and southern Sinai) P. aegyptius Marx, 1958 is quite common. Nevertheless I found no records of defensive behaviour in the genus, apart from concealment, escape and the tendency of some species to feign death and of many to bite when caught (FitzSimons, 1962; Pitman, 1974). The term "defensive" also embraces aggressive defenses - responses of a threatened animal which are aimed at repelling a potential predator, sometimes through warning or even bluffing (Edmunds, 1974). Carpenter and Ferguson (1977) found records of behavioural acts in 190 species belonging to 83 genera of colubrid snakes but none of Psammophis. I have caught or handled numerous individuals of P. schokari and a few P. aegyptius but have neither experienced nor heard of any particular defensive posture (other than escaping, defecating and biting), except for the following case. On 7 .IX.1980, aided by Mr. P. Amitai (Department of Zoology, Hebrew University of Jerusalem), I endeavoured to photograph a live adult P. aegyptius that was in his care. The snake's total length approximated 125 em, sex unknown (inPsammophis sex is unrecognizable externally due to the slenderness of the hemipenes (Smith, 1943; Dowling & Savage, 1960; FitzSimons, 1962)). The snake had been caught about a year earlier in the Neqiqe Ha-Mevokhim wadi, Sinai (ca. 15 km NW of the southern tip of the Peninsula). Mr. Amitai held the snake ca. 10 em behind its head over a mirror because I wanted the dorsal aspect and the brick-red ventral aspect to be seen together. (The venter is not red in all individuals of this species.) As I was approaching the head with the camera the snake began a (presumably) defensive display: it inflated its throat, exposing the whitish skin between the red gular scales, and at intervals of a few seconds repeatedly partly deflated, then reinflated it (Fig. I). This pumping was accompanied by a puffing sound, not high-pitched and not very loud but quite impressive at this close range. Although this unprecedented behaviour could conceivably represent a regular response directed towards conspecifics, here released by the mirror image, I was Received 1 July 1984 and in revised form 31 December 1984 70 Y.L. WERNER Isr. I. Zool. Fig. 1. An adult Psammophis aegyptius Marx (described in text) displaying throat inflation over a reflecting mirror. A. Throat almost maximally inflated. B. Throat partly deflated between bouts of inflation. impressed that the snake responded to the proximity of the camera. Other defensive responses in snakes also occur irregularly or individually (Werner & Frankenberg, 1982; Werner, 1983). If this display also occurs in individuals of other Psammophis species, it might perhaps explain the origin of the specific name of P. sibilans L. (hissing), the im­ propriety of which, for a usually silent snake, has aroused frequent protest (F. Werner, 1913; FitzSimons, 1962). In P. sibilans, whose throat is normally light yellow, the sound, if produced, may be more impressive than the sight. A defensive display of inflating the throat or the throat and neck has been reported in about 28 of the colubrid species reviewed by Carpenter and Ferguson (1977); others puff up even the whole body. Some of these displaying species are rear-fanged and mildly or even dangerously venomous, others are non-venomous; P. aegyptius is rear­ fanged and presumably (as judged from congeners) mildly or moderately venomous (Pitman, 1974). Our individual inflated only the throat, and that moderately; the sight was surprising because it was unexpected but actually much less impressive than in Dispholidus typus and Telothornis kirtlandii depicted by FitzSimons (1962: pls. 14-18) or Pseustes su/phureus and Spilotes pu/latus depicted by Rossman and Williams (1966). The latter authors noted an apparent correlation between the specific trait of neck inflation, and the anatomy of the respiratory system, viz., the length of the rudiment of the left-side lung in percra (percents of rostrum-anus length (Werner, 1971)) as reported by Brongersma {19 57) from preserved specimens. (Rossman and Williams misnamed this rudiment "tracheal lung.") In brief, according to Rossman and Williams (1966, as based on Brongersma, 1957), most or all of the few species of Colubridae in which the left lung exceeds 2 percra inflate the neck; the left lung in other species .
