Applications for Cosmology and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

Applications for Cosmology and Beyond This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Fluctuation and Dissipation Dynamics in the Early Universe Jo¨elMabillard I V N E R U S E I T H Y T O H F G E R D I N B U Doctor of Philosophy The University of Edinburgh May 2019 2 Abstract The aim of this thesis is to study the effects of fluctuation and dissipation dynamics in Early Universe cosmology. The formal description of the Early Universe relies on cosmological fields that, in general, are not completely isolated from and, therefore, interact with their environment. These interactions might lead to two non-negligible effects. Fluctuations, acting as stochastic forces, tend to perturb the motion of the field. In addition, some fraction of the energy is transferred from the field to other degrees of freedom, corresponding to dissipation. We are interested in three situations where fluctuation and dissipation dynamics plays a significant role for cosmology. After a brief review of the prevailing model of cosmology, the Standard Big Bang Model, we study the formation of embedded defects. This particular realization of topological defects is not stable by construction. While considering one of the simplest examples, the pion string, we show that the interactions with a thermal and dense medium might, in some circumstances, provide a stabilization mechanism. We then turn our interest to the warm realization of inflation. Ideas borrowed from the renormalization group are applied to warm inflation in order to define universality classes among the different models of inflation. Beyond the identification of universality, this approach is well-suited for an analytical treatment of warm inflation and helps in the characterization of the possible smooth transition to the radiation-dominated regime. Finally, we extend the Kramers problem to quantum field theory. In the presence of fluctuation and dissipation dynamics, there is a non-vanishing probability for a field initially located at a minimum of its potential to escape from the well. We define and derive the escape rate for a scalar field, due to thermal fluctuations, and discuss the applications for cosmology. i ii Lay Summary Fluctuation and dissipation dynamics is a common phenomenon in physics. One of the simplest illustrations appears in Brownian motion, which describes, for example, the random motion of a particle suspended in a liquid or a gas. The interactions between the particle and its surrounding, the fluid, generate two competing effects. Fluctuations, acting as random forces, perturb the motion of the particle. In addition, a damping leads to the dissipation of a fraction of the particle energy. Such phenomena are ubiquitous in physics. Problems described by Brownian motion, or related fluctuation and dissipation dynamics, appear in subject areas ranging from condensed matter to astrophysics. In the present work, we are interested in the consequences of fluctuation and dissipation dynamics in Early Universe cosmology. The formal description of the Early Universe is based on cosmological fields. In general, a field is not entirely isolated from and, therefore, interacts with its environment, which can lead to fluctuation and dissipation dynamics. Despite its prevalence in the subject of cosmology, the influence of this dynamics has not been extensively studied so far. We are particularly interested in three situations where fluctuation and dissipation dynamics plays a significant role : phase transition and formation of topological defects, warm inflation, and in the escape problem. iii iv Declaration I declare that this thesis was composed by myself, that the work contained herein is my own except where explicitly stated otherwise in the text, and that this work has not been submitted for any other degree or professional qualification except as specified. Parts of this work have been published in [1, 2]. (Jo¨elMabillard, May 2019 ) v vi Acknowledgements First of all, I would like to express my deep gratitude to my supervisor, Prof. Arjun Berera. The uninterrupted care, guidance and encouragements given throughout my Phd have been extremely helpful, precious and appreciated. I also thank Prof. Rudnei Ramos for his constant help and for making the visit to the UERJ possible. I am specially grateful to Dr. Mauro Pieroni, for being such a great collaborator and friend. I wish to thank also the people I had the chance to work with, in particular, Angelo, Bruno and Francesco. To the members of the PPT at the University of Edinburgh I would like to say thanks, I have much appreciated being a member of the group. To James, Julia and Saad, who have been great officemates. To Alex, Andreas, Andries, Jos´e and Vincenzo, for the interesting discussions, especially at the coffee breaks. I am specially grateful to Christian and Gianluca, who made the time spent in Edinburgh the most enjoyable. I would like to thank the other people I have met in Edinburgh and that I forget to cite here. Je souhaite remercier ma famille et en particulier mes parents, Joseph et Marie- Th´er`ese,qui ont toujours ´et´ed'un soutien inconditionnel, notamment pendant mes ´etudes. Ce sont eux qui m'ont transmis cette curiosit´epour le monde