Manual on Integrated Soil Management and Conservation Practices Iii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Erosion Control Practices on Nutrient Loss
Effects of Erosion Control Practices on Nutrient Loss George F. Czapar, University of Illinois John M. Laflen, Iowa State University Gregory F. McIsaac, University of Illinois Dennis P. McKenna, Illinois Department of Agriculture Elements of Soil Erosion Soil erosion by water is the detachment of soil particles by the direct action of raindrops and runoff water, and the transport of these particles by splash and very shallow flowing water to small channels or rills. Detachment of soil particles also occurs in these rills due to the force exerted by the flowing water. When rills join together and form larger channels, they may become gullies. These gullies can be either temporary (ephemeral) or permanent (classical). Non-erodible channels might be grassed waterways, or designed channels that limit flow conditions so that channel erosion does not occur. Gross erosion includes sheet, rill, gully and channel erosion, and is the first step in the process of sediment delivery. Because much eroded sediment is deposited in or near the field of origin, only a fraction of the total eroded soil from an area contributes to sediment yield from a watershed. Sediment delivery is affected by a number of factors including soil properties, proximity to the stream, man made structures-including sediment basins, fences, and culverts, channel density, basin characteristics, land use/land cover, and rainfall-runoff factors. Coarse- textured sediment and sediment from sheet and rill erosion are less likely to reach a stream than fine-grained sediment or sediment from channel erosion. In general, the larger the area, the lower the ratio of sediment yield at the watershed outlet or point of interest to gross erosion in the entire watershed, defined as the sediment delivery ratio (SDR). -
Agricultural Soil Compaction: Causes and Management
October 2010 Agdex 510-1 Agricultural Soil Compaction: Causes and Management oil compaction can be a serious and unnecessary soil aggregates, which has a negative affect on soil S form of soil degradation that can result in increased aggregate structure. soil erosion and decreased crop production. Soil compaction can have a number of negative effects on Compaction of soil is the compression of soil particles into soil quality and crop production including the following: a smaller volume, which reduces the size of pore space available for air and water. Most soils are composed of • causes soil pore spaces to become smaller about 50 per cent solids (sand, silt, clay and organic • reduces water infiltration rate into soil matter) and about 50 per cent pore spaces. • decreases the rate that water will penetrate into the soil root zone and subsoil • increases the potential for surface Compaction concerns water ponding, water runoff, surface soil waterlogging and soil erosion Soil compaction can impair water Soil compaction infiltration into soil, crop emergence, • reduces the ability of a soil to hold root penetration and crop nutrient and can be a serious water and air, which are necessary for water uptake, all of which result in form of soil plant root growth and function depressed crop yield. • reduces crop emergence as a result of soil crusting Human-induced compaction of degradation. • impedes root growth and limits the agricultural soil can be the result of using volume of soil explored by roots tillage equipment during soil cultivation or result from the heavy weight of field equipment. • limits soil exploration by roots and Compacted soils can also be the result of natural soil- decreases the ability of crops to take up nutrients and forming processes. -
Agricultural Soil Carbon Credits: Making Sense of Protocols for Carbon Sequestration and Net Greenhouse Gas Removals
Agricultural Soil Carbon Credits: Making sense of protocols for carbon sequestration and net greenhouse gas removals NATURAL CLIMATE SOLUTIONS About this report This synthesis is for federal and state We contacted each carbon registry and policymakers looking to shape public marketplace to ensure that details investments in climate mitigation presented in this report and through agricultural soil carbon credits, accompanying appendix are accurate. protocol developers, project developers This report does not address carbon and aggregators, buyers of credits and accounting outside of published others interested in learning about the protocols meant to generate verified landscape of soil carbon and net carbon credits. greenhouse gas measurement, reporting While not a focus of the report, we and verification protocols. We use the remain concerned that any end-use of term MRV broadly to encompass the carbon credits as an offset, without range of quantification activities, robust local pollution regulations, will structural considerations and perpetuate the historic and ongoing requirements intended to ensure the negative impacts of carbon trading on integrity of quantified credits. disadvantaged communities and Black, This report is based on careful review Indigenous and other communities of and synthesis of publicly available soil color. Carbon markets have enormous organic carbon MRV protocols published potential to incentivize and reward by nonprofit carbon registries and by climate progress, but markets must be private carbon crediting marketplaces. paired with a strong regulatory backing. Acknowledgements This report was supported through a gift Conservation Cropping Protocol; Miguel to Environmental Defense Fund from the Taboada who provided feedback on the High Meadows Foundation for post- FAO GSOC protocol; Radhika Moolgavkar doctoral fellowships and through the at Nori; Robin Rather, Jim Blackburn, Bezos Earth Fund. -
