Managing Fertilizers to Enhance Soil Health Bijay Singh and John Ryan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Agricultural Soil Compaction: Causes and Management
October 2010 Agdex 510-1 Agricultural Soil Compaction: Causes and Management oil compaction can be a serious and unnecessary soil aggregates, which has a negative affect on soil S form of soil degradation that can result in increased aggregate structure. soil erosion and decreased crop production. Soil compaction can have a number of negative effects on Compaction of soil is the compression of soil particles into soil quality and crop production including the following: a smaller volume, which reduces the size of pore space available for air and water. Most soils are composed of • causes soil pore spaces to become smaller about 50 per cent solids (sand, silt, clay and organic • reduces water infiltration rate into soil matter) and about 50 per cent pore spaces. • decreases the rate that water will penetrate into the soil root zone and subsoil • increases the potential for surface Compaction concerns water ponding, water runoff, surface soil waterlogging and soil erosion Soil compaction can impair water Soil compaction infiltration into soil, crop emergence, • reduces the ability of a soil to hold root penetration and crop nutrient and can be a serious water and air, which are necessary for water uptake, all of which result in form of soil plant root growth and function depressed crop yield. • reduces crop emergence as a result of soil crusting Human-induced compaction of degradation. • impedes root growth and limits the agricultural soil can be the result of using volume of soil explored by roots tillage equipment during soil cultivation or result from the heavy weight of field equipment. • limits soil exploration by roots and Compacted soils can also be the result of natural soil- decreases the ability of crops to take up nutrients and forming processes. -
Agricultural Soil Carbon Credits: Making Sense of Protocols for Carbon Sequestration and Net Greenhouse Gas Removals
Agricultural Soil Carbon Credits: Making sense of protocols for carbon sequestration and net greenhouse gas removals NATURAL CLIMATE SOLUTIONS About this report This synthesis is for federal and state We contacted each carbon registry and policymakers looking to shape public marketplace to ensure that details investments in climate mitigation presented in this report and through agricultural soil carbon credits, accompanying appendix are accurate. protocol developers, project developers This report does not address carbon and aggregators, buyers of credits and accounting outside of published others interested in learning about the protocols meant to generate verified landscape of soil carbon and net carbon credits. greenhouse gas measurement, reporting While not a focus of the report, we and verification protocols. We use the remain concerned that any end-use of term MRV broadly to encompass the carbon credits as an offset, without range of quantification activities, robust local pollution regulations, will structural considerations and perpetuate the historic and ongoing requirements intended to ensure the negative impacts of carbon trading on integrity of quantified credits. disadvantaged communities and Black, This report is based on careful review Indigenous and other communities of and synthesis of publicly available soil color. Carbon markets have enormous organic carbon MRV protocols published potential to incentivize and reward by nonprofit carbon registries and by climate progress, but markets must be private carbon crediting marketplaces. paired with a strong regulatory backing. Acknowledgements This report was supported through a gift Conservation Cropping Protocol; Miguel to Environmental Defense Fund from the Taboada who provided feedback on the High Meadows Foundation for post- FAO GSOC protocol; Radhika Moolgavkar doctoral fellowships and through the at Nori; Robin Rather, Jim Blackburn, Bezos Earth Fund. -
An African Green Revolution, Finding Ways to Boost Productivity on Small Farms {Keijiro Otsuka} [940075759X] (2012).Pdf
Keijiro Otsuka Donald F. Larson Editors An African Green Revolution Finding Ways to Boost Productivity on Small Farms An African Green Revolution Keijiro Otsuka • Donald F. Larson Editors An African Green Revolution Finding Ways to Boost Productivity on Small Farms Editors Keijiro Otsuka Donald F. Larson National Graduate Institute The World Bank for Policy Studies Research Group 7-2 2-1 Roppongi 1818 H Street Northwest Minato , Tokyo 106-8677 Washington , DC 20433 Japan USA The fi ndings, interpretations, and conclusions expressed in this work do not necessarily re fl ect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. ISBN 978-94-007-5759-2 ISBN 978-94-007-5760-8 (eBook) DOI 10.1007/978-94-007-5760-8 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012951120 © The International Bank for Reconstruction and Development/The World Bank 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. -
Assessment and Governance of Sustainable Soil Management