Recommended publications
  • A Review of the Species of Psammophis Boie Found South of Latitude 12° S (Serpentes: Psammophiinae)
    African Journal of Herpetology, 2002 51(2): 83-119. Original article A review of the species of Psammophis Boie found south of Latitude 12° S (Serpentes: Psammophiinae) DONALD G. BROADLEY Research Associate, Natural History Museum of Zimbabwe, Bulawayo Present address: Biodiversity Foundation for Africa,P.O. Box FM 730, Famona, Bulawayo, Zimbabwe [email protected] Abstract.—The status, relationships and zoogeography of the 14 taxa of Psammophis found south of Latitude 12° S are reviewed and the following taxonomic changes are proposed: 1. Psammophis trinasalis and P. namibensis, previously treated as subspecies of P. leightoni, are recognised as good evolutionary species which show ecological differences. 2. Psammophis orientalis, previously regarded as a subspecies of P. subtaeniatus, differs from the lat- ter in a suite of characters and is parapatric with it in Zimbabwe, so it is now recognised as an evolu- tionary species. 3. Psammophis brevirostris and P. leopardinus, previously regarded as subspecies of P. sibilans (Linnaeus), are recognised as relict evolutionary species. The Zambian populations previously assigned to P. leopardinus have been described as a new species (Hughes & Wade, in press). Key words.—Psammophis, morphology, taxonomy, zoogeography, southern Africa ince the last review of the genus mossambicus has subsequently been applied to SPsammophis in southern Africa (Broadley this eastern sister taxon of P. phillipsii 1977), a revision of the whole genus was the (Hallowell) by Branch (1998) and Hughes subject of a thesis by Frank Brandstätter (1999). (1995), which was subsequently published in summary form (Brandstätter 1996). The result- ing confusion with regard to the northern forms MATERIALS AND METHODS of the P.
    [Show full text]
  • Reproductive Behavior and Development in Spilotes Sulphureus (Serpentes: Colubridae) from Ecuador
    Phyllomedusa 17(1):113–126, 2018 © 2018 Universidade de São Paulo - ESALQ ISSN 1519-1397 (print) / ISSN 2316-9079 (online) doi: http://dx.doi.org/10.11606/issn.2316- 9079.v17i1p113-126 Reproductive behavior and development in Spilotes sulphureus (Serpentes: Colubridae) from Ecuador Jorge H. Valencia1 and Katty Garzon-Tello1,2 1 Fundación Herpetológica Gustavo Orcés, Av. Amazonas 3008 y Rumipamba, Casilla 1703448, Quito, Ecuador. E-mail: [email protected]. 2 Vivarium de Quito, Av. Amazonas 3008 y Rumipamba, Casilla 1703448, Quito, Ecuador. E-mail: [email protected]. Abstract Reproductive behavior and development in Spilotes sulphureus (Serpentes: Colu bridae) from Ecuador. The Birdsnake Spilotes sulphureus is a large-sized species that occurs from the Amazon region to the Atlantic forest of South America. Despite the wide distribution little is known about its natural history. Here we report, for the frst time, reproductive behavior displayed by this species observed in a pair of Ecuadorian specimens in captivity. A ritualized pre-copulatory behavior followed a colubrine pattern similar to the congeneric species Spilotes pullatus. The repertoire included chin-rubbing, continuous tongue ficking, head raising, body jerking, cloacal gaping, and partial mounting. Oviposition occurred 86–98 days after of the frst copulation. Females lay clutches of 7–14 eggs. Juvenile coloration is remarkably different from adults. Newborns have a dorsum with transverse brown or gray bands, and white or pale gray interspaces; young of 1–2 years have green bands and yellow-green interspaces; adults have dark green bands. Ontogenetic color changes are presumably associated with antipredator strategies, change in size, vulnerability or habitat and microhabitat selection.
