Manual on Integrated Soil Management and Conservation Practices Iii

Total Page:16

File Type:pdf, Size:1020Kb

Manual on Integrated Soil Management and Conservation Practices Iii Manual on integrated soil management and conservation practices iii Foreword The processes of land erosion in various regions of Latin America and Africa have their origin in social, economic and cultural factors that translate into the over-exploitation of the natural resources and the application of inadequate practices for the management of soils and water. The consequences of this are damage to much of the agricultural land, with detrimental effects on food production for the growing population in these continents. Over the last few decades, many efforts have been made to stop the degradation of agricultural land but the process of adoption of new conservationist technologies by the farmers is still slow. Furthermore, the availability of technical personnel trained for this change is limited. The technological strategies that have been developed for the management and conservation of soil and water sometimes are not adapted for the beneficiaries, because they could not participate in the processes of the diagnosis, planning and execution of the actions. In addition, the promotion of conservation tillage systems and practices that were not adapted to specific regional requirements has created credibility problems with the farmers probably since they had been developed in other places and introduced without a correct diagnosis of the local situation. The development of technologies that guarantee the maintenance of agricultural land productivity in Latin America and Africa is a challenge that both technicians and farmers must face through collaborative research and field work in the farmers’ own environments and conditions. This includes identification of the problems of management and conservation of soils and water and a greater emphasis on the evaluation of the potential for systems of conservation tillage adapted to the specific conditions of each region. This Manual has been put together with the objective of assisting actions by the diverse groups of human beings who intervene in the conservation of the natural resources, particularly soil and water resources and in the context of each continent, country, region or zone. The Manual brings together a collection of concepts, experiences and practical suggestions that can be of immediate use for identifying problems and for formulating, executing and evaluating actions so as to benefit and to improve the productivity and conservation of soil and water resources. This Manual is based on the Training Course for Soil Management and Conservation, focused particularly on efficient tillage methods for soil conservation, held at the International Institute of Tropical Agriculture (IITA) in Ibadan, Nigeria from 21 April to 1 May 1997. It was jointly organized by IITA and FAO with the participation of specialists from both national and international organizations. The publication serves as a guide that will allow technicians and farmers to jointly discover ways to solve the problems and the limitations posed by land degradation in Latin America and Africa. Participatory action by technicians and farmers will be the basis for success in benefiting these regions. It is hoped that the Manual will help to attain the ultimate objective, which is to improve the productivity of the soils and water in a rapid and efficient manner. iv Acknowledgements The present Manual is based on the Training Course on Soil Management and Conservation with Special Emphasis on Conservation Effective Tillage Methods jointly organized by José Benites, Land and Plant Nutrition Management Service (AGLL) and Theodor Friedrich, Agricultural Engineering Branch (AGSE), FAO and the International Institute of Tropical Agriculture (IITA) in Ibadan, Nigeria. The training course would not have been possible without the active support of the Director General of IITA, Lucas Brader, as well as his staff, in particular R. Booth, J. Gulley, R. Zachmann, R. Carsky, Y. Osinubi, B. Akisinde, G. Kirchof and G. Tian and we would like to express our gratitude for this support. We would further like to thank the authors of the different papers for their collaboration in this publication, particularly Elvio Giasson, Leandro do Prado Wildner, José Barbosa dos Anjos, Valdemar Hercilio de Freitas and Richard Barber, as well as Cadmo Rosell, John Ashburner, Robert Brinkman and R. Dudal for assisting with the editing of the different language versions. Special thanks are due to Lynette Chalk for her efficient preparation of the text and formatting of this document and Riccardo Libori for his elaboration of the graphics. Manual on integrated soil management and conservation practices v Table of contents Page FOREWORD iii ACKNOWLEDGEMENTS iv 1. INTRODUCTION 1 Objectives 2 Structure and content 2 2. KEY ENVIRONMENTAL AND SOIL FACTORS INFLUENCING PRODUCTIVITY AND MANAGEMENT 5 Topography 5 Rainfall 5 Soil limitations 6 Soil conditions 8 Productivity 12 3. GENERAL PRINCIPLES FOR THE DEVELOPMENT OF SOIL MANAGEMENT STRATEGIES 13 Objectives of soil management