Some Technical and Economic Aspects of the Manufacture, Distribution and Application of Artificial Fertilizers

Total Page:16

File Type:pdf, Size:1020Kb

Some Technical and Economic Aspects of the Manufacture, Distribution and Application of Artificial Fertilizers SOME TECHNICAL AND ECONOMIC ASPECTS OF THE MANUFACTURE, DISTRIBUTION AND APPLICATION OF ARTIFICIAL FERTILIZERS. Thesis submitted for the degree of Doctor of Philosophy at the University of London in the Faculty of Engineering by Jack G. Helfenstein, B.Sc., Dept. of Chemical Engineering, Imperial College of Science and Technology, London, S.W.7. November 1959. -1- ABSTRACT This thesis attempts to evaluate some of the economic and technical problems facing the fertilizer industry, both at present and in the future, against the background of the potential demand for fertilizers. The history and growth of the British fertilizer industry is examined. A special study is made of the statistics relating to fertilizer production and consumption since 1945. The economic theory underlying fertilizer use is investigated and extended. An estimate of the potential demand for fertilizers is made and it is concluded that fertilizer consumption could, with advantage, be greatly increased, especially that of nitrogen. The extent to which fertilizer prices and subsidy policy have affected demand are determined and discussed. The results of a survey that was made to determine farmers' attitudes to fertilizer use are given. The relative importance of various factors affecting fertilizer use are assessed. Current methods of distribution and application are compared to alternative methods. It is concluded that the former are in the main satisfactory, though a greater nutrient concentration in fertilizers would lead to significant savings on cost.In view of it's importance to the industry the unit operation of granulation is examined in detail and methods of achieving optimum efficiency suggested. Various fertilizer production processes are assessed for their economic and technical feasibility. It is concluded that the potential demand for nitrogen would be best met by the greater use of ammonium nitrate and the introduction and use of urea. It is further concluded that the present,phosphorus,fertilizer processes are adequate and that certain alternative processes, mainly for the production of water insoluble phosphates, are not economically feasible under British conditions. It is thought that there is little or no scope for the use of liquid fertilizers in the U.K. ACKNOWLEDGEMENTS The author wishes to thank especially Professor D.M.Newitt,of the Imperial College of Science and Technology, and Professor R.S.Ldwards, of the London School of Economics, for their supervision and continued interest in this work and also for having made possible the writing of a thesis involving both technology and economics. My thanks are also due to Mr.Peston, of the London School of Economics, for his invaluable discussion and critiscism of many of the economic sections of this thesis. I would also like to thank all those individuals and organisations, too numerous to mention separately, who supplied data for this work. Especial thanks are due here to Mr.J.Crosby, of the Cambridgeshire Farmers' Union, whose help in organising the collection of data for Chapter 5 was invaluable. Finally I would like to thank the Department of Scientific and Industrial Research for their maintainence grant during the past three years which enabled me to carry out this work. -iv- CONTENTS Page Title Abstract Acknowledgements iii Contents iv Chapter 1. The history and organisation of the fertilizer industry. 1 1.1. History of fertilizer use. 1 1.2. Present state of knowledge on fertilizers. 9 1.3. The history of the fertilizer industry in the United Kingdom. 15 1.4. The present organisation and structure of the fertilizer industry. 22 Chapter 2. Consumptionl production and trade in fertilizers. 30 2.1. Sources of statistics. 30 2.2. Consumption of, the major plant nutrients. 32 2.3. Production in the fertilizer industry. 37 2.4. The effect of increased fetilizer consumption on agricultural output. 37 2.5. Nitrogen fertilizers. 40 2.6. Production,consumption and trade in phosphatic fertilizers. 47 2.7. Production,consumption and trade in potassium fertilizers. 55 Appendix, chapter 2. 58 Chapter 3. The potential demand for fertilizers and itIc relation to agricultural policy. 63 3.1. Postwar agricultural policy in the United Kingdom. 63 3.2. Economic condition of the agricultural industry. 68 -v- Contents continued:- Page 3.3. Response of crops to fertilizers 72 3.4. The nature and extent of the potential demand for fertilizers. 84 Appendix, The choice of a response curve for predicting the optimum level of fertilizer application. 103 Chapter 4. The changing structure of fertilizer prices and subsidies and itSc- effect on expenditure and consumption of fertilizers. 115 4.1. Current fertilizer prices. 115 4.2. Level of fertilizer prices, 1946-58. 118 4.3. Fertilizer subsidies. 119 4.4. Expenditure on fertilizers. 