Lecture 4 on String Cosmology: Brane Inflation and Cosmic Superstrings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Symmetries of String Theory and Early Universe Cosmology
String Cosmology R. Branden- berger Introduction Symmetries of String Theory and Early T-Duality: Key Symmetry of Universe Cosmology String Theory String Gas Cosmology Structure Robert Brandenberger Perturbations Overview Physics Department, McGill University Analysis DFT Conclusions Yukawa Institute, Kyoto University, Feb. 26, 2018 1 / 61 Outline String Cosmology 1 Introduction R. Branden- berger 2 T-Duality: Key Symmetry of String Theory Introduction T-Duality: Key 3 String Gas Cosmology Symmetry of String Theory String Gas 4 String Gas Cosmology and Structure Formation Cosmology Review of the Theory of Cosmological Perturbations Structure Perturbations Overview Overview Analysis Analysis DFT 5 Double Field Theory as a Background for String Gas Conclusions Cosmology 6 Conclusions 2 / 61 Plan String Cosmology 1 Introduction R. Branden- berger 2 T-Duality: Key Symmetry of String Theory Introduction T-Duality: Key 3 String Gas Cosmology Symmetry of String Theory String Gas 4 String Gas Cosmology and Structure Formation Cosmology Review of the Theory of Cosmological Perturbations Structure Perturbations Overview Overview Analysis Analysis DFT 5 Double Field Theory as a Background for String Gas Conclusions Cosmology 6 Conclusions 3 / 61 Inflation: the Standard Model of Early Universe Cosmology String Cosmology R. Branden- berger Introduction Inflation is the standard paradigm of early universe T-Duality: Key cosmology. Symmetry of String Theory Inflation solves conceptual problems of Standard Big String Gas Bang Cosmology. Cosmology Structure Inflation predicts an almost scale-invariant spectrum of Perturbations Overview primordial cosmological perturbations with a small red Analysis tilt (Chibisov & Mukhanov, 1981). DFT Conclusions Fluctuations are nearly Gaussian and nearly adiabatic. 4 / 61 Map of the Cosmic Microwave Background (CMB) String Cosmology R. -
Off-Shell Interactions for Closed-String Tachyons
Preprint typeset in JHEP style - PAPER VERSION hep-th/0403238 KIAS-P04017 SLAC-PUB-10384 SU-ITP-04-11 TIFR-04-04 Off-Shell Interactions for Closed-String Tachyons Atish Dabholkarb,c,d, Ashik Iqubald and Joris Raeymaekersa aSchool of Physics, Korea Institute for Advanced Study, 207-43, Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-722, Korea bStanford Linear Accelerator Center, Stanford University, Stanford, CA 94025, USA cInstitute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305, USA dDepartment of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India E-mail:[email protected], [email protected], [email protected] Abstract: Off-shell interactions for localized closed-string tachyons in C/ZN super- string backgrounds are analyzed and a conjecture for the effective height of the tachyon potential is elaborated. At large N, some of the relevant tachyons are nearly massless and their interactions can be deduced from the S-matrix. The cubic interactions be- tween these tachyons and the massless fields are computed in a closed form using orbifold CFT techniques. The cubic interaction between nearly-massless tachyons with different charges is shown to vanish and thus condensation of one tachyon does not source the others. It is shown that to leading order in N, the quartic contact in- teraction vanishes and the massless exchanges completely account for the four point scattering amplitude. This indicates that it is necessary to go beyond quartic inter- actions or to include other fields to test the conjecture for the height of the tachyon potential. Keywords: closed-string tachyons, orbifolds. -
Arxiv:0711.0760V3 [Hep-Th]
DBI N-flation John Ward1 Department of Physics and Astronomy, University of Victoria, Victoria BC, V8P 1A1, Canada Abstract We investigate DBI inflation using N multiple branes and show how the configuration is equivalent to a single wrapped D5-brane with flux. We then show how 1/N corrections can be implemented, and we examine the sound speed and levels of non-Gaussianities in two distinct cases. For models with constant warping we find that the non-Gaussian amplitude is bounded from above (as a function of γ). For AdS backgrounds we find that the signature is generally large and positive, although is no longer globally defined over the full phase space. We then investigate an inflationary mechanism using a representation cascade, whereby the transition from a reducible representation to the irrep drives inflation. arXiv:0711.0760v3 [hep-th] 26 Nov 2007 [email