Generalised Velocity-Dependent One-Scale Model for Current-Carrying Strings

Total Page:16

File Type:pdf, Size:1020Kb

Generalised Velocity-Dependent One-Scale Model for Current-Carrying Strings Generalised velocity-dependent one-scale model for current-carrying strings C. J. A. P. Martins,1, 2, ∗ Patrick Peter,3, 4, y I. Yu. Rybak,1, 2, z and E. P. S. Shellard4, x 1Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 2Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 GR"CO – Institut d’Astrophysique de Paris, CNRS & Sorbonne Université, UMR 7095 98 bis boulevard Arago, 75014 Paris, France 4Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom (Dated: November 20, 2020) We develop an analytic model to quantitatively describe the evolution of superconducting cosmic string networks. Specifically, we extend the velocity-dependent one-scale (VOS) model to incorpo- rate arbitrary currents and charges on cosmic string worldsheets under two main assumptions, the validity of which we also discuss. We derive equations that describe the string network evolution in terms of four macroscopic parameters: the mean string separation (or alternatively the string correlation length) and the root mean square (RMS) velocity which are the cornerstones of the VOS model, together with parameters describing the averaged timelike and spacelike current contribu- tions. We show that our extended description reproduces the particular cases of wiggly and chiral cosmic strings, previously studied in the literature. This VOS model enables investigation of the evolution and possible observational signatures of superconducting cosmic string networks for more general equations of state, and these opportunities will be exploited in a companion paper. I. INTRODUCTION alternative methods. First, by modelling the full field theory equations, in principle, all the key physical prop- The early stage of the Universe’s evolution is thought erties of cosmic strings are reproduced, but at huge com- to have included phase transitions that may have led putational cost [16–18], although this can be mitigated to the production of cosmic strings, as originally sug- with highly efficient accelerated codes [19, 20] or by us- gested by Tom Kibble [1] (for exhaustive introductions ing adaptive mesh refinement [21]. Secondly, by relying see [2,3]). Scenarios including cosmic strings are ubiq- on the effective Nambu-Goto action, cosmic strings are uitous in grand unified theories (GUT) [4–6] and mod- approximated to be infinitely thin, thus considerably in- els of inflation [7–9]. A prominent feature of these one- creasing the dynamic range of simulations[22–24]. dimensional topological defects is their stability, i.e. once While most numerical simulations to date have been such a network is produced in the early universe, it will performed for the simplest Abelian-Higgs (or Nambu- generically survive until the present day. These networks Goto) model, it is expected that realistic cosmic strings lead to many potentially detectable observational signa- have non-trivial internal structure. A first example of tures, including anisotropies of the Cosmic Microwave such strings was discussed in [25], where the string su- Background (CMB) [10, 11], gravitational waves [12, 13] perconductivity is due to an additional charged scalar and lensing [14, 15]. Thus, astrophysical searches for cos- boson or fermion that is trapped in the string core. Cur- mic string networks also probe the high energy physics rent carrying cosmic strings were also found to be typ- of the early universe. ical outcomes of supersymmetric theories [26–28], some To obtain a precise connection between the high en- non-Abelian models [29–31] and other possible scenarios ergy stage of the universe and observational constraints [32–35]. Thus, analytic and numerical studies of these on cosmic strings, one needs to have an accurate model extended models are highly desired. for string network evolution. There are two approaches to To study the evolution of superconducting strings it is tackling this problem: on the one hand, high-resolution convenient to use an infinitely thin effective model, which numerical simulations of the detailed network evolution describes the original field theory in the same way as the arXiv:2011.09700v1 [astro-ph.CO] 19 Nov 2020 and, on the other, thermodynamical evolution models for Nambu-Goto action describes strings from the Abelian- the averaged network properties. These prove to be com- Higgs model. A first effective model for superconducting plementary because analytic models must be calibrated cosmic strings was given in [25], while a more realistic with numerical simulations, whose restricted dynamic description was developed in [36, 37]. The properties of range can then be extrapolated to cosmological scales. the current for such strings were also studied in various The simulations themselves can be performed using two works [38, 39]; a detailed review can be found in [40]. It is expected that the existence of a current flowing along cosmic strings impacts the evolution of the string ∗ [email protected] network and thus its observational predictions. A rel- y [email protected] evant example is a superconducting loop that, unlike a z [email protected] standard currentless loop, can have an equilibrium con- x [email protected] figuration, known as a vorton [41, 42]. A more detailed 2 treatment of vortons was carried out through an effec- where γ is the determinant of the induced metric tive model [43, 44] and also by numerically studying its µ ν field theory [45, 46] leading to additional observational @X @X µ ν γab ≡ gµν = gµν X;aX;b; (2) constraints [47, 48]. @σa @σb While it is possible to numerically