qui nous entoure, et qui, de fil en aiguille, m'a conduit vers la physique. Je remercie aussi Lo¨ıc,M´elanie,Jicky et Claude pour leur soutient constant. Je remercie tout particuli`erement Aurelia, qui a toujours ´et´epr´esente pour moi. Ses encouragements, son soutien et son aide, en particulier dans les moments plus difficiles, ont ´et´eextr^emement pr´ecieux.J'ai beaucoup de chance de t'avoir dans ma vie. Finally, I have a special thought for Prof. Pierre Bin´etruy, who unfortunately left us too soon. Pierre was not only one of the greatest physicists I have ever met, he was also a very kind person. Pierre was my Master thesis supervisor, and I am specially thankful to him for encouraging me to pursue my studies with a Phd. vii viii Contents Abstract i Lay Summary iii Declaration v Acknowledgements vii Contents ix List of Figures xiii List of Tables xv 1 Introduction 1 2 The Standard Big Bang Model 9 2.1 FLRW Cosmologies............................................................. 10 2.1.1 The Cosmological Principle and the FLRW Metric............ 10 2.1.2 Friedmann Equations.................................................. 12 2.1.3 Energy Contributions and Associated Solutions................ 14 2.2 Thermal History of the Hot Big Bang Model............................. 16 2.3 Observational Cosmology and the ΛCDM Model........................ 19 2.3.1 Observing the Universe............................................... 19 ix 2.3.2 ΛCDM Model........................................................... 22 3 Stabilization of Embedded Topological Defects 25 3.1 Introduction...................................................................... 25 3.2 Review of Topological Defects in Cosmology.............................. 27 3.2.1 Spontaneous Symmetry Breaking and Phase Transitions..... 28 3.2.2 Kibble Mechanism..................................................... 29 3.2.3 Existence and Classification of Topological Defects............ 30 3.2.4 Consequences for Cosmology........................................ 32 3.2.5 Embedded Defects..................................................... 34 3.3 The Pion String in the Linear Sigma Model.............................. 35 3.3.1 LSMq at Zero Temperature.......................................... 35 3.3.2 Chiral Phase Transition at Finite Temperature and Chem- ical Potential............................................................ 38 3.3.3 Pion String Solution and its Stability in Vacuum.............. 44 3.4 Stabilization of the Pion String in a Thermal and Dense Medium... 48 3.4.1 Pion String Solution at Finite-Temperature..................... 48 3.4.2 Stability of the Pion String.......................................... 50 3.4.3 Stability in the Physical Case h = 0............................... 54 6 3.5 Discussion and Conclusions................................................... 57 4 Universality in Warm Inflation 61 4.1 Introduction...................................................................... 61 4.2 Review of Cosmic Inflation.................................................... 64 4.2.1 Shortcomings of the SBBM.......................................... 65 4.2.2 Realization of Inflation................................................ 69 x 4.2.3 Structure Formation from Inflation................................ 70 4.2.4 Warm Realization of Inflation....................................... 73 4.3 Universality in Warm Inflation............................................... 77 4.3.1 Identifying Universality with the β-Function Formalism...... 78 4.3.2 β-Function Formalism for Warm Inflation......................
Recommended publications
  • Off-Shell Interactions for Closed-String Tachyons
    Preprint typeset in JHEP style - PAPER VERSION hep-th/0403238 KIAS-P04017 SLAC-PUB-10384 SU-ITP-04-11 TIFR-04-04 Off-Shell Interactions for Closed-String Tachyons Atish Dabholkarb,c,d, Ashik Iqubald and Joris Raeymaekersa aSchool of Physics, Korea Institute for Advanced Study, 207-43, Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-722, Korea bStanford Linear Accelerator Center, Stanford University, Stanford, CA 94025, USA cInstitute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305, USA dDepartment of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India E-mail:[email protected], [email protected], [email protected] Abstract: Off-shell interactions for localized closed-string tachyons in C/ZN super- string backgrounds are analyzed and a conjecture for the effective height of the tachyon potential is elaborated. At large N, some of the relevant tachyons are nearly massless and their interactions can be deduced from the S-matrix. The cubic interactions be- tween these tachyons and the massless fields are computed in a closed form using orbifold CFT techniques. The cubic interaction between nearly-massless tachyons with different charges is shown to vanish and thus condensation of one tachyon does not source the others. It is shown that to leading order in N, the quartic contact in- teraction vanishes and the massless exchanges completely account for the four point scattering amplitude. This indicates that it is necessary to go beyond quartic inter- actions or to include other fields to test the conjecture for the height of the tachyon potential. Keywords: closed-string tachyons, orbifolds.