    [Show full text]
  • De Los Reptiles Del Yasuní
    guía dinámica de los reptiles del yasuní omar torres coordinador editorial Lista de especies Número de especies: 113 Amphisbaenia Amphisbaenidae Amphisbaena bassleri, Culebras ciegas Squamata: Serpentes Boidae Boa constrictor, Boas matacaballo Corallus hortulanus, Boas de los jardines Epicrates cenchria, Boas arcoiris Eunectes murinus, Anacondas Colubridae: Dipsadinae Atractus major, Culebras tierreras cafés Atractus collaris, Culebras tierreras de collares Atractus elaps, Falsas corales tierreras Atractus occipitoalbus, Culebras tierreras grises Atractus snethlageae, Culebras tierreras Clelia clelia, Chontas Dipsas catesbyi, Culebras caracoleras de Catesby Dipsas indica, Culebras caracoleras neotropicales Drepanoides anomalus, Culebras hoz Erythrolamprus reginae, Culebras terrestres reales Erythrolamprus typhlus, Culebras terrestres ciegas Erythrolamprus guentheri, Falsas corales de nuca rosa Helicops angulatus, Culebras de agua anguladas Helicops pastazae, Culebras de agua de Pastaza Helicops leopardinus, Culebras de agua leopardo Helicops petersi, Culebras de agua de Peters Hydrops triangularis, Culebras de agua triángulo Hydrops martii, Culebras de agua amazónicas Imantodes lentiferus, Cordoncillos del Amazonas Imantodes cenchoa, Cordoncillos comunes Leptodeira annulata, Serpientes ojos de gato anilladas Oxyrhopus petolarius, Falsas corales amazónicas Oxyrhopus melanogenys, Falsas corales oscuras Oxyrhopus vanidicus, Falsas corales Philodryas argentea, Serpientes liana verdes de banda plateada Philodryas viridissima, Serpientes corredoras
    [Show full text]
  • Addo Elephant National Park Reptiles Species List
    Addo Elephant National Park Reptiles Species List Common Name Scientific Name Status Snakes Cape cobra Naja nivea Puffadder Bitis arietans Albany adder Bitis albanica very rare Night adder Causes rhombeatus Bergadder Bitis atropos Horned adder Bitis cornuta Boomslang Dispholidus typus Rinkhals Hemachatus hemachatus Herald/Red-lipped snake Crotaphopeltis hotamboeia Olive house snake Lamprophis inornatus Night snake Lamprophis aurora Brown house snake Lamprophis fuliginosus fuliginosus Speckled house snake Homoroselaps lacteus Wolf snake Lycophidion capense Spotted harlequin snake Philothamnus semivariegatus Speckled bush snake Bitis atropos Green water snake Philothamnus hoplogaster Natal green watersnake Philothamnus natalensis occidentalis Shovel-nosed snake Prosymna sundevalli Mole snake Pseudapsis cana Slugeater Duberria lutrix lutrix Common eggeater Dasypeltis scabra scabra Dappled sandsnake Psammophis notosticus Crossmarked sandsnake Psammophis crucifer Black-bellied watersnake Lycodonomorphus laevissimus Common/Red-bellied watersnake Lycodonomorphus rufulus Tortoises/terrapins Angulate tortoise Chersina angulata Leopard tortoise Geochelone pardalis Green parrot-beaked tortoise Homopus areolatus Marsh/Helmeted terrapin Pelomedusa subrufa Tent tortoise Psammobates tentorius Lizards/geckoes/skinks Rock Monitor Lizard/Leguaan Varanus niloticus niloticus Water Monitor Lizard/Leguaan Varanus exanthematicus albigularis Tasman's Girdled Lizard Cordylus tasmani Cape Girdled Lizard Cordylus cordylus Southern Rock Agama Agama atra Burrowing
    [Show full text]
  • Snakes: Cultural Beliefs and Practices Related to Snakebites in a Brazilian Rural Settlement Dídac S Fita1, Eraldo M Costa Neto2*, Alexandre Schiavetti3
    Fita et al. Journal of Ethnobiology and Ethnomedicine 2010, 6:13 http://www.ethnobiomed.com/content/6/1/13 JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE RESEARCH Open Access ’Offensive’ snakes: cultural beliefs and practices related to snakebites in a Brazilian rural settlement Dídac S Fita1, Eraldo M Costa Neto2*, Alexandre Schiavetti3 Abstract This paper records the meaning of the term ‘offense’ and the folk knowledge related to local beliefs and practices of folk medicine that prevent and treat snake bites, as well as the implications for the conservation of snakes in the county of Pedra Branca, Bahia State, Brazil. The data was recorded from September to November 2006 by means of open-ended interviews performed with 74 individuals of both genders, whose ages ranged from 4 to 89 years old. The results show that the local terms biting, stinging and pricking are synonymous and used as equivalent to offending. All these terms mean to attack. A total of 23 types of ‘snakes’ were recorded, based on their local names. Four of them are Viperidae, which were considered the most dangerous to humans, besides causing more aversion and fear in the population. In general, local people have strong negative behavior towards snakes, killing them whenever possible. Until the antivenom was present and available, the locals used only charms, prayers and homemade remedies to treat or protect themselves and others from snake bites. Nowadays, people do not pay attention to these things because, basically, the antivenom is now easily obtained at regional hospitals. It is under- stood that the ethnozoological knowledge, customs and popular practices of the Pedra Branca inhabitants result in a valuable cultural resource which should be considered in every discussion regarding public health, sanitation and practices of traditional medicine, as well as in faunistic studies and conservation strategies for local biological diversity.