124 4.5. Relationship between farm income, fertilizer price and consumption. 125 4.6. Subsidy policy. 127 Appendix, chapter 4. 129 Chapter 5. The attitude of farmers to the use of fertilizers. 132 5.1. Introduction. 132 5.2. Results of preliminary survey. 133 5.3. Survey of farmers in Cambridgeshire. 136 Appendix. Criticism of methods employed and accuracy of results obtained from survey. 146 Chapter 6. Some economic and technical aspects of the fertilizer industry with particular reference to application and distribution. 149 6.1. Properties required of fertilizers. 149 6.2. Granulation in the fertilizer industry. 153 6.3. Distribution of fertilizers. 174 6.4. Application of fertilizers. 181 -vi- Contents continued:- Page Chapter 7.Fertilizer manufacturing processes and and the future development of the industry. 185 7.1.Nitrogen fertilizers. 185 7.2.Phosphorus fertilizers. 221 References. 246 -1- CHAPTER 1 THE HISTORY AND ORGANISATION OF THE FERTILIZER INDUSTRY 1.1 History of fertilizer use 1.1.1, The early history. The use of animal manure on the land stretches back over many thousand years and is presumably as old as settled agriculture itself. It was in Roman times that the first major writings on agriculture appeared and these, besides recommending the use of manure, stated the beneficial effects of marl and limestone on the soil. These may be classified as fertilizers. With the breakup of the Roman Empire conditions in Europe became unsettled and were not condusive to agricultural research. During the succeeding nine or ten centuries the method of restoring fertility to the soil was, in general to allow the land to remain fallow for a season. However from the 16th Century onwards increasing numbers of references to the use of manure and artificial fertilizer? occur. A fertilizer is here defined as a material which, when added to the soil, increases the yield of a crop grown in that soil i.e. renders it more productive than it would otherwise be. The term 'artificial fertilizer' is here used to denote those materials, other than decayed vegetable matter or animal manure, which are used for this purpose. -2- In 1563 for example, Bernard Palissy in his work 'Recepte Veritable' (1) recommends the use of marl, lime and wood ashes as fertilizers and suggests that it is the mineral salts in the ashes which are of benefit to the plant. Before the beginning of the 19th Century increasing numbers of substances were found to have an effect on the growth of plants. Glauber, in common with other scientists, found that nitrates increase plant growth and he held that 'saltpeter is the principle of vegetation'. Also it was discovered that bones had a fertilizing action as well as such materials as rags, wool waste, hoofs, horns and blood. However there was no knowledge as to why these were effective. Many experiments were made with different substances to de- termine their action on plant growth. In 1750, Jethro Tull (2) after a series of experiments summed up the extent of know- ledge concerning fertilizers as follows:- 'It is agreed that all of the following materials con- tribute in some manner to the increase of plants, but it is disputed which is that very increase in food. (1) Nitre (2) fire (3) earth (4) water'. It is unfortunate that, although a large number of experiments were made in this period, the lack of a quantita- tive, scientific approach prevented any rational developments in the restoration and maintenance of soil fertility to be made. It was at the end of the 18th Century that Thomas Malthus wrote his 'Essay on the principle of population as it affects the future improvement of society' (3). Malthus' theory visualised a constant pressure of the population on a food supply limited by the world's available land area and it: gradual declining fertility.. However the latter pre- diction proved to be incorrect by the knowledge, gained sub- sequently in the 19th Century, that by the addition of plant nutrients soil fertility could be maintained and even improved. 1.1.2. The growth of knowledge concerning fertilizer use. 1.1.2.1. Early investigations. In 1804 T. de Saussure, as a result of his research, published a book, 'ReCherches chimiques sur la vegetation' (4) which marked the origin of the science of fertilizers. The importance of Saussure's work was that he instituted a.. quantitative method of experimentation in his investigations on plant physiology. He showed conclusively that plants derive their carbon and oxygen from the atmosphere and their nitrogen and mineral matter from the soil. In 1834 J.B. Bou.ssingault (5) laid out a series of field plots and, using Saussure's methods of analysis, confirmed his conclusions concerning the nutrient value of mineral matter on actual crops. He weighed and analysed the quantity of manures applied and the crops obtained and was thus able to relate the increase in growth with the nutrients applied. Although Saussure had pointed to a means by which soil fertility could be increased, the lack of a sufficiently developed chemical industry prevented his theories from being put to any practical use at the time.