    [Show full text]
  • Eternal Inflation and Its Implications
    IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 40 (2007) 6811–6826 doi:10.1088/1751-8113/40/25/S25 Eternal inflation and its implications Alan H Guth Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA E-mail: [email protected] Received 8 February 2006 Published 6 June 2007 Online at stacks.iop.org/JPhysA/40/6811 Abstract Isummarizetheargumentsthatstronglysuggestthatouruniverseisthe product of inflation. The mechanisms that lead to eternal inflation in both new and chaotic models are described. Although the infinity of pocket universes produced by eternal inflation are unobservable, it is argued that eternal inflation has real consequences in terms of the way that predictions are extracted from theoretical models. The ambiguities in defining probabilities in eternally inflating spacetimes are reviewed, with emphasis on the youngness paradox that results from a synchronous gauge regularization technique. Although inflation is generically eternal into the future, it is not eternal into the past: it can be proven under reasonable assumptions that the inflating region must be incomplete in past directions, so some physics other than inflation is needed to describe the past boundary of the inflating region. PACS numbers: 98.80.cQ, 98.80.Bp, 98.80.Es 1. Introduction: the successes of inflation Since the proposal of the inflationary model some 25 years ago [1–4], inflation has been remarkably successful in explaining many important qualitative and quantitative properties of the universe. In this paper, I will summarize the key successes, and then discuss a number of issues associated with the eternal nature of inflation.
    [Show full text]
  • A Correspondence Between Strings in the Hagedorn Phase and Asymptotically De Sitter Space
    A correspondence between strings in the Hagedorn phase and asymptotically de Sitter space Ram Brustein(1), A.J.M. Medved(2;3) (1) Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel (2) Department of Physics & Electronics, Rhodes University, Grahamstown 6140, South Africa (3) National Institute for Theoretical Physics (NITheP), Western Cape 7602, South Africa [email protected], [email protected] Abstract A correspondence between closed strings in their high-temperature Hage- dorn phase and asymptotically de Sitter (dS) space is established. We identify a thermal, conformal field theory (CFT) whose partition function is, on the one hand, equal to the partition function of closed, interacting, fundamental strings in their Hagedorn phase yet is, on the other hand, also equal to the Hartle-Hawking (HH) wavefunction of an asymptotically dS Universe. The Lagrangian of the CFT is a functional of a single scalar field, the condensate of a thermal scalar, which is proportional to the entropy density of the strings. The correspondence has some aspects in common with the anti-de Sitter/CFT correspondence, as well as with some of its proposed analytic continuations to a dS/CFT correspondence, but it also has some important conceptual and technical differences. The equilibrium state of the CFT is one of maximal pres- sure and entropy, and it is at a temperature that is above but parametrically close to the Hagedorn temperature. The CFT is valid beyond the regime of semiclassical gravity and thus defines the initial quantum state of the dS Uni- verse in a way that replaces and supersedes the HH wavefunction.
    [Show full text]
  • Punctuated Eternal Inflation Via Ads/CFT
    BROWN-HET-1593 Punctuated eternal inflation via AdS/CFT David A. Lowe† and Shubho Roy†♮♯∗ †Department of Physics, Brown University, Providence, RI 02912, USA ♮Physics Department City College of the CUNY New York, NY 10031, USA and ♯Department of Physics and Astronomy Lehman College of the CUNY Bronx, NY 10468, USA Abstract The work is an attempt to model a scenario of inflation in the framework of Anti de Sit- ter/Conformal Field theory (AdS/CFT) duality, a potentially complete nonperturbative description of quantum gravity via string theory. We look at bubble geometries with de Sitter interiors within an ambient Schwarzschild anti-de Sitter black hole spacetime and obtain a characterization for the states in the dual CFT on boundary of the asymptotic AdS which code the expanding dS bubble. These can then in turn be used to specify initial conditions for cosmology. Our scenario naturally interprets the entropy of de Sitter space as a (logarithm of) subspace of states of the black hole microstates. Consistency checks are performed and a number of implications regarding cosmology are discussed including how the key problems or paradoxes of conventional eternal inflation are overcome. arXiv:1004.1402v1 [hep-th] 8 Apr 2010 ∗Electronic address: [email protected], [email protected] 1 I. INTRODUCTION Making contact with realistic cosmology remains the fundamental challenge for any can- didate unified theory of matter and gravity. Precise observations [1, 2] indicate that the current epoch of the acceleration of universe is driven by a very mild (in Planck units) neg- ative pressure, positive energy density constituent - “dark energy”.