protected] 1 Introduction In the absence of any direct test of string theory, cosmology remains the best laboratory with which to test string theoretic models [1]. Over the past few years we have witnessed cosmology become a precision science, with COBE, WMAP and SDSS [2] providing crucial support for the flatness of the universe, the existence of dark energy and for a period of cosmic inflation. Whilst the dark energy puzzle remains an outstanding problem for theoretical physics in general [3], inflation has been a carefully developed paradigm with many explicit models. Unfortunately as far as inflationary model building is concerned, there are still many problems to be resolved. Particularly since many of the models suffer from super-Planckian VEV’s for the inflaton field [1], and therefore find themselves in a region where quantum gravity effects are non-negligible. -
String-Inspired Running Vacuum—The ``Vacuumon''—And the Swampland Criteria
universe Article String-Inspired Running Vacuum—The “Vacuumon”—And the Swampland Criteria Nick E. Mavromatos 1 , Joan Solà Peracaula 2,* and Spyros Basilakos 3,4 1 Theoretical Particle Physics and Cosmology Group, Physics Department, King’s College London, Strand, London WC2R 2LS, UK; [email protected] 2 Departament de Física Quàntica i Astrofísica, and Institute of Cosmos Sciences (ICCUB), Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona, Catalonia, Spain 3 Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efessiou 4, 11527 Athens, Greece; [email protected] 4 National Observatory of Athens, Lofos Nymfon, 11852 Athens, Greece * Correspondence: [email protected] Received: 15 October 2020; Accepted: 17 November 2020; Published: 20 November 2020 Abstract: We elaborate further on the compatibility of the “vacuumon potential” that characterises the inflationary phase of the running vacuum model (RVM) with the swampland criteria. The work is motivated by the fact that, as demonstrated recently by the authors, the RVM framework can be derived as an effective gravitational field theory stemming from underlying microscopic (critical) string theory models with gravitational anomalies, involving condensation of primordial gravitational waves. Although believed to be a classical scalar field description, not representing a fully fledged quantum field, we show here that the vacuumon potential satisfies certain swampland criteria for the relevant regime of parameters and field range. We link the criteria to the Gibbons–Hawking entropy that has been argued to characterise the RVM during the de Sitter phase. These results imply that the vacuumon may, after all, admit under certain conditions, a rôle as a quantum field during the inflationary (almost de Sitter) phase of the running vacuum. -
Exploring Cosmic Strings: Observable Effects and Cosmological Constraints
EXPLORING COSMIC STRINGS: OBSERVABLE EFFECTS AND COSMOLOGICAL CONSTRAINTS A dissertation submitted by Eray Sabancilar In partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics TUFTS UNIVERSITY May 2011 ADVISOR: Prof. Alexander Vilenkin To my parents Afife and Erdal, and to the memory of my grandmother Fadime ii Abstract Observation of cosmic (super)strings can serve as a useful hint to understand the fundamental theories of physics, such as grand unified theories (GUTs) and/or superstring theory. In this regard, I present new mechanisms to pro- duce particles from cosmic (super)strings, and discuss their cosmological and observational effects in this dissertation. The first chapter is devoted to a review of the standard cosmology, cosmic (super)strings and cosmic rays. The second chapter discusses the cosmological effects of moduli. Moduli are relatively light, weakly coupled scalar fields, predicted in supersymmetric particle theories including string theory. They can be emitted from cosmic (super)string loops in the early universe. Abundance of such moduli is con- strained by diffuse gamma ray background, dark matter, and primordial ele- ment abundances. These constraints put an upper bound on the string tension 28 as strong as Gµ . 10− for a wide range of modulus mass m. If the modulus coupling constant is stronger than gravitational strength, modulus radiation can be the dominant energy loss mechanism for the loops. Furthermore, mod- ulus lifetimes become shorter for stronger coupling. Hence, the constraints on string tension Gµ and modulus mass m are significantly relaxed for strongly coupled moduli predicted in superstring theory. Thermal production of these particles and their possible effects are also considered. -
Is There Eternal Inflation in the Cosmic Landscape ?