sustainability Editorial Assessment and Governance of Sustainable Soil Management Katharina Helming 1,2,*, Katrin Daedlow 3, Bernd Hansjürgens 4 and Thomas Koellner 5 1 Leibniz Centre for Agricultural Landscape Research (ZALF) e.V., 15374 Müncheberg, Germany 2 Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany 3 Division Agriculture and Food Policy, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; [email protected] 4 Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04315 Leipzig, Germany; [email protected] 5 Professorship of Ecological Services, Faculty of Biology, Chemistry and Earth Sciences, BayCEER, University of Bayreuth, Universitaetsstr. 30, 95440 Bayreuth, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-(0)33432-82155 Received: 5 November 2018; Accepted: 7 November 2018; Published: 27 November 2018 Abstract: The globally increasing demand for food, fiber, and bio-based products interferes with the ability of arable soils to perform their multiple functions and support sustainable development. Sustainable soil management under high production conditions means that soil functions contribute to ecosystem services and biodiversity, natural and economic resources are utilized efficiently, farming remains profitable, and production conditions adhere to ethical and health standards. Research in support of sustainable soil management requires an interdisciplinary approach to three interconnected challenges: (i) understanding the impacts of soil management on soil processes and soil functions; (ii) assessing the sustainability impacts of soil management, taking into account the heterogeneity of geophysical and socioeconomic conditions; and (iii) having a systemic understanding of the driving forces and constraints of farmers’ decision-making on soil management and how governance instruments may, interacting with other driving forces, steer sustainable soil management. -
Best Management Practices for Climate Friendly Nurseries
Best Management Practices for ClimateBest Friendly Management Nurseries Practicesfor Climate Friendly Nurseries Oregon Association of Nurseries Oregon EnvironmentalOregon Association Council of Nurseries Oregon StateOregon University Environmental Council Ecos ConsultingOregon State University Advantage IQ 2010 2011 Best Management Practices for Climate Friendly Nurseries Oregon Association of Nurseries Oregon Environmental Council Oregon State University Advantage IQ Version 2.0, August 2011 4| Best Management Practices for Climate Friendly Nurseries for 5| Best Management Practices for Climate Friendly Nurseries This guide was developed as part of the Climate Friendly Nurseries Project (CFNP), a collaborative partner- ship between the Oregon Association of Nurseries and the Oregon Environmental Council. The first of its kind in the nation, the project’s central goal is to help participating nurseries reduce energy, resource inputs and greenhouse gas (GHG) emissions while achieving greater economic efficiency and profitabil- ity. Advantage IQ and Oregon State University serve as invaluable resources for the CFNP, both bringing research expertise and technical assistance that benefit participating nurseries. This guide provides: • Recommendations for best practices that will reduce your energy and resource use, reduce costs, and at the same time, make your nursery more climate-friendly • Case studies of Oregon nurseries that have already implemented these best management practices • An overview of incentives to help nurseries pay for resource efficiency improvements We hope you find this guide a valuable resource, and encourage you to find more resources and informa- tion about operational efficiencies that protect our natural resources at www.climatefriendlynurseries.org. On this website, you’ll find tools to help you track your energy and resource use and calculate potential return on investment for best management practices (BMPs). -
Fertilizer Use in African Agriculture Lessons Learned and Good Practice Guidelines Public Disclosure Authorized Michael Morris,Valerie A
Public Disclosure Authorized DIRECTIONS IN DEVELOPMENT 39037 Public Disclosure Authorized Agriculture and Rural Development Fertilizer Use in African Agriculture Lessons Learned and Good Practice Guidelines Public Disclosure Authorized Michael Morris,Valerie A. Kelly, Ron J. Kopicki, and Derek Byerlee Public Disclosure Authorized Fertilizer Use in African Agriculture Fertilizer Use in African Agriculture Lessons Learned and Good Practice Guidelines Michael Morris Valerie A. Kelly Ron J. Kopicki Derek Byerlee © 2007 The International Bank for Reconstruction and Development / The World Bank 1818 H Street, NW Washington, DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org E-mail: [email protected] All rights reserved. 1 2 3 4 :: 10 09 08 07 This volume is a product of the staff of the International Bank for Reconstruction and Development / The World Bank. The findings, interpretations, and conclusions expressed in this volume do not necessarily reflect the views of the Executive Directors of The World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. The International Bank for Reconstruction and Development / The World Bank encourages dissemination of its work and will normally grant permission to reproduce portions of the work promptly. -
Manual on Integrated Soil Management and Conservation Practices Iii