    [Show full text]
  • Spilotes Pullatus (Tiger Rat Snake Or Clibo)
    UWI The Online Guide to the Animals of Trinidad and Tobago Diversity Spilotes pullatus (Tiger Rat Snake or Clibo) Family: Colubridae (Typical Snakes) Order: Squamata (Lizards and Snakes) Class: Reptilia (Reptiles) Fig. 1. Tiger rat snake, Spilotes pullatus. [http://www.theonlinezoo.com/pages/tropical_rat_snake.html, downloaded 18 October 2016] TRAITS. Amongst the largest snakes of the Americas, with a maximum length of 4.2m (Primareptilia, 2016). The usual maximum length is 3m in males and 2.5m in females. They are long and slender with a head that is distinct from the (Trinidad-Tobagoherps, 2016). The coloration of their scales is dependent upon where they are found. However, throughout their wide range the main colour for this species is black with yellowish markings as bands (Fig. 1), diagonals or even netlike patterns (Captivebredreptileforums, 2012). Spilotes pullatus is a non-venomous snake. DISTRIBUTION. Spilotes pullatus can be found from southern Mexico and other countries south to Paraguay, including Trinidad and Tobago (Fig. 2). HABITAT AND ECOLOGY. Can be found in abundance in habitats close to water, mainly forested areas (Littlescorpion, 2016). They are diurnal semi-arboreal snakes, using both trees and UWI The Online Guide to the Animals of Trinidad and Tobago Diversity the ground, and can be found basking during the day on branches (Trinidad-Tobagoherps, 2016). They feed on a variety of rodents, bats, eggs and small birds, occasionally on amphibians and reptiles. Unlike other species of non-venomous snakes, their prey are not killed by being coiled around but by biting or holding and pressing against a solid surface or object.
    [Show full text]
  • Polymorphism in the Snake Psammophis Schokari on Both Sides of the Desert Edge in Israel and Sinai
    Journal of Arid Environments (1997) 37: 513–527 Polymorphism in the snake Psammophis schokari on both sides of the desert edge in Israel and Sinai Salit Kark, Ittai Warburg & Yehudah L. Werner Department of Evolution, Systematics and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel (Received 7 March 1997, accepted 2 July 1997) The snake Psammophis schokari (Colubridae) occurs in Israel and Sinai, Egypt, in three pholidotically indistinguishable morphs: (1) striped, with four dark longitudinal stripes; (2) non-striped, plain or lightly dotted; and (3) rear- striped, dark stripes on the posterior part merge anteriorly (this pattern is first described herein). From 100 museum specimens it appears that the striped snakes occur mainly in the northern mesic parts of Israel, the non-striped mainly in the southern deserts, and the rear-striped mainly in a central belt. The distributions are correlated to rainfall, solar radiation and vegetation. This polymorphism may be maintained by crypsis, thermoregulation or both. ©1997 Academic Press Limited Keywords: Psammophis; snakes; polymorphism; coloration; eco-geographic gradient Introduction Colour polymorphism has been described in various taxonomic groups (reviewed in Mayr, 1963). Colour and stripe polymorphism is also known in some species of snake (Jackson et al., 1976; Gibson & Falls, 1979; Forsman & As˚ , 1987; King, 1988; Brodie, 1989, 1992; Wolf & Werner, 1993, 1994; Forsman, 1995). Most studies dealing with colour polymorphism in snakes describe two distinct morphs of the same species. Often one is very dark in colour, and the other lighter, as in the cases of the common garter snake Thamnophis sirtalis (Linnaeus) (Gibson & Falls, 1979) and the adder Vipera berus (Linnaeus) (Forsman & As,˚ 1987; Forsman, 1995).