Is there eternal inflation in the cosmic landscape ? Henry Tye Cornell University hep-th/0611148 ArXiv:0708.4374 [hep-th] with Qing-Guo Huang, ArXiv:0803.0663 [hep-th] with Dan Wohns and Yang Zhang, ArXiv:0811.3753 [hep-th] IPMU, 04/01/09 Expansion of the universe k ρm ρr H2 =Λ+ + + a2 a3 a4 • a(t) = the cosmic scale factor ~ size of universe • H = Hubble constant =(da/dt)/a • Λ = dark energy ~ cosmological constant ~ effective potential • k = curvature • ρm = matter density at initial time • ρr = radiation density at initial time • H = constant ⇒ a = eHt Inflation BRIEF ARTICLE THE AUTHOR 1 (1) d = s(Λc)/ξ +1 ∼ ∼ 1 ∼ −1/4 (2) ξ s(Λs) Λs ms (3) d>60 BRIEF ARTICLE (4) T (n) " T0/n THE AUTHOR 4 (5) Γ = msT (6) n ∼ 1/Hs 1 Eternal Inflation Ht 3 3Ht (7) (1) a(t) " e → V = a(t) " e τ > 1/H Suppose the universe is sitting at a local minimum, with a ln L (2)lifetime longer than the Hubble lntime:g ∼− L = −e Then the number of Hubble patches will increase −Si (3) exponentially. Even after some Hubble patchesαi have∼ e decayed, there would be many remaining Hubble patches (4) that continue to inflate. |βij| < αi (5) Eternal inflation impliesφi = thatϕi/f i somewhere in the universe (outside our horizon),d −1 (6) Γt ∼ n Γ0 inflation is still happening today. T (A → B)T (B → C) (7) T (A → C)= ∼ T0/2 T (A → B)+T (B → C) −S (8) ΓA→B = ΓB→C = Γ0 ∼ e 2 (9) ΓA→C ∼ ΓA→BΓB→C = Γ0 1 1 2 (10) tA→C = tA→B + tB→C = + ∼ → → 1 ΓA B ΓB C Γ0 Γ0 (11) Γ → = A C 2 −S (12) Γ(1) = Γ0 ∼ e − (13) Γ(2) ∼ e 2S − (14) Γ(2) ∼ e S − (15) Γ(n) ∼ e S (16) +H2φ2 2 2 (17) H = U/3MP 1 Flux compactification in Type II string theory where all moduli of the 6-dim. -
Generalised Velocity-Dependent One-Scale Model for Current-Carrying Strings
Generalised velocity-dependent one-scale model for current-carrying strings C. J. A. P. Martins,1, 2, ∗ Patrick Peter,3, 4, y I. Yu. Rybak,1, 2, z and E. P. S. Shellard4, x 1Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 2Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 GR"CO – Institut d’Astrophysique de Paris, CNRS & Sorbonne Université, UMR 7095 98 bis boulevard Arago, 75014 Paris, France 4Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom (Dated: November 20, 2020) We develop an analytic model to quantitatively describe the evolution of superconducting cosmic string networks. Specifically, we extend the velocity-dependent one-scale (VOS) model to incorpo- rate arbitrary currents and charges on cosmic string worldsheets under two main assumptions, the validity of which we also discuss. We derive equations that describe the string network evolution in terms of four macroscopic parameters: the mean string separation (or alternatively the string correlation length) and the root mean square (RMS) velocity which are the cornerstones of the VOS model, together with parameters describing the averaged timelike and spacelike current contribu- tions. We show that our extended description reproduces the particular cases of wiggly and chiral cosmic strings, previously studied in the literature. This VOS model enables investigation of the evolution and possible observational signatures of superconducting cosmic string networks for more general equations of state, and these opportunities will be exploited in a companion paper. -
Dilaton and Off-Shell (Non-Critical String) Effects in Boltzmann Equation for Species Abundances AB Lahanas1, NE Mavromatos2 and DV Nanopoulos3,4,5
Research article Open Access Dilaton and off-shell (non-critical string) effects in Boltzmann equation for species abundances AB Lahanas1, NE Mavromatos2 and DV Nanopoulos3,4,5 Address: 1University of Athens, Physics Department, Nuclear and Particle Physics Section, GR157 71, Athens, Greece., 2King's College London, University of London, Department of Physics, Strand WC2R 2LS, London, UK., 3George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A&M University, College Station, TX 77843, USA., 4Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381, USA. and 5Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679, Greece. Email: AB Lahanas - [email protected]; NE Mavromatos - [email protected]; DV Nanopoulos - [email protected] Published: 2 October 2007 Received: 3 June 2007 Accepted: 2 October 2007 PMC Physics A 2007, 1:2 doi:10.1186/1754-0410-1-2 This article is available from: http://www.physmathcentral.com/1754-0410/1/2 © 2007 Lahanas et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this work we derive the modifications to the Boltzmann equation governing the cosmic evolution of relic abundances induced by dilaton dissipative-source and non-critical-string terms in dilaton-driven non-equilibrium string Cosmologies. We also discuss briefly the most important phenomenological consequences, including modifications of the constraints on the available parameter space of cosmologically appealing particle physics models, imposed by recent precision data of astrophysical measurements. -
String Cosmology” “Should Be an Overview of the Whole Activity!” New Ideas About Gravity Cf