Progressive and Regressive Soil Evolution Phases in the Anthropocene
Progressive and regressive soil evolution phases in the Anthropocene Manon Bajard, Jérôme Poulenard, Pierre Sabatier, Anne-Lise Develle, Charline Giguet- Covex, Jeremy Jacob, Christian Crouzet, Fernand David, Cécile Pignol, Fabien Arnaud Highlights • Lake sediment archives are used to reconstruct past soil evolution. • Erosion is quantified and the sediment geochemistry is compared to current soils. • We observed phases of greater erosion rates than soil formation rates. • These negative soil balance phases are defined as regressive pedogenesis phases. • During the Middle Ages, the erosion of increasingly deep horizons rejuvenated pedogenesis. Abstract Soils have a substantial role in the environment because they provide several ecosystem services such as food supply or carbon storage. Agricultural practices can modify soil properties and soil evolution processes, hence threatening these services. These modifications are poorly studied, and the resilience/adaptation times of soils to disruptions are unknown. Here, we study the evolution of pedogenetic processes and soil evolution phases (progressive or regressive) in response to human-induced erosion from a 4000-year lake sediment sequence (Lake La Thuile, French Alps). Erosion in this small lake catchment in the montane area is quantified from the terrigenous sediments that were trapped in the lake and compared to the soil formation rate. To access this quantification, soil processes evolution are deciphered from soil and sediment geochemistry comparison. Over the last 4000 years, first impacts on soils are recorded at approximately 1600 yr cal. BP, with the erosion of surface horizons exceeding 10 t·km− 2·yr− 1. Increasingly deep horizons were eroded with erosion accentuation during the Higher Middle Ages (1400–850 yr cal. -
What Is Soil Erosion? Soil Erosion by Wind Or Water Is the Physical Wearing Away of the Soil Surface
Do you have a problem with: • Low yields • Time & expense to repair and gullies • Small rills and channels in your fields • Soil deposited at the base of slopes or along fence lines • Sediment in streams, lakes, and reservoirs Soil Erosion May be the Problem! Erosion from cropland What is soil erosion? Soil erosion by wind or water is the physical wearing away of the soil surface. Soil material and nutrients are removed in the process. Why be concerned? • Erosion reduces crop yields • Erosion removes topsoil, reduces soil organic matter, and destroys soil structure Signs of Erosion – Sediment entering river • Erosion decreases rooting depth • Erosion decreases the amount of water, air, and nutrients available to plants • Nutrients and sediment removed by water erosion cause water quality problems and fish kills • Blowing dust from wind erosion can affect human health and create public safety hazards • Increased production costs Erosion removes our richest soil. How much does it cost? • Technical assistance to assess and plan erosion control systems from NRCS is free • No till and mulch till may require special tillage equipment or planters if this equipment is not al- ready available • Vegetative barriers may cost $50-$100 per mile of barrier • Cover crops may cost between $10 and $40 per acre depending on the type of seed used Controlling Soil Erosion Signs of Erosion – Small rills and channels on the soil Dust clouds & “dirt devils” such as the one pictured surface are a sign of water erosion here are signs of wind erosion. How to Reduce Erosion: The key to reducing is erosion is to keep the soil covered as much as possible for both wind and water ero- sion concerns. -
How Do Newly-Amended Biochar Particles Affect Erodibility and Soil Water Movement?—A Small-Scale Experimental Approach
Article How Do Newly-Amended Biochar Particles Affect Erodibility and Soil Water Movement?