Recommended publications
  • An African Green Revolution, Finding Ways to Boost Productivity on Small Farms {Keijiro Otsuka} [940075759X] (2012).Pdf
    Keijiro Otsuka Donald F. Larson Editors An African Green Revolution Finding Ways to Boost Productivity on Small Farms An African Green Revolution Keijiro Otsuka • Donald F. Larson Editors An African Green Revolution Finding Ways to Boost Productivity on Small Farms Editors Keijiro Otsuka Donald F. Larson National Graduate Institute The World Bank for Policy Studies Research Group 7-2 2-1 Roppongi 1818 H Street Northwest Minato , Tokyo 106-8677 Washington , DC 20433 Japan USA The fi ndings, interpretations, and conclusions expressed in this work do not necessarily re fl ect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. ISBN 978-94-007-5759-2 ISBN 978-94-007-5760-8 (eBook) DOI 10.1007/978-94-007-5760-8 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012951120 © The International Bank for Reconstruction and Development/The World Bank 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
    [Show full text]
  • Fertilizer Use in African Agriculture Lessons Learned and Good Practice Guidelines Public Disclosure Authorized Michael Morris,Valerie A
    Public Disclosure Authorized DIRECTIONS IN DEVELOPMENT 39037 Public Disclosure Authorized Agriculture and Rural Development Fertilizer Use in African Agriculture Lessons Learned and Good Practice Guidelines Public Disclosure Authorized Michael Morris,Valerie A. Kelly, Ron J. Kopicki, and Derek Byerlee Public Disclosure Authorized Fertilizer Use in African Agriculture Fertilizer Use in African Agriculture Lessons Learned and Good Practice Guidelines Michael Morris Valerie A. Kelly Ron J. Kopicki Derek Byerlee © 2007 The International Bank for Reconstruction and Development / The World Bank 1818 H Street, NW Washington, DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org E-mail: [email protected] All rights reserved. 1 2 3 4 :: 10 09 08 07 This volume is a product of the staff of the International Bank for Reconstruction and Development / The World Bank. The findings, interpretations, and conclusions expressed in this volume do not necessarily reflect the views of the Executive Directors of The World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. The International Bank for Reconstruction and Development / The World Bank encourages dissemination of its work and will normally grant permission to reproduce portions of the work promptly.
    [Show full text]
  • Efficient Fertilizer Use Manual
    SECTION CONTENTS: • Introduction • Ancient Practices • After the Fall of Rome • The Middle Ages • Chemical Discoveries • Early Understandings of Plant Growth • Early Field Experiments with Chemical Fertilizers • Nitrogen • Phosphorus • Potassium • Granular, Homogeneous, Mixed Fertilizers • Bulk Blending • Fluid Mixed Fertilizers Introduction Use of commercial fertilizers has only a short history compared to the length of time that man is known to have grown crops. It is believed that crop production began some 6,000 to 10,000 years ago. For example, there are records of cropping dating back over 7,000 years in China and nearly that long in Norway. It was not until the 1840s that limited quantities of a few types of natural commercial fertilizer such as Peruvian guano and Chilean sodium nitrate were first used in the Western world. 1 Ancient Practices Up to the Fall of Rome Many of the sound agricultural practices of today, including manuring, liming, and crop rotations with legumes were also important in ancient times. Also, the value of silt deposits from flooding rivers in maintaining soil productivity was recognized over 5,000 years ago by the early Egyptians living along the Nile River and by the Mesopotamian civilization occupying the region between the Tigris and Euphrates Rivers, now present day Iraq. Figure Egyptian 1.1 Agriculture Organic manures have been used in Chinese agriculture for over 3,000 years. Descriptions of using human and animal wastes, plant ashes and grasses and how these materials benefited crop production and improved soil fertility were recorded in that country over 2,000 years ago. The age of the Greeks, probably between 800 to 200 B.C., was a "Golden Age" and during this early period several historians and writers referred to the manuring of crops and adjusting the amounts for thin and rich soils.