investigate particu- given in terms of the internal string coordinates σa, lar configurations of superconducting strings, it is more a 2 [0; 1], with σ0 timelike and σ1 spacelike. The challenging to perform full simulations of a superconduct- string spans the two-dimensional worldsheet defined by µ a 0 0 1 0 1 ing cosmic string network. What is currently lacking is X (σ ) = X (σ ; σ ); X(σ ; σ ) . the extension of the thermodynamical approach, where We assume that the background metric g has signature the evolution of the string network is described by macro- −2: in the cosmological setup which will be the focus of scopic parameters. There are several approaches for an- our analysis, the relevant line element is given by the alytic description of a string network evolution [49, 50]. Friedmann-Lemaître-Robertson-Walker (FLRW) metric, We will follow the quantitative velocity-dependent one- namely scale (VOS) model [51–53], which has already been shown 2 2 2 2 2 2 2 to be extendable to include the effects of non-trivial inter- dsflrw = a (τ) dτ − dx = dt − a (t)dx ; (3) nal structure. Specifically, such extensions have already been reported for elastic strings [54, 55], also known in terms of the cosmic (t) or conformal (τ) times. We as wiggly strings, to treat the small-scale structure on shall work below in terms of the conformal time τ only. strings, and for chiral superconducting strings [56]. In Eq. (1), the surface lagrangian L = −µ0f(κ) is nor- The purpose of this work is to fill the gap in the lit- malized by means of a parameter µ0, a constant with erature, by introducing and starting the exploration of units of mass squared (or mass per unit length, in nat- a further extension of the VOS model that applies to ural units with ~ = c = 1), and depends on a so-called a generic current-carrying string networks, using the pre- state parameter κ, defined through a scalar field ' (σ ) viously known results for the specific cases of wiggly and living on the string worldsheet; in practice, this is identi- chiral strings as validation of our methodology. The plan fied with the phase of a condensate [25, 39]. Specifically, for this paper is as follows. We start by reviewing the this scalar quantity of the worldsheet reads dynamical effects of currents on cosmic strings in Section ab @' @' ab 2, and by outlining our key assumptions in Section 3. κ = γ a b = γ ';a';b : (4) Both of these are then used to systematically derive the @σ @σ generalised VOS model for strings with currents, which To complete the macroscopic description, one needs the we do in Section 4. We then discuss the stability of gen- µν stress-energy tensor Tstring, which can be locally diago- eral scaling behaviours and some validating special cases nalized in Sections 5 and 6 respectively, and finally present our µν µ ν µ ν conclusions in section 7. Tstring = Uu u − T v v ; (5) where the normalized eigenvectors u and v are respec- tively timelike and spacelike; the slightly different case of II. DYNAMICS OF CURRENT-CARRYING a chiral current, usually treated in a completely different COSMIC STRINGS IN EXPANDING UNIVERSES manner [59], appears in our framework as the limit when the current becomes lightlike, i.e. κ ! 0. µν We start by providing the microscopic equations of It can be shown that the eigenvalues of Tstring appear- motions driving the cosmological dynamics of generic ing in Eq. (5), namely the energy per unit length U and current-carrying cosmic strings in the infinitely thin ap- tension T , can be expressed through the state parame- proximation. These will be the basis for the subsequent ter κ and the dimensionless lagrangian function f(κ) as development of the VOS model. [36, 58] df U = µ f − (1 − s) κ ; 0 dκ A. Embedding in background spacetime (6) df T = µ f − (1 + s) κ ; 0 dκ It is well known [36, 40, 43, 57] that the influence of the current on the motion of the string worldsheet can be de- where s = +1 when κfκ > 0 and s = −1 when κfκ < 0, scribed as in the usual Lorentz-invariant (Nambu-Goto) i.e.
Recommended publications
  • Off-Shell Interactions for Closed-String Tachyons
    Preprint typeset in JHEP style - PAPER VERSION hep-th/0403238 KIAS-P04017 SLAC-PUB-10384 SU-ITP-04-11 TIFR-04-04 Off-Shell Interactions for Closed-String Tachyons Atish Dabholkarb,c,d, Ashik Iqubald and Joris Raeymaekersa aSchool of Physics, Korea Institute for Advanced Study, 207-43, Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-722, Korea bStanford Linear Accelerator Center, Stanford University, Stanford, CA 94025, USA cInstitute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305, USA dDepartment of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India E-mail:[email protected], [email protected], [email protected] Abstract: Off-shell interactions for localized closed-string tachyons in C/ZN super- string backgrounds are analyzed and a conjecture for the effective height of the tachyon potential is elaborated. At large N, some of the relevant tachyons are nearly massless and their interactions can be deduced from the S-matrix. The cubic interactions be- tween these tachyons and the massless fields are computed in a closed form using orbifold CFT techniques. The cubic interaction between nearly-massless tachyons with different charges is shown to vanish and thus condensation of one tachyon does not source the others. It is shown that to leading order in N, the quartic contact in- teraction vanishes and the massless exchanges completely account for the four point scattering amplitude. This indicates that it is necessary to go beyond quartic inter- actions or to include other fields to test the conjecture for the height of the tachyon potential. Keywords: closed-string tachyons, orbifolds.