Strings 2011, Uppsala July 1, 2011 Mandate from the organizers: “one hour review talk on string cosmology” “should be an overview of the whole activity!” New ideas about gravity cf. talk by Verlinde Holographic models of inflation Cosmological singularities de Sitter in Inflation in string theory String gas cosmology string theory cf. talks by Graña, Shiu Tunneling in the string landscape Cosmic superstrings cf. talk by Greene dS/CFT Inflation in supergravity Non-BD initial conditions cf. talk by Linde Wavefunction of the universe Measures in eternal inflation cf. talk by Maldacena Lower-dimensional (e.g. matrix) cosmologies New ideas about gravity cf. talk by Verlinde Holographic models of inflation Cosmological singularities de Sitter in Inflation in string theory String gas cosmology string theory cf. talks by Graña, Shiu Tunneling in the string landscape Cosmic superstrings cf. talk by Greene dS/CFT Inflation in supergravity Non-BD initial conditions cf. talk by Linde Wavefunction of the universe Measures in eternal inflation cf. talk by Maldacena Lower-dimensional (e.g. matrix) cosmologies I. Cosmology in 2011 II. Why use string theory in cosmology? III. Inflation in string theory i. D3-brane inflation ii. Axion inflation IV. The initial singularity V. Alternative cosmologies VI. Outlook Planck; WMAP; SDSS Planck; WMAP; SDSS • Vigorous, diverse experimental effort – CMB (Planck; balloon-based and ground-based missions) – Large-scale structure (multiple surveys) – Dark energy (supernovae; probes of structure formation) – Dark matter (direct and indirect) • Theoretical status: compelling phenomenological description using QFT+GR, but: – Late universe: dark energy presents a severe failure of naturalness. – Early universe: inflation is an impressive paradigm with multiple successful predictions, but: • Inflation is sensitive to Planck-scale physics, and is therefore best described in a theory of quantum gravity. -
Observational Cosmology - 30H Course 218.163.109.230 Et Al
Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity. -
Cosmic Strings and Primordial Black Holes
Journal of Cosmology and Astroparticle Physics Cosmic strings and primordial black holes Recent citations - Extended thermodynamics of self- gravitating skyrmions To cite this article: Alexander Vilenkin et al JCAP11(2018)008 Daniel Flores-Alfonso and Hernando Quevedo View the article online for updates and enhancements. This content was downloaded from IP address 130.64.25.60 on 13/07/2019 at 23:53 ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Cosmic strings and primordial black holes JCAP11(2018)008 Alexander Vilenkin,a Yuri Levinb and Andrei Gruzinovc aDepartment of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, MA 02155, U.S.A. bDepartment of Physics, Columbia University, 538 West 120th street, New York, NY 10027, U.S.A. cDepartment of Physics, New York University, 726 Broadway, New York, NY 10003, U.S.A. E-mail: [email protected], [email protected], [email protected] Received September 10, 2018 Accepted October 10, 2018 Published November 7, 2018 Abstract. Cosmic strings and primordial black holes (PBHs) commonly and naturally form in many scenarios describing the early universe. Here we show that if both cosmic strings and PBHs are present, their interaction leads to a range of interesting consequences. At the time of their formation, the PBHs get attached to the strings and influence their evolution, leading to the formation of black-hole-string networks and commonly to the suppression of loop production in a range of redshifts. Subsequently, reconnections within the network give rise to small nets made of several black holes and connecting strings. -
Towards Uniform T-Duality Rules
Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 2, 659–662 Towards Uniform T-Duality Rules Alexei J. NURMAGAMBETOV Institute for Theoretical Physics, NSC “Kharkov Institute of Physics and Technology”, 1 Akademicheskaya Str., 61108, Kharkov, Ukraine Center for Theoretical Physics, Texas A&M University, College Station, TX 77843, USA E-mail: [email protected] In this contribution based on the talk given at the SUSY’01, Dubna, Russia, I discuss the reasons of appearing the different sets of fields entering into the T-duality transformations and a way to construct the uniform T-duality rules. 1 Introduction Discovery in the past decade of the new class of non-compact symmetries allowed to revise one of the main problems of Superstrings: The puzzle of having too much “fundamental” theories. The resolution was in the conjecture on the M-theory in framework of which it turned out possible to unify all the five different superstring theories. The useful tool for establishing the M-theory evidence are dualities connected to the new symmetries of perturbative or non-perturbative sectors of Superstrings. In this Contribution I would like to discuss some questions related to the so-called T-duality (see [1] for review). Namely, I will focus my attention on the following: Q1: What are the different ways of T-duality rules derivation? Q2: Do the T-duality rules coincide? Q3: How uniform T-duality rules could be derived? For the sake of simplicity I restrict myself in what follows to the pure classical frames, that means neglecting the dilaton field, which receives its corrections from quantum effects, and will consider backgrounds with single isometry direction.