    [Show full text]
  • Managing Fertilizers to Enhance Soil Health Bijay Singh and John Ryan
    Managing Fertilizers to Enhance Soil Health Bijay Singh and John Ryan ❙ 1 © Gwoeii Managing Fertilizers to Enhance Soil Health Bijay Singh and John Ryan First edition, IFA, Paris, France, May 2015 Copyright 2015 IFA. All rights reserved The publication can be downloaded from IFA’s website www.fertilizer.org/Library ABOUT THE AUTHORS John Ryan Bijay Singh Consultant Soil Scientist, Carrigataha, Cahir, Tipperary, Punjab Agricultural University, Ludhiana 141 004, Punjab, Ireland – [email protected] India – [email protected] Dr John Ryan, researcher, educator, and editor, has Dr. Bijay Singh is INSA Senior Scientist at Punjab degrees from University College Dublin ( PhD, D.Sc) and Agricultural University, Ludhiana, India. He is a fellow is currently a consultant in Ireland. He spent 37 years of the Indian National Science Academy and National in the Middle East as Senior Scientist at ICARDA in Syria, Academy of Agricultural Sciences, and was one of the Professor of Agronomy with the University of Nebraska ten National Professors in India during 2006 to 2012. in Morocco and Professor of Soil Science at the American His contributions on nitrogen balance in soil plant University of Beirut, and previously at the University of systems have led to better understanding for enhancing Arizona. His main area of interest is dryland soil fertility nitrogen use efficiency in rice-wheat cropping system and plant nutrition. He is a Fellow of ASA, SSSA, CSSA, and reducing fertilizer nitrogen related environmental and AAAS, and is recipient of the International Awards in pollution. His work on nitrogen management in rice and ASA, SSSA, and CSSA, Distinguished Soil Science Award, wheat using leaf color chart is proving very useful in IFA Crop Nutrition Award, IPNI Science Award, J.Benton enhancing fertilizer use efficiency in South Asia.
    [Show full text]
  • Introduction to Fertilizers Industries
    Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org ADANA UNIVERSTY – INDUSTRY JOINT RESEARCH CENTER INTRODUCTIN TO FERTILIZER INDUSTRIES BY TAREK ISMAIL KAKHIA 1 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org ADANA UNIVERSTY – INDUSTRY JOINT RESEARCH CENTER page Item 3 Fertilizer 71 N - P - K rating 17 Fertilizers Inorganic Acids: 21 Sulfur 53 Sulfur Dioxide 11 Sulfur Trioxide 44 Sulfuric Acid 35 Nitrogen 35 Liquid Nitrogen 37 Nitrogen Cycle 51 Nitrogen Oxide 53 Nitric oxide ( NOX ) 22 Nitrogen Di Oxide 27 Nitrous Oxide 111 Nitric Oxide 121 Di Nitrogen Pent oxide 714 Nitric Acid 151 Phosphate Minerals ( Phosphate Rock (Phospharite ٌ 157 155 Phosphorus 132 Phosphorus Oxide 171 Phosphorus Tri Oxide 172 Phosphorus Pent Oxide 711 Phosphoric Acid 137 Phospho Gypsum 711 Fertilizers Alkalizes: 787 Ammonia 211 Ammonia Production 211 Amine Gas Treating 171 Ammonium Hydroxide 212 Category : Ammonium Compounds 221 Potassium 253 Potassium Hydroxide 211 Fertilizers Salts 215 Ammonium Ferric Citrate 2 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org ADANA UNIVERSTY – INDUSTRY JOINT RESEARCH CENTER 211 Ammonium Nitrate 215 Di Ammonium Phosphate 212 Tri Ammonium Phosphate 231 Ammonium Sulfate 232 Calcium Nitrate 231 Calcium Phosphate 233 Mono Calcium Phosphate 271 Di Calcium Phosphate 271 Tri Calcium Phosphate 271 Sodium Nitrate 267 Magnesium Phosphate 275 Di Magnesium Phosphate 272 Magnesium Sulfate 235 Potassium Chloride 235 Potassium Citrate 251 Potassium Nitrate 253 Potassium Phosphate 257 Mono Potassium Phosphate 255 Di Potassium Phosphate 252 Tri Potassium Phosphate 221 Potassium Sulfate 221 Borax 511 Organic Fertilizers: 515 Compost 513 Composting 521 Urea 555 Urea Cycle 555 Urea Phosphate 331 Extension & Supplements 511 Macronutrient & Micronutrient Fertilizers 535 Category : Phosphate minerals 533 Pozzolan 535 Pumice 5 Copyright © Tarek Kakhia.