    [Show full text]
  • Chiral Matrix Model of the Semi-Quark Gluon Plasma in QCD
    BNL-113249-2016-JA Chiral matrix model of the semi-Quark Gluon Plasma in QCD Robert D. Pisarski, Vladimir V. Skokov Accepted for publication in Physical Review D August 2016 Physics Department/Nuclear Theory Group/Office of Science Brookhaven National Laboratory U.S. Department of Energy USDOE Office Of Science USDOE Office of Under Secretary for Science Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
    [Show full text]
  • Chiral Magnetism: a Geometric Perspective
    SciPost Phys. 10, 078 (2021) Chiral magnetism: a geometric perspective Daniel Hill1, Valeriy Slastikov2 and Oleg Tchernyshyov1? 1 Department of Physics and Astronomy and Institute for Quantum Matter, Johns Hopkins University, Baltimore, MD 21218, USA 2 School of Mathematics, University of Bristol, Bristol BS8 1TW, UK ? [email protected] Abstract We discuss a geometric perspective on chiral ferromagnetism. Much like gravity be- comes the effect of spacetime curvature in theory of relativity, the Dzyaloshinski-Moriya interaction arises in a Heisenberg model with nontrivial spin parallel transport. The Dzyaloshinskii-Moriya vectors serve as a background SO(3) gauge field. In 2 spatial di- mensions, the model is partly solvable when an applied magnetic field matches the gauge curvature. At this special point, solutions to the Bogomolny equation are exact excited states of the model. We construct a variational ground state in the form of a skyrmion crystal and confirm its viability by Monte Carlo simulations. The geometric perspective offers insights into important problems in magnetism, e.g., conservation of spin current in the presence of chiral interactions. Copyright D. Hill et al. Received 15-01-2021 This work is licensed under the Creative Commons Accepted 25-03-2021 Check for Attribution 4.0 International License. Published 29-03-2021 updates Published by the SciPost Foundation. doi:10.21468/SciPostPhys.10.3.078 Contents 1 Introduction2 1.1 The specific problem: the skyrmion crystal2 1.2 The broader impact: geometrization of chiral magnetism3 2 Chiral magnetism: a geometric perspective4 2.1 Spin vectors4 2.2 Local rotations and the SO(3) gauge field5 2.3 Spin parallel transport and curvature5 2.4 Gauged Heisenberg model6 2.5 Spin conservation7 2.5.1 Pure Heisenberg model7 2.5.2 Gauged Heisenberg model8 2.6 Historical note9 3 Skyrmion crystal in a two-dimensional chiral ferromagnet9 3.1 Bogomolny states in the pure Heisenberg model 10 3.2 Bogomolny states in the gauged Heisenberg model 11 3.2.1 False vacuum 12 1 SciPost Phys.
    [Show full text]
  • Exploring Cosmic Strings: Observable Effects and Cosmological Constraints
    EXPLORING COSMIC STRINGS: OBSERVABLE EFFECTS AND COSMOLOGICAL CONSTRAINTS A dissertation submitted by Eray Sabancilar In partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics TUFTS UNIVERSITY May 2011 ADVISOR: Prof. Alexander Vilenkin To my parents Afife and Erdal, and to the memory of my grandmother Fadime ii Abstract Observation of cosmic (super)strings can serve as a useful hint to understand the fundamental theories of physics, such as grand unified theories (GUTs) and/or superstring theory. In this regard, I present new mechanisms to pro- duce particles from cosmic (super)strings, and discuss their cosmological and observational effects in this dissertation. The first chapter is devoted to a review of the standard cosmology, cosmic (super)strings and cosmic rays. The second chapter discusses the cosmological effects of moduli. Moduli are relatively light, weakly coupled scalar fields, predicted in supersymmetric particle theories including string theory. They can be emitted from cosmic (super)string loops in the early universe. Abundance of such moduli is con- strained by diffuse gamma ray background, dark matter, and primordial ele- ment abundances. These constraints put an upper bound on the string tension 28 as strong as Gµ . 10− for a wide range of modulus mass m. If the modulus coupling constant is stronger than gravitational strength, modulus radiation can be the dominant energy loss mechanism for the loops. Furthermore, mod- ulus lifetimes become shorter for stronger coupling. Hence, the constraints on string tension Gµ and modulus mass m are significantly relaxed for strongly coupled moduli predicted in superstring theory. Thermal production of these particles and their possible effects are also considered.