    [Show full text]
  • Exploring Cosmic Strings: Observable Effects and Cosmological Constraints
    EXPLORING COSMIC STRINGS: OBSERVABLE EFFECTS AND COSMOLOGICAL CONSTRAINTS A dissertation submitted by Eray Sabancilar In partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics TUFTS UNIVERSITY May 2011 ADVISOR: Prof. Alexander Vilenkin To my parents Afife and Erdal, and to the memory of my grandmother Fadime ii Abstract Observation of cosmic (super)strings can serve as a useful hint to understand the fundamental theories of physics, such as grand unified theories (GUTs) and/or superstring theory. In this regard, I present new mechanisms to pro- duce particles from cosmic (super)strings, and discuss their cosmological and observational effects in this dissertation. The first chapter is devoted to a review of the standard cosmology, cosmic (super)strings and cosmic rays. The second chapter discusses the cosmological effects of moduli. Moduli are relatively light, weakly coupled scalar fields, predicted in supersymmetric particle theories including string theory. They can be emitted from cosmic (super)string loops in the early universe. Abundance of such moduli is con- strained by diffuse gamma ray background, dark matter, and primordial ele- ment abundances. These constraints put an upper bound on the string tension 28 as strong as Gµ . 10− for a wide range of modulus mass m. If the modulus coupling constant is stronger than gravitational strength, modulus radiation can be the dominant energy loss mechanism for the loops. Furthermore, mod- ulus lifetimes become shorter for stronger coupling. Hence, the constraints on string tension Gµ and modulus mass m are significantly relaxed for strongly coupled moduli predicted in superstring theory. Thermal production of these particles and their possible effects are also considered.
    [Show full text]
  • Yasunori Nomura
    Yasunori Nomura UC Berkeley; LBNL Why is the universe as we see today? ― Mathematics requires — “We require” Dramatic change of the view Our universe is only a part of the “multiverse” … suggested both from observation and theory This comes with revolutionary change of the view on spacetime and gravity • Holographic principle • Horizon complementarity • Multiverse as quantum many worlds • … … implications on particle physics and cosmology Shocking news in 1998 Supernova cosmology project; Supernova search team Universe is accelerating! ≠ 0 ! Particle Data Group (2010) 2 2 4 4 … natural size of ≡ MPl (naively) ~ MPl (at the very least ~ TeV ) Observationally, -3 4 120 ~ (10 eV) Naïve estimates O(10 ) too large Also, ~ matter — Why now? Nonzero value completely changes the view ! 4 Natural size for vacuum energy ~ MPl 4 • 4 -MPl 0 -120 4 MPl ,obs ~10 MPl Unnatural (Note: = 0 is NOT special from theoretical point of view) Wait! Is it really unnatural to observe this value? • No observer0 No observer It is quite “natural” to observe ,obs, as long as different values of are “sampled” Weinberg (’87) Many universes ─ multiverse ─ needed • String landscape Compact (six) dimensins ex. O(100) fields with O(10) minima each → huge number of vacua → O(10100) vacua • Eternal inflation Inflation is (generically) future eternal → populate all the vacua Anthropic considerations mandatory (not an option) Full of “miracles” Examples: • yu,d,e v ~ QCD ~ O(0.01) QCD … otherwise, no nuclear physics or chemistry (Conservative) estimate of the probability: P « 10-3 • Baryon ~ DM …. Some of them anthropic (and some may not) Implications? • Observational / experimental (test, new scenarios, …) • Fundamental physics (spacetime, gravity, …) Full of “miracles” Examples: • yu,d,e v ~ QCD ~ O(0.01) QCD … otherwise, no nuclear physics or chemistry (Conservative) estimate of the probability: P « 10-3 • Baryon ~ DM ….