for agriculture 13 Principles for the development of soil management practices 14 4. CONCEPTS AND OBJECTIVES OF TILLAGE IN CONSERVATION FARMING 27 Why conserve the soil? 27 The concept of integrated management – conservation farming 28 Technical tillage parameters 32 5. TILLAGE IMPLEMENTS 37 Moldboard plough 37 Disc implements 38 Chisels 40 Spike-toothed tines – levellers and harrows 42 Rotary cultivators (rotavators) 42 Rollers 42 Direct drilling - zero tillage 43 6. IMPLEMENTS AND METHODS FOR THE PREPARATION OF AGRICULTURAL SOIL 45 Objectives of soil preparation 46 Implements for soil preparation 47 7. EFFECT OF TILLAGE ON SOIL PHYSICAL PROPERTIES 51 Causes of physical soil degradation 51 Stages in the physical degradation of soil 52 Principal physical characteristics affected by tillage 52 8. PRINCIPAL TILLAGE METHODS 55 Terminology, definitions and classification of tillage systems 55 Principal types of tillage system 57 vi Page Strip tillage or zonal tillage 69 Ridge tillage 70 Combined tillage and seeding systems 75 Subsoiling 76 9. LAND USE ACCORDING TO ITS CAPABILITY 81 Land evaluation 81 10. SOIL COVER 87 11. CONTOUR FARMING 91 12 GREEN MANURE 93 Concept 93 Functions of green manure 93 Characteristics to consider when selecting types of green manure 94 Characteristics of green manure 95 Management of green manure 99 Effects of green manure on the soil properties 102 13. PHYSICAL BARRIERS FOR THE CONTROL OF RUNOFF 113 Terracing 113 Safe waterways 120 14. GULLY CONTROL 125 Concept 125 Gully dimensions 125 Measures for control and stabilization 126 15. RAINWATER CAPTURE AND IRRIGATION 131 Principal factors affecting the establishment of systems for rainwater capture 131 Methods for in situ rainfall capture 132 Irrigation aspects 137 16. SELECTION OF ALTERNATIVE TECHNOLOGIES 143 Information sources concerning alternative technologies 143 Technology selection on the basis of farmers’ circumstances 143 Technology selection on the basis of environmental considerations 145 Technology selection on the basis of “Problem – Solution” relationships 146 Reflections concerning the selection of soil management technologies 166 17. PARTICIPATORY PLANNING IN THE EXECUTION OF SOIL MANAGEMENT PROGRAMMES 169 Micro-catchment areas as planning units 170 Implementation of programmes and projects 171 Objectives of a programme and project 171 Enthusiasm as the driving force for development 172 Success – the source of enthusiasm 172 Participation - the road to follow 173 Destructive participation 173 How to improve constructive participation 174 How to increase participation 174 Some criteria for selecting an appropriate technology 178 Manual on integrated soil management and conservation practices vii Page Participating with the rural families in planning the soil management practices 179 Community planning 180 Making thematic maps 181 Establishing priorities for the actions to be undertaken in the micro- catchment basin 182 Formulation of projects 182 Conservation farm planning 183 Community mapping 183 Implementation of soil management plans 184 BIBLIOGRAPHY 187 ANNEXES 197 1. Comparison of field work rates with tillage implements 197 2. Purchase and maintenance costs for tillage implements 199 3. Notebook for participatory planning in our community 201 viii List of tables Page 1. Training course on “Methods of soil management and conservation: efficient tillage methods for soil conservation” 4 2. Mulch cover and soil loss from two simulated rainfalls 15 3. Average effect of the nature and orientation of crop residues on the erosion of a sandy loam soil by wind at a uniform velocity 15 4. Effects of mulch cover and the type of tillage on the amount of moisture (mm) stored in 120 cm soil depth. Faizabad, India 17 5. Types of tillage and their effect on the moisture, temperature and rate of emergence for cowpea and soybean. 17 6 Application of mulch and the quantity of earthworm casts 18 7 Effects of cover crops on infiltration rates with and without earthworm activity 19 8. Straw production and the relationships of C/N and of the grain/straw weight for annual crops, Santa Cruz, Bolivia 21 9. Effects of deep tillage on some physical properties and on root development in a compacted soil 24 10. Work rates per unit area needed to carry out a selection of agricultural tasks on the farm 46 11. Effect of tillage systems on the soil density and porosity 53 12. Quantity of residues remaining on the soil after different tillage treatments 56 13. Tillage systems classified according to the degree of disturbance
Recommended publications
  • Effects of Erosion Control Practices on Nutrient Loss