    [Show full text]
  • Low Fertilizer Use Is a Problem in Africa
    Public Disclosure Authorized DIRECTIONS IN DEVELOPMENT 39037 Public Disclosure Authorized Agriculture and Rural Development Fertilizer Use in African Agriculture Lessons Learned and Good Practice Guidelines Public Disclosure Authorized Michael Morris,Valerie A. Kelly, Ron J. Kopicki, and Derek Byerlee Public Disclosure Authorized Fertilizer Use in African Agriculture Fertilizer Use in African Agriculture Lessons Learned and Good Practice Guidelines Michael Morris Valerie A. Kelly Ron J. Kopicki Derek Byerlee © 2007 The International Bank for Reconstruction and Development / The World Bank 1818 H Street, NW Washington, DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org E-mail: [email protected] All rights reserved. 1 2 3 4 :: 10 09 08 07 This volume is a product of the staff of the International Bank for Reconstruction and Development / The World Bank. The findings, interpretations, and conclusions expressed in this volume do not necessarily reflect the views of the Executive Directors of The World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. The International Bank for Reconstruction and Development / The World Bank encourages dissemination of its work and will normally grant permission to reproduce portions of the work promptly.
    [Show full text]
  • Florida Fertilizer Ordinances – the Good, the Bad, and the Ugly
    Florida Fertilizer Ordinances – The Good, the Bad, and the Ugly Florida Stormwater Association 2014 Annual Conference June 13, 2014 Harvey H. Harper, Ph.D., P.E. Environmental Research & Design, Inc. 2 Nitrogen 250,000 Fertilizer Use in 200,000 Florida 150,000 (Source: FDACS) 100,000 Nitrogen (tons) Nitrogen 50,000 Fertilizer is a multi-billion 0 dollar industry in Florida Farm Non Farm Fertilizer use in Florida increased steadily each Phosphate 100,000 year until about 2000 90,000 80,000 70,000 60,000 Use has declined 50,000 significantly since 40,000 30,000 (tons) Phosphate 20,000 FDACS suggests that 10,000 0 decline is due to fertilizer regulation Farm Non Farm 3 Farm Acreage 10,400,000 Fertilizer Use in 10,200,000 Florida 10,000,000 (Source: FDACS) 9,800,000 9,600,000 9,400,000 Fertilizer decrease highly FarmedAcreage 9,200,000 correlated with decrease in farm land 9,000,000 8,800,000 8,600,000 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Phosphate (as P2O5) Nitrogen (as N) (Multiply x 0.44 to get P) 250,000 90,000 R² = 0.78 80,000 200,000 R2 = 0.80 70,000 60,000 150,000 50,000 40,000 100,000 30,000 20,000 50,000 10,000 Nitrogen Use (tons/yr) Use Nitrogen Phosphate Use (tons/yr) Phosphate Use 0 0 9.0 9.5 10.0 10.5 11.0 9.0 9.5 10.0 10.5 11.0 Farming Area (acres x 106) Farming Area (acres x 106) 4 Comparison of Florida Nitrogen Fertilizer Consumption (tons) by Use from July 2010-June 2011 (6% of total) Mean N composition = 7.4% Comparison of Florida Phosphorus Fertilizer Consumption (tons) by Use from July 2010-June 2011
    [Show full text]
  • UNITED STATES NITRATE PLANT NUMBER Tennessee Valley
    UNITED STATES NITRATE PLANT NUMBER KAER No. AL-46 Tennessee Valley Authority Reservation Road Muscle Shoals Colbert County Alabama ALA PHOTOGRAPHS REDUCED COPIES OF MEASURED DRAWINGS WRITTEN HISTORICAL & DESCRIPTIVE DATA Historic American Engineering Record National Park Service Department of the Interior P.O. Box 37127 Washington, D.C. 20013-7127 HISTORIC AMERICAN ENGINEERING RECORD UNITED STATES NITRATE PLANT NUMBER 2 HAER No. AL-46 Location: Reservation Road, Muscle Shoals Alabama tut )7. Date of Construction: 1918 I- Designer/Engineer: Air Nitrate Corporation Builder/Fabricator: Westinghouse, Church, & Kerr Company Present Owner: Tennessee Valley Authority Present Use: Environment Research Center Significance: Production of Ammonium Nitrate Project Information: This recording project is part of the Historic American Engineering Record (HAER), a long range program to document the engineering industrial and transportation heritage of the United States. The HAER program is administered by the Historic American Buildings Survey/Historic American Engineering Record (HABS/HAER) Division of the National Park Service, U.S. Department of the Interior. The Tennessee Valley Authority-Muscle Shoals Recording Project was cosponsored during the summer of 1994 by HAER under the general direction of Robert J. Kapsch, Chief of HABS/HAER and by the Tennessee Valley Authority with the staff of the Tennessee Valley Authority's Environmental Research Center, Muscle Shoals, Alabama. The field work, measured drawings, historical report, and photographs were prepared under the direction of Eric N. De Lony, Chief of HAER and Project Leader; Richard O'Connor, Project Historian; Jet Lowe, HAER Photographer; and Craig N. Strong, Project Architect. The recording team consisted of Tom Behrens, Field Supervisor; Balazs Krikovszky (ICOMOS) and Sergio Sanchez, Architects and Susie B.