    [Show full text]
  • Generalised Velocity-Dependent One-Scale Model for Current-Carrying Strings
    Generalised velocity-dependent one-scale model for current-carrying strings C. J. A. P. Martins,1, 2, ∗ Patrick Peter,3, 4, y I. Yu. Rybak,1, 2, z and E. P. S. Shellard4, x 1Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 2Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 GR"CO – Institut d’Astrophysique de Paris, CNRS & Sorbonne Université, UMR 7095 98 bis boulevard Arago, 75014 Paris, France 4Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom (Dated: November 20, 2020) We develop an analytic model to quantitatively describe the evolution of superconducting cosmic string networks. Specifically, we extend the velocity-dependent one-scale (VOS) model to incorpo- rate arbitrary currents and charges on cosmic string worldsheets under two main assumptions, the validity of which we also discuss. We derive equations that describe the string network evolution in terms of four macroscopic parameters: the mean string separation (or alternatively the string correlation length) and the root mean square (RMS) velocity which are the cornerstones of the VOS model, together with parameters describing the averaged timelike and spacelike current contribu- tions. We show that our extended description reproduces the particular cases of wiggly and chiral cosmic strings, previously studied in the literature. This VOS model enables investigation of the evolution and possible observational signatures of superconducting cosmic string networks for more general equations of state, and these opportunities will be exploited in a companion paper.
    [Show full text]
  • Primordial Power Spectra from an Emergent Universe: Basic Results and Clarifications
    universe Article Primordial Power Spectra from an Emergent Universe: Basic Results and Clarifications Killian Martineau and Aurélien Barrau * Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3 53, avenue des Martyrs, 38026 Grenoble CEDEX, France; [email protected] * Correspondence: [email protected] Received: 30 November 2018; Accepted: 15 December 2018; Published: 18 December 2018 Abstract: Emergent cosmological models, together with the Big Bang and bouncing scenarios, are among the possible descriptions of the early Universe. This work aims at clarifying some general features of the primordial tensor power spectrum in this specific framework. In particular, some naive beliefs are corrected. Using a toy model, we investigate the conditions required to produce a scale-invariant spectrum and show to what extent this spectrum can exhibit local features sensitive to the details of the scale factor evolution near the transition time. Keywords: Emergent universe; quantum cosmology; primordial tensor spectrum 1. Introduction The term “Big Bang” is somewhat ambiguous. In a sense, it just refers to the expansion of space and to the fact that the entire observable universe was, in the past, much smaller, denser, and hotter. This is obviously non-controversial. In another sense, it refers to the initial singularity in and of itself. In this stronger meaning, the very idea of the Big Bang is far from obvious. It is a generic prediction of general relativity (GR)—remaining usually true in the inflationary paradigm [1,2]—which can, however, be violated in some circumstances. The first important class of models without a Big Bang (in the strong sense) are bouncing models.
    [Show full text]
  • A Holographic Framework for Eternal Inflation Yasuhiro Sekino
    On the Universe Created through Quantum Tunnelling Yasuhiro Sekino (Okayama Institute for Quantum Physics) Collaboration with Ben Freivogel (UC Berkeley), Leonard Susskind (Stanford), Chen-Pin Yeh (葉振斌; Stanford), hep-th/0606204 + work in progress. Motivation for this work: • “String Landscape” – String theory seems to have a large # of vacua with positive cosmological constant. – Creation of universe through tunneling (bubble nucleation) is quite common. Two important Problems: • Construct a non-perturbative framework – Presence of the Landscape has not been proven. – In fact, it is not known what a positive c.c. vacuum means in string theory (beyond low-energy level). • Find observational consequence of an universe created by tunnelling – What is the signature in the CMB ? – Can we have information on the “ancestor” vacuum? In this talk, • We study fluctuations a universe created by tunnelling. – Our analysis is based on the semi-classical gravity and QFT in curved space-time. • Main result: there is a peculiar long-range correlation. – This will play crucial roles in the above two problems. Plan of the talk: • Coleman-De Luccia instanton (decay of de Sitter space) • Correlation functions • Holographic dual description Decay of de Sitter space • We consider simplest case: single scalar, two minima (spacetime: 3+1 D) U(ΦF) >0 (de Sitter vacuum), U(ΦT)=0 (zero c.c. in the true vacuum) • Coleman-De Luccia (CDL) instanton (’82): – Euclidean classical solution – Topologically, a 4-sphere. Interpolates two cc’s. Preserves SO(4) out of SO(5).