    Effects of Erosion Control Practices on Nutrient Loss George F. Czapar, University of Illinois John M. Laflen, Iowa State University Gregory F. McIsaac, University of Illinois Dennis P. McKenna, Illinois Department of Agriculture Elements of Soil Erosion Soil erosion by water is the detachment of soil particles by the direct action of raindrops and runoff water, and the transport of these particles by splash and very shallow flowing water to small channels or rills. Detachment of soil particles also occurs in these rills due to the force exerted by the flowing water. When rills join together and form larger channels, they may become gullies. These gullies can be either temporary (ephemeral) or permanent (classical). Non-erodible channels might be grassed waterways, or designed channels that limit flow conditions so that channel erosion does not occur. Gross erosion includes sheet, rill, gully and channel erosion, and is the first step in the process of sediment delivery. Because much eroded sediment is deposited in or near the field of origin, only a fraction of the total eroded soil from an area contributes to sediment yield from a watershed. Sediment delivery is affected by a number of factors including soil properties, proximity to the stream, man made structures-including sediment basins, fences, and culverts, channel density, basin characteristics, land use/land cover, and rainfall-runoff factors. Coarse- textured sediment and sediment from sheet and rill erosion are less likely to reach a stream than fine-grained sediment or sediment from channel erosion. In general, the larger the area, the lower the ratio of sediment yield at the watershed outlet or point of interest to gross erosion in the entire watershed, defined as the sediment delivery ratio (SDR).
    [Show full text]
  • Agricultural Soil Compaction: Causes and Management
    October 2010 Agdex 510-1 Agricultural Soil Compaction: Causes and Management oil compaction can be a serious and unnecessary soil aggregates, which has a negative affect on soil S form of soil degradation that can result in increased aggregate structure. soil erosion and decreased crop production. Soil compaction can have a number of negative effects on Compaction of soil is the compression of soil particles into soil quality and crop production including the following: a smaller volume, which reduces the size of pore space available for air and water. Most soils are composed of • causes soil pore spaces to become smaller about 50 per cent solids (sand, silt, clay and organic • reduces water infiltration rate into soil matter) and about 50 per cent pore spaces. • decreases the rate that water will penetrate into the soil root zone and subsoil • increases the potential for surface Compaction concerns water ponding, water runoff, surface soil waterlogging and soil erosion Soil compaction can impair water Soil compaction infiltration into soil, crop emergence, • reduces the ability of a soil to hold root penetration and crop nutrient and can be a serious water and air, which are necessary for water uptake, all of which result in form of soil plant root growth and function depressed crop yield. • reduces crop emergence as a result of soil crusting Human-induced compaction of degradation. • impedes root growth and limits the agricultural soil can be the result of using volume of soil explored by roots tillage equipment during soil cultivation or result from the heavy weight of field equipment. • limits soil exploration by roots and Compacted soils can also be the result of natural soil- decreases the ability of crops to take up nutrients and forming processes.
    [Show full text]
  • Agricultural Soil Carbon Credits: Making Sense of Protocols for Carbon Sequestration and Net Greenhouse Gas Removals
    Agricultural Soil Carbon Credits: Making sense of protocols for carbon sequestration and net greenhouse gas removals NATURAL CLIMATE SOLUTIONS About this report This synthesis is for federal and state We contacted each carbon registry and policymakers looking to shape public marketplace to ensure that details investments in climate mitigation presented in this report and through agricultural soil carbon credits, accompanying appendix are accurate. protocol developers, project developers This report does not address carbon and aggregators, buyers of credits and accounting outside of published others interested in learning about the protocols meant to generate verified landscape of soil carbon and net carbon credits. greenhouse gas measurement, reporting While not a focus of the report, we and verification protocols. We use the remain concerned that any end-use of term MRV broadly to encompass the carbon credits as an offset, without range of quantification activities, robust local pollution regulations, will structural considerations and perpetuate the historic and ongoing requirements intended to ensure the negative impacts of carbon trading on integrity of quantified credits. disadvantaged communities and Black, This report is based on careful review Indigenous and other communities of and synthesis of publicly available soil color. Carbon markets have enormous organic carbon MRV protocols published potential to incentivize and reward by nonprofit carbon registries and by climate progress, but markets must be private carbon crediting marketplaces. paired with a strong regulatory backing. Acknowledgements This report was supported through a gift Conservation Cropping Protocol; Miguel to Environmental Defense Fund from the Taboada who provided feedback on the High Meadows Foundation for post- FAO GSOC protocol; Radhika Moolgavkar doctoral fellowships and through the at Nori; Robin Rather, Jim Blackburn, Bezos Earth Fund.