    [Show full text]
  • Fertilizer Use in North America: Types and Amounts - T.L
    AGRICULTURAL SCIENCES – Vol. II - Fertilizer Use in North America: Types and Amounts - T.L. Roberts, and D.W. Dibb FERTILIZER USE IN NORTH AMERICA: TYPES AND AMOUNTS T.L. Roberts, and D.W. Dibb Potash & Phosphate Institute, Norcross, Georgia, USA Keywords: Nitrogen, phosphorus, phosphate, potassium, potash, fertilizer Contents 1. Introduction 2. History of Fertilizer Use 2.1. Early American Agriculture 2.2 Introduction of Commercial Fertilizer Industry 2.3 Discovery of Phosphate Rock 2.4 Discovery of Potash 2.5 North American Nitrogen Industry 3. Fertilizer Use and Crop Production 4. Fertilizer and Environmental Issues 5. Future Trends in the Fertilizer Industry Glossary Bibliography Biographical Sketches Summary North America (United States and Canada) produces and sells more fertilizer than any country in the world. The U.S. is the world’s largest producer and exporter of phosphorus (P), while Canada leads in production and export of potassium (K). North America is also the world’s second largest consumer of fertilizer. Commercial fertilizers were introduced to North America in the mid 1800s with the import of guano and acidulated phosphates, but the origin of the industry began with the arrival of the early colonists almost 200 years earlier. Within 100 years of their arrival on the Atlantic coast, the agriculture systems of the early colonists exploited native soil fertility resulting in ‘worn out’ lands. This prompted a nationwide move to improve farming practices, which led to recognition of the importance of soil fertility and the introductionUNESCO of liming and fertilizer materials. – EOLSS The finding of SAMPLEphosphate rock in South Ca rolinaCHAPTERS in 1837 and then other deposits in Florida, North Carolina and the West were the most important developments in the history of USA fertilizer industry.
    [Show full text]
  • Ba %WIPS - Er, E., S , M Ferfil' N D T 9 Rl T" Jl-"R
    atlooalTotashWtiMe, Vrqbi tl t ri Ba %WIPS _-_ er, _e., s_, M Ferfil' N d T 9 rl T, t"jl-"r- a AL_.r ract" np 4ot Wot m of the lwennsth-6nA -P .1984, International Potash Institute Nutrient Balances and Fertilizer Needs in Temperate Agriculture fProceedings of the 18th Colloquium of the International Potash Institute held in Gardone-Riviera/Italy 1984 Contents Opening Session Page A. Malquori Introduction 9 1st Session Nutrient Balances in Farming Systems A. van Diest Characteristics of nutrient cycling and nutrient balance sheets in low-input and high-input agriculture 13 G. Toderi and G. Giordani Long-term development of soil nutrient status in an intensive cropping system 39 J. McEwen and A.E. Johnston Factors affecting the production and composition of mixed grass/clover swards containing modem high-yielding clovers 47 WE. Murphy Nutrient balances in farming systems - Intensive grassland in Northwestern Europe 63 U. Walther Nutrient balance in mixed farming sys- tems with low and high stocking rates 71 T Walsh Co-ordinator's Report on the I st Session 83 2nd Session Evaluation of Nutrient Balances H. Beringer Prospects and limitations of soil and plant analysis for establishing nutrient balances for major crops 91 R. Edelstein, Sala Feigenbaum Potassium and structural cations release and L Shainberg from micas in dilute solutions 115 J.P. Ryser Evaluation of potassium fixation and release in nutrient balances 129 5 G. Chisci and P. Spallaci Nutrient losses by leaching and run-off and possibilities of their control 137 A.E. Johnston and J. McEwen The special value for crop production of reserves of nutrients in the subsoil and the use of special methods of deep placement in raising yields 157 A.