    [Show full text]
  • Corpuscular Consideration of Eternal Inflation
    Corpuscular Consideration of Eternal Inflation Florian K¨uhnel1, ∗ and Marit Sandstad2, y 1The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, 10691 Stockholm, Sweden 2Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo, Norway (Dated: Monday 22nd October, 2018, 7:54pm) Abstract We review the paradigm of eternal inflation in the light of the recently proposed corpuscular picture of space-time. Comparing the strength of the average fluctuation of the field up its potential with that of quantum depletion, we show that the latter can be dominant. We then study the full respective distributions in order to show that the fraction of the space-time which has an increasing potential is always below the eternal-inflation threshold. We prove that for monomial potentials eternal inflaton is excluded. This is likely to hold for other models as well. arXiv:1504.02377v3 [gr-qc] 13 Aug 2015 ∗Electronic address: [email protected] yElectronic address: [email protected] 1 I. INTRODUCTION Cosmological inflation [1, 2] is one of the central building blocks of our current understanding of the Universe. One of its simplest realizations, which is still compatible with observations, is via a single scalar field, called inflaton. Today's structure in the Universe is seeded by the quantum fluctuations of this field and of the space-time, and is in remarkable agreement with measurements (c.f. [3]). Depending on the value of the inflaton, it might experience large quantum fluctuations, also and in particular, up its potential, therefore inducing ever expanding inflationary patches of the Universe.
    [Show full text]
  • Topological Phases of Eternal Inflation
    Topological Phases of Eternal Inflation Yasuhiro Sekino (Okayama Institute for Quantum Physics) w/ Stephen Shenker (Stanford), Leonard Susskind (Stanford), Phys. Rev. D81, 123515 (2010), arXiv:1003.1347[hep-th] Setup: Gravity coupled to a theory with metastable (false) vacuum V(Φ) • Scalar field with the potential which has two minima (Motivation: string landscape; Today’s talk: ΦF ΦT Φ analysis using semi-classical gravity) • (If we ignore gravity,) first order phase transition: – False vacuum decays by quantum tunneling (bubble nucleation); The nucleation rate Γ: given by the action of the “bounce”. – The whole space eventually turns into the true vacuum. • What happens when there is gravity? Coupling to gravity • We consider the case V(Φ) V(ΦF) > 0 (False vacuum: de Sitter with 2 Hubble parameter H =G V(ΦF)) V(ΦT) = 0 (True vacuum: flat spacetime) ΦF ΦT Φ • Initial condition: The space (or at least a region larger than horizon volume) was filled with false vacuum. • The decay of false vacuum: semi-classically described by Coleman-De Luccia instanton (bounce) • Bubble nucleation rate per unit physical 4-volume: (No “up transitions” from true to false vacuum) Bubble of true vacuum • Analytic continuation of CDL instanton: Open FRW universe inside a bubble – At late time, flat spacetime in open slicing (Milne universe) • Many bubbles are nucleated in the de Sitter region. • If Γ < c H4 , bubble nucleation cannot catch up the expansion of space. (“Eternal Inflation”) – False vacuum exists forever (dominates the physical volume). – Infinite number of bubbles are nucleated eventually. – Bubble collisions are inevitable [Guth-Weinberg, ‘83+ Outline • There are three phases of eternal inflation depending on the nucleation rate.
    [Show full text]
  • Cosmic Strings and Primordial Black Holes
    Journal of Cosmology and Astroparticle Physics Cosmic strings and primordial black holes Recent citations - Extended thermodynamics of self- gravitating skyrmions To cite this article: Alexander Vilenkin et al JCAP11(2018)008 Daniel Flores-Alfonso and Hernando Quevedo View the article online for updates and enhancements. This content was downloaded from IP address 130.64.25.60 on 13/07/2019 at 23:53 ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Cosmic strings and primordial black holes JCAP11(2018)008 Alexander Vilenkin,a Yuri Levinb and Andrei Gruzinovc aDepartment of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, MA 02155, U.S.A. bDepartment of Physics, Columbia University, 538 West 120th street, New York, NY 10027, U.S.A. cDepartment of Physics, New York University, 726 Broadway, New York, NY 10003, U.S.A. E-mail: [email protected], [email protected], [email protected] Received September 10, 2018 Accepted October 10, 2018 Published November 7, 2018 Abstract. Cosmic strings and primordial black holes (PBHs) commonly and naturally form in many scenarios describing the early universe. Here we show that if both cosmic strings and PBHs are present, their interaction leads to a range of interesting consequences. At the time of their formation, the PBHs get attached to the strings and influence their evolution, leading to the formation of black-hole-string networks and commonly to the suppression of loop production in a range of redshifts. Subsequently, reconnections within the network give rise to small nets made of several black holes and connecting strings.
    [Show full text]