—A Small-Scale Experimental Approach Steffen Seitz * , Sandra Teuber , Christian Geißler, Philipp Goebes and Thomas Scholten Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Rümelinstrasse 19–23, 72070 Tübingen, Germany; [email protected] (S.T.); [email protected] (C.G.); [email protected] (P.G.); [email protected] (T.S.) * Correspondence: steff[email protected]; Tel.: +49-7071-29-77523 Received: 16 July 2020; Accepted: 23 September 2020; Published: 6 October 2020 Abstract: Biochar amendment changes chemical and physical properties of soils and influences soil biota. It is, thus, assumed that it can also affect soil erosion and erosion-related processes. In this study, we investigated how biochar particles instantly change erodibility by rain splash and the initial movement of soil water in a small-scale experiment. Hydrothermal carbonization (HTC)-char and Pyrochar were admixed to two soil substrates. Soil erodibility was determined with Tübingen splash cups under simulated rainfall, soil hydraulic conductivity was calculated from texture and bulk soil density, and soil water retention was measured using the negative and the excess pressure methods. Results showed that the addition of biochar significantly reduced initial soil erosion in coarse sand and silt loam immediately after biochar application. Furthermore, biochar particles were not preferentially removed from the substrate surface, but increasing biochar particle sizes partly showed decreasing erodibility of substrates. Moreover, biochar amendment led to improved hydraulic conductivity and soil water retention, regarding soil erosion control. In conclusion, this study provided evidence that biochar amendments reduce soil degradation by water erosion. -
Global Status, Processes and Trends in Soil Erosion
Status of the World’s Main Report Soil Resources Chapter 6 Global soil status, processes and trends © FAO | Giuseppe Bizzarri © FAO INTERGOVERNMENTAL TECHNICAL PANEL ON SOILS Disclaimer and copyright Recommended citation: FAO and ITPS. 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-109004-6 © FAO, 2015 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way. -
Assessment and Governance of Sustainable Soil Management
sustainability Editorial Assessment and Governance of Sustainable Soil Management Katharina Helming 1,2,*, Katrin Daedlow 3, Bernd Hansjürgens 4 and Thomas Koellner 5 1 Leibniz Centre for Agricultural Landscape Research (ZALF) e.V., 15374 Müncheberg, Germany 2 Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany 3 Division Agriculture and Food Policy, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; [email protected] 4 Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04315 Leipzig, Germany; [email protected] 5 Professorship of Ecological Services, Faculty of Biology, Chemistry and Earth Sciences, BayCEER, University of Bayreuth, Universitaetsstr. 30, 95440 Bayreuth, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-(0)33432-82155 Received: 5 November 2018; Accepted: 7 November 2018; Published: 27 November 2018 Abstract: The globally increasing demand for food, fiber, and bio-based products interferes with the ability of arable soils to perform their multiple functions and support sustainable development. Sustainable soil management under high production conditions means that soil functions contribute to ecosystem services and biodiversity, natural and economic resources are utilized efficiently, farming remains profitable, and production conditions adhere to ethical and health standards. Research in support of sustainable soil management requires an interdisciplinary approach to three interconnected challenges: (i) understanding the impacts of soil management on soil processes and soil functions; (ii) assessing the sustainability impacts of soil management, taking into account the heterogeneity of geophysical and socioeconomic conditions; and (iii) having a systemic understanding of the driving forces and constraints of farmers’ decision-making on soil management and how governance instruments may, interacting with other driving forces, steer sustainable soil management. -
Soil Erosion
Soil erosion Soil erosion in sloping agricultural land in Tunisia. Photolibrary on soil erosion processes. The most serious form of soil degradation is from accelerated erosion. Erosion is the washing or blowing away of surface soil, sometimes down to the bedrock. While some erosion takes place without the influence of man, the soil is lost so slowly that it is usually replaced through natural processes of decay and regeneration so soil loss and creation of new soil are balanced. What keeps soil in a natural state from eroding is vegetation. Undisturbed by man, soil is usually covered by a canopy of shrubs and trees, by dead and decaying leaves or by a thick mat of grass. Whatever the vegetation, it protects the soil when the rain falls or the wind blows. The leaves and branches of trees and the cushion of grass absorb the force of raindrops, and root systems of plants hold the soil together. Even in drought, the roots of native grasses, which extend several metres into the ground, help tie down the soil and keep it from blowing away. With its covering of vegetation stripped away, however, soil is as vulnerable to damage as a tortoise without its shell. Whether the plant cover is disturbed by cultivation, grazing, burning, or bulldozing, once the soil is laid bare to the erosive action of wind and water, the slow rate of natural erosion is greatly accelerated. Losses of soil take place much faster than new soil can be created, and a kind of deficit spending begins with the topsoil. -
Best Management Practices for Climate Friendly Nurseries