    [Show full text]
  • Progressive and Regressive Soil Evolution Phases in the Anthropocene
    Progressive and regressive soil evolution phases in the Anthropocene Manon Bajard, Jérôme Poulenard, Pierre Sabatier, Anne-Lise Develle, Charline Giguet- Covex, Jeremy Jacob, Christian Crouzet, Fernand David, Cécile Pignol, Fabien Arnaud Highlights • Lake sediment archives are used to reconstruct past soil evolution. • Erosion is quantified and the sediment geochemistry is compared to current soils. • We observed phases of greater erosion rates than soil formation rates. • These negative soil balance phases are defined as regressive pedogenesis phases. • During the Middle Ages, the erosion of increasingly deep horizons rejuvenated pedogenesis. Abstract Soils have a substantial role in the environment because they provide several ecosystem services such as food supply or carbon storage. Agricultural practices can modify soil properties and soil evolution processes, hence threatening these services. These modifications are poorly studied, and the resilience/adaptation times of soils to disruptions are unknown. Here, we study the evolution of pedogenetic processes and soil evolution phases (progressive or regressive) in response to human-induced erosion from a 4000-year lake sediment sequence (Lake La Thuile, French Alps). Erosion in this small lake catchment in the montane area is quantified from the terrigenous sediments that were trapped in the lake and compared to the soil formation rate. To access this quantification, soil processes evolution are deciphered from soil and sediment geochemistry comparison. Over the last 4000 years, first impacts on soils are recorded at approximately 1600 yr cal. BP, with the erosion of surface horizons exceeding 10 t·km− 2·yr− 1. Increasingly deep horizons were eroded with erosion accentuation during the Higher Middle Ages (1400–850 yr cal.
    [Show full text]
  • What Is Soil Erosion? Soil Erosion by Wind Or Water Is the Physical Wearing Away of the Soil Surface
    Do you have a problem with: • Low yields • Time & expense to repair and gullies • Small rills and channels in your fields • Soil deposited at the base of slopes or along fence lines • Sediment in streams, lakes, and reservoirs Soil Erosion May be the Problem! Erosion from cropland What is soil erosion? Soil erosion by wind or water is the physical wearing away of the soil surface. Soil material and nutrients are removed in the process. Why be concerned? • Erosion reduces crop yields • Erosion removes topsoil, reduces soil organic matter, and destroys soil structure Signs of Erosion – Sediment entering river • Erosion decreases rooting depth • Erosion decreases the amount of water, air, and nutrients available to plants • Nutrients and sediment removed by water erosion cause water quality problems and fish kills • Blowing dust from wind erosion can affect human health and create public safety hazards • Increased production costs Erosion removes our richest soil. How much does it cost? • Technical assistance to assess and plan erosion control systems from NRCS is free • No till and mulch till may require special tillage equipment or planters if this equipment is not al- ready available • Vegetative barriers may cost $50-$100 per mile of barrier • Cover crops may cost between $10 and $40 per acre depending on the type of seed used Controlling Soil Erosion Signs of Erosion – Small rills and channels on the soil Dust clouds & “dirt devils” such as the one pictured surface are a sign of water erosion here are signs of wind erosion. How to Reduce Erosion: The key to reducing is erosion is to keep the soil covered as much as possible for both wind and water ero- sion concerns.
    [Show full text]
  • How Do Newly-Amended Biochar Particles Affect Erodibility and Soil Water Movement?—A Small-Scale Experimental Approach
    Article How Do Newly-Amended Biochar Particles Affect Erodibility and Soil Water Movement?—A Small-Scale Experimental Approach Steffen Seitz * , Sandra Teuber , Christian Geißler, Philipp Goebes and Thomas Scholten Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Rümelinstrasse 19–23, 72070 Tübingen, Germany; [email protected] (S.T.); [email protected] (C.G.); [email protected] (P.G.); [email protected] (T.S.) * Correspondence: steff[email protected]; Tel.: +49-7071-29-77523 Received: 16 July 2020; Accepted: 23 September 2020; Published: 6 October 2020 Abstract: Biochar amendment changes chemical and physical properties of soils and influences soil biota. It is, thus, assumed that it can also affect soil erosion and erosion-related processes. In this study, we investigated how biochar particles instantly change erodibility by rain splash and the initial movement of soil water in a small-scale experiment. Hydrothermal carbonization (HTC)-char and Pyrochar were admixed to two soil substrates. Soil erodibility was determined with Tübingen splash cups under simulated rainfall, soil hydraulic conductivity was calculated from texture and bulk soil density, and soil water retention was measured using the negative and the excess pressure methods. Results showed that the addition of biochar significantly reduced initial soil erosion in coarse sand and silt loam immediately after biochar application. Furthermore, biochar particles were not preferentially removed from the substrate surface, but increasing biochar particle sizes partly showed decreasing erodibility of substrates. Moreover, biochar amendment led to improved hydraulic conductivity and soil water retention, regarding soil erosion control. In conclusion, this study provided evidence that biochar amendments reduce soil degradation by water erosion.