    [Show full text]
  • Steelmaking Slag for Fertilizer Usage
    NIPPON STEEL & SUMITOMO METAL TECHNICAL REPORT No. 109 JULY 2015 Technical Report UDC 669 . 184 . 28 : 631 . 82 /. 86 Steelmaking Slag for Fertilizer Usage Kimio ITO* Abstract Both blast furnace slag and steelmaking slag have been utilized as raw materials for fertilizer. Fertilizers made of blast furnace slag or steelmaking slag are categorized in slag silicate fertilizer, byproduced lime fertilizer, slag phosphate fertilizer or iron matter of spe- cial fertilizer. Effective elements in blast furnace slag are Ca, Si and Mg. Steelmaking slag contains Ca, Si, Mg, P, Mn and Fe. Steelmaking slag also contains plant available Si. There- fore, fertilizers made of steelmaking slag is more useful. Four research examples were in- troduced. : (1) Formation of silica body cells by application of silicate fertilizer. (2) Registra- tion as phosphate fertilizer. (3) Restoration of paddy fields damaged by Tsunami. (4) Composting of cow manure using steelmaking slag. 1. Introduction 2. Main Subject According to Nippon Slag Association’s statistics on the use of 2.1 History of fertilizer using steelmaking slag as a raw material slag in 2012,1) the consumption of blast furnace slag was 1 390 000 and the fertilizer control law tons for civil engineering, 18 220 000 tons for cement production, The use of steelmaking slag as a raw material for fertilizer began and 3 340 000 tons for sub-base course material. The consumption to spread mainly in Europe. In 1878, the Thomas converter process of steelmaking slag was 3 470 000 tons for civil engineering, 530 000 was invented in England. Since then, the process had been devel- tons for cement production, and 260 000 tons for sub-base course oped in Germany.
    [Show full text]
  • UNITED STATES NITRATE PLANT NUMBER KAER No
    UNITED STATES NITRATE PLANT NUMBER KAER No. AL-46 Tennessee Valley Authority Reservation Road Muscle Shoals Colbert County Alabama ALA PHOTOGRAPHS REDUCED COPIES OF MEASURED DRAWINGS WRITTEN HISTORICAL & DESCRIPTIVE DATA Historic American Engineering Record National Park Service Department of the Interior P.O. Box 37127 Washington, D.C. 20013-7127 HISTORIC AMERICAN ENGINEERING RECORD UNITED STATES NITRATE PLANT NUMBER 2 HAER No. AL-46 Location: Reservation Road, Muscle Shoals Alabama tut )7. Date of Construction: 1918 I- Designer/Engineer: Air Nitrate Corporation Builder/Fabricator: Westinghouse, Church, & Kerr Company Present Owner: Tennessee Valley Authority Present Use: Environment Research Center Significance: Production of Ammonium Nitrate Project Information: This recording project is part of the Historic American Engineering Record (HAER), a long range program to document the engineering industrial and transportation heritage of the United States. The HAER program is administered by the Historic American Buildings Survey/Historic American Engineering Record (HABS/HAER) Division of the National Park Service, U.S. Department of the Interior. The Tennessee Valley Authority-Muscle Shoals Recording Project was cosponsored during the summer of 1994 by HAER under the general direction of Robert J. Kapsch, Chief of HABS/HAER and by the Tennessee Valley Authority with the staff of the Tennessee Valley Authority's Environmental Research Center, Muscle Shoals, Alabama. The field work, measured drawings, historical report, and photographs were prepared under the direction of Eric N. De Lony, Chief of HAER and Project Leader; Richard O'Connor, Project Historian; Jet Lowe, HAER Photographer; and Craig N. Strong, Project Architect. The recording team consisted of Tom Behrens, Field Supervisor; Balazs Krikovszky (ICOMOS) and Sergio Sanchez, Architects and Susie B.
    [Show full text]