Best Management Practices for ClimateBest Friendly Management Nurseries Practicesfor Climate Friendly Nurseries Oregon Association of Nurseries Oregon EnvironmentalOregon Association Council of Nurseries Oregon StateOregon University Environmental Council Ecos ConsultingOregon State University Advantage IQ 2010 2011 Best Management Practices for Climate Friendly Nurseries Oregon Association of Nurseries Oregon Environmental Council Oregon State University Advantage IQ Version 2.0, August 2011 4| Best Management Practices for Climate Friendly Nurseries for 5| Best Management Practices for Climate Friendly Nurseries This guide was developed as part of the Climate Friendly Nurseries Project (CFNP), a collaborative partner- ship between the Oregon Association of Nurseries and the Oregon Environmental Council. The first of its kind in the nation, the project’s central goal is to help participating nurseries reduce energy, resource inputs and greenhouse gas (GHG) emissions while achieving greater economic efficiency and profitabil- ity. Advantage IQ and Oregon State University serve as invaluable resources for the CFNP, both bringing research expertise and technical assistance that benefit participating nurseries. This guide provides: • Recommendations for best practices that will reduce your energy and resource use, reduce costs, and at the same time, make your nursery more climate-friendly • Case studies of Oregon nurseries that have already implemented these best management practices • An overview of incentives to help nurseries pay for resource efficiency improvements We hope you find this guide a valuable resource, and encourage you to find more resources and informa- tion about operational efficiencies that protect our natural resources at www.climatefriendlynurseries.org. On this website, you’ll find tools to help you track your energy and resource use and calculate potential return on investment for best management practices (BMPs). -
Erosion and Sediment Control for Agriculture
Chapter 4C: Erosion and Sediment Control 4C: Erosion and Sediment Control Management Measure for Erosion and Sediment Apply the erosion component of a Resource Management System (RMS) as defined in the Field Office Technical Guide of the U.S. Department of Agriculture–Natural Resources Conservation Service (see Appendix B) to minimize the delivery of sediment from agricultural lands to surface waters, or Design and install a combination of management and physical practices to settle the settleable solids and associated pollutants in runoff delivered from the contributing area for storms of up to and including a 10-year, 24-hour frequency. Management Measure for Erosion and Sediment: Description Application of this management measure will preserve soil and reduce the mass of sediment reaching a water body, protecting both agricultural land and water quality. This management measure can be implemented by using one of two general strategies, or a combination of both. The first, and most desirable, strategy is to implement practices on the field to minimize soil detachment, erosion, and transport of sediment from the field. Effective practices include those that maintain crop residue or vegetative cover on the soil; improve soil properties; Sedimentation reduce slope length, steepness, or unsheltered distance; and reduce effective causes widespread water and/or wind velocities. The second strategy is to route field runoff through damage to our practices that filter, trap, or settle soil particles. Examples of effective manage- waterways. Water ment strategies include vegetated filter strips, field borders, sediment retention supplies and wildlife ponds, and terraces. Site conditions will dictate the appropriate combination of resources can be practices for any given situation. -
Soil Carbon & Biochar
SOIL CARBON & BIOCHAR WHAT IS SOIL CARBON? Soil carbon sequestration, also known as “carbon farming” or “regenerative agriculture,” includes various ways of managing land, especially farmland, so that soils absorb and hold more carbon. Increasing soil carbon is accomplished in three key ways: (1) switching to low- till or no-till practices; (2) using cover crops and leaving crop residues to decay; and (3) us- ing species or varieties with greater root mass. Double-cropping systems, where a second crop is grown after a food or feed crop, also keep more carbon in the soil. WHAT IS BIOCHAR? Biochar is another way of getting carbon into soils. Biochar is a kind of charcoal created when biomass from crop residues, grass, trees, or other plants is combusted at tempera- tures of 300–600°C without oxygen. This process, known as pyrolysis, enables the carbon in the biomass to resist decay. The biochar is then introduced into soils, where, under cer- tain conditions, it might sequester carbon for many hundreds of years. CO-BENEFITS AND CONCERNS + Improved soil quality: soil carbon − Reversibility: the carbon captured sequestration and biochar help restore via soil carbon sequestration and degraded soils, which can improve biochar can be released if the soils agricultural productivity and help soils are disturbed; societies would need to retain water. maintain appropriate soil management practices indefinitely. − Saturation: soils can only hold a finite amount of carbon; once they are − Difficulty of measurement: monitoring saturated, societies will no longer be and verifying carbon removal, especially able to sequester more carbon using via soil carbon sequestration is currently soil carbon sequestration.