    [Show full text]
  • Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes
    Journal of Herpetology, Vol. 55, No. 1, 1–10, 2021 Copyright 2021 Society for the Study of Amphibians and Reptiles Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes 1,2 1 1 HIRAL NAIK, MIMMIE M. KGADITSE, AND GRAHAM J. ALEXANDER 1School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg. PO Wits, 2050, Gauteng, South Africa ABSTRACT.—The Colubroidea includes all venomous and some nonvenomous snakes, many of which have extraordinary dental morphology and functional capabilities. It has been proposed that the ancestral condition of the Colubroidea is venomous with tubular fangs. The venom system includes the production of venomous secretions by labial glands in the mouth and usually includes fangs for effective delivery of venom. Despite significant research on the evolution of the venom system in snakes, limited research exists on the driving forces for different fang and dental morphology at a broader phylogenetic scale. We assessed the patterns of fang and dental condition in the Lamprophiidae, a speciose family of advanced snakes within the Colubroidea, and we related fang and dental condition to diet. The Lamprophiidae is the only snake family that includes front-fanged, rear-fanged, and fangless species. We produced an ancestral reconstruction for the family and investigated the pattern of diet and fangs within the clade. We concluded that the ancestral lamprophiid was most likely rear-fanged and that the shift in dental morphology was associated with changes in diet. This pattern indicates that fang loss, and probably venom loss, has occurred multiple times within the Lamprophiidae.
    [Show full text]
  • Early German Herpetological Observations and Explorations in Southern Africa, with Special Reference to the Zoological Museum of Berlin
    Bonner zoologische Beiträge Band 52 (2003) Heft 3/4 Seiten 193–214 Bonn, November 2004 Early German Herpetological Observations and Explorations in Southern Africa, With Special Reference to the Zoological Museum of Berlin Aaron M. BAUER Department of Biology, Villanova University, Villanova, Pennsylvania, USA Abstract. The earliest herpetological records made by Germans in southern Africa were casual observations of common species around Cape Town made by employees of the Dutch East India Company (VOC) during the mid- to late Seven- teenth Century. Most of these records were merely brief descriptions or lists of common names, but detailed illustrations of many reptiles were executed by two German illustrators in the employ of the VOC, Heinrich CLAUDIUS and Johannes SCHUMACHER. CLAUDIUS, who accompanied Simon VAN DER STEL to Namaqualand in 1685, left an especially impor- tant body of herpetological illustrations which are here listed and identified to species. One of the last Germans to work for the Dutch in South Africa was Martin Hinrich Carl LICHTENSTEIN who served as a physician and tutor to the last Dutch governor of the Cape from 1802 to 1806. Although he did not collect any herpetological specimens himself, LICHTENSTEIN, who became the director of the Zoological Museum in Berlin in 1813, influenced many subsequent workers to undertake employment and/or expeditions in southern Africa. Among the early collectors were Karl BERGIUS and Ludwig KREBS. Both collected material that is still extant in the Berlin collection today, including a small number of reptile types. Because of LICHTENSTEIN’S emphasis on specimens as items for sale to other museums rather than as subjects for study, many species first collected by KREBS were only described much later on the basis of material ob- tained by other, mostly British, collectors.
    [Show full text]
  • Genetic Diversity Among Eight Egyptian Snakes (Squamata-Serpents: Colubridae) Using RAPD-PCR
    Life Science Journal, 2012;9(1) http://www.lifesciencesite.com Genetic Diversity among Eight Egyptian Snakes (Squamata-Serpents: Colubridae) Using RAPD-PCR Nadia H. M. Sayed Zoology Dept., College for Women for Science, Arts and Education, Ain Shams University, Heliopolis, Cairo, Egypt. [email protected] Abstract: Genetic variations between 8 Egyptian snake species, Psammophis sibilans sibilans, Psammophis Sudanensis, Psammophis Schokari Schokari, Psammophis Schokari aegyptiacus, Spalerosophis diadema, Lytorhynchus diadema, , Coluber rhodorhachis, Coluber nummifer were conducted using RAPD-PCR. Animals were captured from several locality of Egypt (Abu Rawash-Giza, Sinai and Faiyum). Obtained results revealed a total of 59 bands which were amplified by the five primers OPB-01, OPB-13, OPB-14, OPB-20 and OPE-05 with an average 11.8 bands per primer at molecular weights ranged from 3000-250 bp. The polymorphic loci between both species were 54 with percentage 91.5 %. The mean band frequency was 47% ranging from 39% to 62% per primer .The similarity matrix value between the 8 Snakes species was ranged from 0.35 (35%) to 0.71 (71%) with an average of 60%. The genetic distance between the 8 colubrid species was ranged from 0.29 (29%) to 0.65 (65%) with an average of 40 %. Dendrogram showed that, the 8 snake species are separated from each other into two clusters .The first cluster contain 4 species of the genus Psammophis. The second cluster includes the 4 species of the genera, Spalerosophis; Coluber and Lytorhynchus. Psammophis sibilans is sister to Psammophis Sudanensis with high genetic similarity (71%) and Psammophis Schokari Schokari is sister to Psammophis Schokari aegyptiacus with high genetic similarity (70%).