    [Show full text]
  • Global Status, Processes and Trends in Soil Erosion
    Status of the World’s Main Report Soil Resources Chapter 6 Global soil status, processes and trends © FAO | Giuseppe Bizzarri © FAO INTERGOVERNMENTAL TECHNICAL PANEL ON SOILS Disclaimer and copyright Recommended citation: FAO and ITPS. 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-109004-6 © FAO, 2015 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]
  • Assessment and Governance of Sustainable Soil Management
    sustainability Editorial Assessment and Governance of Sustainable Soil Management Katharina Helming 1,2,*, Katrin Daedlow 3, Bernd Hansjürgens 4 and Thomas Koellner 5 1 Leibniz Centre for Agricultural Landscape Research (ZALF) e.V., 15374 Müncheberg, Germany 2 Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany 3 Division Agriculture and Food Policy, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; [email protected] 4 Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04315 Leipzig, Germany; [email protected] 5 Professorship of Ecological Services, Faculty of Biology, Chemistry and Earth Sciences, BayCEER, University of Bayreuth, Universitaetsstr. 30, 95440 Bayreuth, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-(0)33432-82155 Received: 5 November 2018; Accepted: 7 November 2018; Published: 27 November 2018 Abstract: The globally increasing demand for food, fiber, and bio-based products interferes with the ability of arable soils to perform their multiple functions and support sustainable development. Sustainable soil management under high production conditions means that soil functions contribute to ecosystem services and biodiversity, natural and economic resources are utilized efficiently, farming remains profitable, and production conditions adhere to ethical and health standards. Research in support of sustainable soil management requires an interdisciplinary approach to three interconnected challenges: (i) understanding the impacts of soil management on soil processes and soil functions; (ii) assessing the sustainability impacts of soil management, taking into account the heterogeneity of geophysical and socioeconomic conditions; and (iii) having a systemic understanding of the driving forces and constraints of farmers’ decision-making on soil management and how governance instruments may, interacting with other driving forces, steer sustainable soil management.
    [Show full text]
  • Soil Erosion
    Soil erosion Soil erosion in sloping agricultural land in Tunisia. Photolibrary on soil erosion processes. The most serious form of soil degradation is from accelerated erosion. Erosion is the washing or blowing away of surface soil, sometimes down to the bedrock. While some erosion takes place without the influence of man, the soil is lost so slowly that it is usually replaced through natural processes of decay and regeneration so soil loss and creation of new soil are balanced. What keeps soil in a natural state from eroding is vegetation. Undisturbed by man, soil is usually covered by a canopy of shrubs and trees, by dead and decaying leaves or by a thick mat of grass. Whatever the vegetation, it protects the soil when the rain falls or the wind blows. The leaves and branches of trees and the cushion of grass absorb the force of raindrops, and root systems of plants hold the soil together. Even in drought, the roots of native grasses, which extend several metres into the ground, help tie down the soil and keep it from blowing away. With its covering of vegetation stripped away, however, soil is as vulnerable to damage as a tortoise without its shell. Whether the plant cover is disturbed by cultivation, grazing, burning, or bulldozing, once the soil is laid bare to the erosive action of wind and water, the slow rate of natural erosion is greatly accelerated. Losses of soil take place much faster than new soil can be created, and a kind of deficit spending begins with the topsoil.