Manual on integrated soil management and conservation practices iii Foreword The processes of land erosion in various regions of Latin America and Africa have their origin in social, economic and cultural factors that translate into the over-exploitation of the natural resources and the application of inadequate practices for the management of soils and water. The consequences of this are damage to much of the agricultural land, with detrimental effects on food production for the growing population in these continents. Over the last few decades, many efforts have been made to stop the degradation of agricultural land but the process of adoption of new conservationist technologies by the farmers is still slow. Furthermore, the availability of technical personnel trained for this change is limited. The technological strategies that have been developed for the management and conservation of soil and water sometimes are not adapted for the beneficiaries, because they could not participate in the processes of the diagnosis, planning and execution of the actions. In addition, the promotion of conservation tillage systems and practices that were not adapted to specific regional requirements has created credibility problems with the farmers probably since they had been developed in other places and introduced without a correct diagnosis of the local situation. The development of technologies that guarantee the maintenance of agricultural land productivity in Latin America and Africa is a challenge that both technicians and farmers must face through collaborative research and field work in the farmers’ own environments and conditions. This includes identification of the problems of management and conservation of soils and water and a greater emphasis on the evaluation of the potential for systems of conservation tillage adapted to the specific conditions of each region. -
Soil Carbon & Biochar
SOIL CARBON & BIOCHAR WHAT IS SOIL CARBON? Soil carbon sequestration, also known as “carbon farming” or “regenerative agriculture,” includes various ways of managing land, especially farmland, so that soils absorb and hold more carbon. Increasing soil carbon is accomplished in three key ways: (1) switching to low- till or no-till practices; (2) using cover crops and leaving crop residues to decay; and (3) us- ing species or varieties with greater root mass. Double-cropping systems, where a second crop is grown after a food or feed crop, also keep more carbon in the soil. WHAT IS BIOCHAR? Biochar is another way of getting carbon into soils. Biochar is a kind of charcoal created when biomass from crop residues, grass, trees, or other plants is combusted at tempera- tures of 300–600°C without oxygen. This process, known as pyrolysis, enables the carbon in the biomass to resist decay. The biochar is then introduced into soils, where, under cer- tain conditions, it might sequester carbon for many hundreds of years. CO-BENEFITS AND CONCERNS + Improved soil quality: soil carbon − Reversibility: the carbon captured sequestration and biochar help restore via soil carbon sequestration and degraded soils, which can improve biochar can be released if the soils agricultural productivity and help soils are disturbed; societies would need to retain water. maintain appropriate soil management practices indefinitely. − Saturation: soils can only hold a finite amount of carbon; once they are − Difficulty of measurement: monitoring saturated, societies will no longer be and verifying carbon removal, especially able to sequester more carbon using via soil carbon sequestration is currently soil carbon sequestration. -
A Citizen's Guide to Carbon Farming and Gardening
Carthage College The Power of Food: A Citizen’s Guide to Carbon Farming and Gardening Mackinzee Macho Whole Earth and Climate Science Professor Edward Quevedo December 14, 2020 1 Executive Summary Carbon farming and gardening seeks to maximize the soil’s sequestration and carbon storage potential through regenerative and sustainable agricultural management practices. This essay is written to give detail and data supporting carbon farming and gardening. Included as a part of this essay is a white paper that could be distributed to citizens. The intention is for the white paper to inform the 2021 Climate Report provided by The Center for Global and Regional Environmental Research to the citizens of Iowa. The goal of the essay and white paper is to teach citizens about carbon farming and gardening, the facts supporting them and persuade the reader to take practical actions that will make a difference in their lives that improve social, economic and ecological wellbeing. There are techniques and methods embedded within the essay that expand upon composting, how the soil works and urban gardening. There are actions here that will pertain to everyone in our society. From producer to consumer and young to old: everyone will find the action that speaks to them the most. This essay is aiming to make smarter consumers, gardeners, composters and overall, beneficial stewards of our environment. An essential issue with climate change research today is the lack of call to action for citizens. People feel wary and rundown, and think they are unable to combat climate change. This essay aspires to shift that narrative: to create hopeful citizens who understand how, where and when they can combat climate change with a few simple, different alterations. -
Efficient Fertilizer Use Manual