    [Show full text]
  • Studies on Tongue of Reptilian Species Psammophis Sibilans, Tarentola Annularis and Crocodylus Niloticus
    Int. J. Morphol., 29(4):1139-1147, 2011. Studies on Tongue of Reptilian Species Psammophis sibilans, Tarentola annularis and Crocodylus niloticus Estudios sobre la Lengua de las Especies de Reptiles Psammophis sibilans, Tarentola annularis y Crocodylus niloticus Hassan I.H. El-Sayyad; Dalia A. Sabry; Soad A. Khalifa; Amora M. Abou-El-Naga & Yosra A. Foda EL-SAYYAD, H. I. H.; SABRY, D. A.; KHALIFA, S. A.; ABOU-EL-NAGA, A. M. & FODA, Y. A. Studies on tongue of reptilian species Psammophis sibilans, Tarentola annularis and Crocodylus niloticus. Int. J. Morphol., 29(4):1139-1147, 2011. SUMMARY: Three different reptilian species Psammophis sibilans (Order Ophidia), Tarentola annularis (Order Squamata and Crocodylus niloticus (Order Crocodylia) are used in the present study. Their tongue is removed and examined morphologically. Their lingual mucosa examined under scanning electron microscopy (SEM) as well as processed for histological investigation. Gross morphological studies revealed variations of tongue gross structure being elongated with bifurcated end in P. sibilans or triangular flattened structure with broad base and conical free border in T. annularis or rough triangular fill almost the floor cavity in C. niloticus. At SEM, the lingual mucosa showed fine striated grooves radially arranged in oblique extension with missing of lingual papillae. Numerous microridges are detected above the cell surfaces in P. sibilans. T. annularis exhibited arrangement of conical flattened filiform papillae and abundant of microridges. However in C. niloticus, the lingual mucosa possessed different kinds of filiform papillae besides gustatory papillae and widespread arrangement of taste buds. Histologically, confirmed SEM of illustrating the lingual mucosa protrusion of stratified squamous epithelium in P.
    [Show full text]
  • Notice Warning Concerning Copyright Restrictions P.O
    Publisher of Journal of Herpetology, Herpetological Review, Herpetological Circulars, Catalogue of American Amphibians and Reptiles, and three series of books, Facsimile Reprints in Herpetology, Contributions to Herpetology, and Herpetological Conservation Officers and Editors for 2015-2016 President AARON BAUER Department of Biology Villanova University Villanova, PA 19085, USA President-Elect RICK SHINE School of Biological Sciences University of Sydney Sydney, AUSTRALIA Secretary MARION PREEST Keck Science Department The Claremont Colleges Claremont, CA 91711, USA Treasurer ANN PATERSON Department of Natural Science Williams Baptist College Walnut Ridge, AR 72476, USA Publications Secretary BRECK BARTHOLOMEW Notice warning concerning copyright restrictions P.O. Box 58517 Salt Lake City, UT 84158, USA Immediate Past-President ROBERT ALDRIDGE Saint Louis University St Louis, MO 63013, USA Directors (Class and Category) ROBIN ANDREWS (2018 R) Virginia Polytechnic and State University, USA FRANK BURBRINK (2016 R) College of Staten Island, USA ALISON CREE (2016 Non-US) University of Otago, NEW ZEALAND TONY GAMBLE (2018 Mem. at-Large) University of Minnesota, USA LISA HAZARD (2016 R) Montclair State University, USA KIM LOVICH (2018 Cons) San Diego Zoo Global, USA EMILY TAYLOR (2018 R) California Polytechnic State University, USA GREGORY WATKINS-COLWELL (2016 R) Yale Peabody Mus. of Nat. Hist., USA Trustee GEORGE PISANI University of Kansas, USA Journal of Herpetology PAUL BARTELT, Co-Editor Waldorf College Forest City, IA 50436, USA TIFFANY
    [Show full text]