    [Show full text]
  • Best Management Practices for Climate Friendly Nurseries
    Best Management Practices for ClimateBest Friendly Management Nurseries Practicesfor Climate Friendly Nurseries Oregon Association of Nurseries Oregon EnvironmentalOregon Association Council of Nurseries Oregon StateOregon University Environmental Council Ecos ConsultingOregon State University Advantage IQ 2010 2011 Best Management Practices for Climate Friendly Nurseries Oregon Association of Nurseries Oregon Environmental Council Oregon State University Advantage IQ Version 2.0, August 2011 4| Best Management Practices for Climate Friendly Nurseries for 5| Best Management Practices for Climate Friendly Nurseries This guide was developed as part of the Climate Friendly Nurseries Project (CFNP), a collaborative partner- ship between the Oregon Association of Nurseries and the Oregon Environmental Council. The first of its kind in the nation, the project’s central goal is to help participating nurseries reduce energy, resource inputs and greenhouse gas (GHG) emissions while achieving greater economic efficiency and profitabil- ity. Advantage IQ and Oregon State University serve as invaluable resources for the CFNP, both bringing research expertise and technical assistance that benefit participating nurseries. This guide provides: • Recommendations for best practices that will reduce your energy and resource use, reduce costs, and at the same time, make your nursery more climate-friendly • Case studies of Oregon nurseries that have already implemented these best management practices • An overview of incentives to help nurseries pay for resource efficiency improvements We hope you find this guide a valuable resource, and encourage you to find more resources and informa- tion about operational efficiencies that protect our natural resources at www.climatefriendlynurseries.org. On this website, you’ll find tools to help you track your energy and resource use and calculate potential return on investment for best management practices (BMPs).
    [Show full text]
  • Erosion and Sediment Control for Agriculture
    Chapter 4C: Erosion and Sediment Control 4C: Erosion and Sediment Control Management Measure for Erosion and Sediment Apply the erosion component of a Resource Management System (RMS) as defined in the Field Office Technical Guide of the U.S. Department of Agriculture–Natural Resources Conservation Service (see Appendix B) to minimize the delivery of sediment from agricultural lands to surface waters, or Design and install a combination of management and physical practices to settle the settleable solids and associated pollutants in runoff delivered from the contributing area for storms of up to and including a 10-year, 24-hour frequency. Management Measure for Erosion and Sediment: Description Application of this management measure will preserve soil and reduce the mass of sediment reaching a water body, protecting both agricultural land and water quality. This management measure can be implemented by using one of two general strategies, or a combination of both. The first, and most desirable, strategy is to implement practices on the field to minimize soil detachment, erosion, and transport of sediment from the field. Effective practices include those that maintain crop residue or vegetative cover on the soil; improve soil properties; Sedimentation reduce slope length, steepness, or unsheltered distance; and reduce effective causes widespread water and/or wind velocities. The second strategy is to route field runoff through damage to our practices that filter, trap, or settle soil particles. Examples of effective manage- waterways. Water ment strategies include vegetated filter strips, field borders, sediment retention supplies and wildlife ponds, and terraces. Site conditions will dictate the appropriate combination of resources can be practices for any given situation.
    [Show full text]
  • Soil Carbon & Biochar
    SOIL CARBON & BIOCHAR WHAT IS SOIL CARBON? Soil carbon sequestration, also known as “carbon farming” or “regenerative agriculture,” includes various ways of managing land, especially farmland, so that soils absorb and hold more carbon. Increasing soil carbon is accomplished in three key ways: (1) switching to low- till or no-till practices; (2) using cover crops and leaving crop residues to decay; and (3) us- ing species or varieties with greater root mass. Double-cropping systems, where a second crop is grown after a food or feed crop, also keep more carbon in the soil. WHAT IS BIOCHAR? Biochar is another way of getting carbon into soils. Biochar is a kind of charcoal created when biomass from crop residues, grass, trees, or other plants is combusted at tempera- tures of 300–600°C without oxygen. This process, known as pyrolysis, enables the carbon in the biomass to resist decay. The biochar is then introduced into soils, where, under cer- tain conditions, it might sequester carbon for many hundreds of years. CO-BENEFITS AND CONCERNS + Improved soil quality: soil carbon − Reversibility: the carbon captured sequestration and biochar help restore via soil carbon sequestration and degraded soils, which can improve biochar can be released if the soils agricultural productivity and help soils are disturbed; societies would need to retain water. maintain appropriate soil management practices indefinitely. − Saturation: soils can only hold a finite amount of carbon; once they are − Difficulty of measurement: monitoring saturated, societies will no longer be and verifying carbon removal, especially able to sequester more carbon using via soil carbon sequestration is currently soil carbon sequestration.
    [Show full text]