SECTION CONTENTS: • Introduction • Ancient Practices • After the Fall of Rome • The Middle Ages • Chemical Discoveries • Early Understandings of Plant Growth • Early Field Experiments with Chemical Fertilizers • Nitrogen • Phosphorus • Potassium • Granular, Homogeneous, Mixed Fertilizers • Bulk Blending • Fluid Mixed Fertilizers Introduction Use of commercial fertilizers has only a short history compared to the length of time that man is known to have grown crops. It is believed that crop production began some 6,000 to 10,000 years ago. For example, there are records of cropping dating back over 7,000 years in China and nearly that long in Norway. It was not until the 1840s that limited quantities of a few types of natural commercial fertilizer such as Peruvian guano and Chilean sodium nitrate were first used in the Western world. 1 Ancient Practices Up to the Fall of Rome Many of the sound agricultural practices of today, including manuring, liming, and crop rotations with legumes were also important in ancient times. Also, the value of silt deposits from flooding rivers in maintaining soil productivity was recognized over 5,000 years ago by the early Egyptians living along the Nile River and by the Mesopotamian civilization occupying the region between the Tigris and Euphrates Rivers, now present day Iraq. Figure Egyptian 1.1 Agriculture Organic manures have been used in Chinese agriculture for over 3,000 years. Descriptions of using human and animal wastes, plant ashes and grasses and how these materials benefited crop production and improved soil fertility were recorded in that country over 2,000 years ago. The age of the Greeks, probably between 800 to 200 B.C., was a "Golden Age" and during this early period several historians and writers referred to the manuring of crops and adjusting the amounts for thin and rich soils. -
Principles of Soil Management
GREATSOILS Principles of soil management Contents 3 Introduction What is ‘healthy’ soil? 4 Soil classification 6 Soil composition Texture Cation exchange capacity Organic matter Structure Water 12 Principles to improve soil health 15 Soil-related problems 18 Soil assessments Physical condition Chemical condition Biological condition 19 Further information This publication was created as part of the Soil Biology and Soil Health Partnership. Funded by AHDB and the British Beet Research Organisation (BBRO), the partnership is a five-year (2017–2021) cross-sector programme of research and knowledge exchange. Photographic credits See page 19. Introduction This science-based guide can aid with the management • Regulate the flow of water and rainfall in the and maintenance of healthy soils. Until recently, the water cycle term ‘soil health’ has not been widely used. However, • Provide nutrients for plant growth, by breaking it has gained traction in the last few years by farmers, down organic matter and altering chemical fertilisers growers and the wider stakeholder community. • Transform and store organic materials, as part No single set of on-farm management practices can of the terrestrial carbon cycle put soils in good health. Good soil husbandry requires a flexible approach that is likely to vary from field to • Degrade contaminants applied through human field, and season to season. activities or left by floods and aerial deposition The agricultural industry has a huge breadth of A healthy soil is able to sustain, in the long term, these experience and depth of understanding of the practical important functions. In a healthy soil, the interactions issues involved in the management of soils within between chemistry (pH, nutrients and contaminants), UK crop rotations. -
Soil at the Nature Conservancy a Shared Science Agenda: Activities and Priorities Soil Is Intrinsically Connected to the Wellbeing of People and the Environment
Soil at The Nature Conservancy A shared science agenda: activities and priorities Soil is intrinsically connected to the wellbeing of people and the environment. 2 Soil at The Nature Conservancy Contents Introduction 4 Importance of soil for conservation 5 Types of soil management practices 6 Biophysical management practices 6 Implementation and outcomes 7 Priorities and practices related to soil 7 Regional distribution of TNC soil projects 9 Ground level: TNC soil projects 12 reThink Soil Roadmap 12 Northern Rangelands Trust partnership 13 Water Funds projects 13 A first soil science agenda for TNC 14 Priority areas for soil science 16 Emerging topics 17 Soil science agenda: impacts 18 This document was prepared by Deborah Bossio and Stephen Wood in collaboration with staff at The Nature Conservancy. Acknowledgements A large part of the value in this document was the process of preparing it and the conversations focused on soil that it instigated across the Conservancy. We want to acknowledge the contributions of the more than 100 staff who participated in phone calls, surveys and virtual meetings. We also want to thank the Craig and Susan McCaw Foundation for generously supporting soil science at The Nature Conservancy. October 2018 Soil at The Nature Conservancy 3 Introduction Centuries of research and direct OVER THE PAST DECADE, soil has gained greater attention in research, experience show that soil is practice and policy arenas. In 2012 the UN Food and Agriculture Organization launched the Global Soil Partnership, and then celebrated intrinsically connected to the the International Year of Soil in 2015. At the 2015 UN Climate Change wellbeing of people and the Conference in Paris we saw national governments engage with soil, as environment.