    [Show full text]
  • Quantum Mechanics Quantum Chromodynamics (QCD)
    Quantum Mechanics_quantum chromodynamics (QCD) In theoretical physics, quantum chromodynamics (QCD) is a theory ofstrong interactions, a fundamental forcedescribing the interactions between quarksand gluons which make up hadrons such as the proton, neutron and pion. QCD is a type of Quantum field theory called a non- abelian gauge theory with symmetry group SU(3). The QCD analog of electric charge is a property called 'color'. Gluons are the force carrier of the theory, like photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of Particle physics. A huge body of experimental evidence for QCD has been gathered over the years. QCD enjoys two peculiar properties: Confinement, which means that the force between quarks does not diminish as they are separated. Because of this, when you do split the quark the energy is enough to create another quark thus creating another quark pair; they are forever bound into hadrons such as theproton and the neutron or the pion and kaon. Although analytically unproven, confinement is widely believed to be true because it explains the consistent failure of free quark searches, and it is easy to demonstrate in lattice QCD. Asymptotic freedom, which means that in very high-energy reactions, quarks and gluons interact very weakly creating a quark–gluon plasma. This prediction of QCD was first discovered in the early 1970s by David Politzer and by Frank Wilczek and David Gross. For this work they were awarded the 2004 Nobel Prize in Physics. There is no known phase-transition line separating these two properties; confinement is dominant in low-energy scales but, as energy increases, asymptotic freedom becomes dominant.
    [Show full text]
  • 6 STANDARD MODEL: One-Loop Structure
    6 STANDARD MODEL: One-Loop Structure Although the fundamental laws of Nature obey quantum mechanics, mi- croscopically challenged physicists build and use quantum field theories by starting from a classical Lagrangian. The classical approximation, which de- scribes macroscopic objects from physics professors to dinosaurs, has in itself a physical reality, but since it emerges only at later times of cosmological evolution, it is not fundamental. We should therefore not be too surprised if unforeseen special problems and opportunities emerge in the analysis of quantum perturbations away from the classical Lagrangian. The classical Lagrangian is used as input to the path integral, whose eval- uation produces another Lagrangian, the effective Lagrangian, Leff , which encodes all the consequences of the quantum field theory. It contains an infinite series of polynomials in the fields associated with its degrees of free- dom, and their derivatives. The classical Lagrangian is reproduced by this expansion in the lowest power of ~ and of momentum. With the notable exceptions of scale invariance, and of some (anomalous) chiral symmetries, we think that the symmetries of the classical Lagrangian survive the quanti- zation process. Consequently, not all possible polynomials in the fields and their derivatives appear in Leff , only those which respect the symmetries. The terms which are of higher order in ~ yield the quantum corrections to the theory. They are calculated according to a specific, but perilous path, which uses the classical Lagrangian as input. This procedure gener- ates infinities, due to quantum effects at short distances. Fortunately, most fundamental interactions are described by theories where these infinities can be absorbed in a redefinition of the input parameters and fields, i.e.
    [Show full text]
  • On the Massless Tree-Level S-Matrix in 2D Sigma Models
    Imperial-TP-AT-2018-05 On the massless tree-level S-matrix in 2d sigma models Ben Hoarea;1, Nat Levineb;2 and Arkady A. Tseytlinb;3 aETH Institut für Theoretische Physik, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland. bBlackett Laboratory, Imperial College, London SW7 2AZ, U.K. Abstract Motivated by the search for new integrable string models, we study the properties of massless tree-level S-matrices for 2d σ-models expanded near the trivial vacuum. We find that, in contrast to the standard massive case, there is no apparent link between massless S-matrices and integrability: in well-known integrable models the tree-level massless S-matrix fails to factorize and exhibits particle production. Such tree-level particle production is found in several classically integrable models: the principal chiral model, its classically equivalent “pseudo-dual” model, its non-abelian dual model and also the SO(N +1)=SO(N) coset model. The connection to integrability may, in principle, be restored if one expands near a non- trivial vacuum with massive excitations. We discuss IR ambiguities in 2d massless tree-level amplitudes and their resolution using either a small mass parameter or the i-regularization. In general, these ambiguities can lead to anomalies in the equivalence of the S-matrix under field redefinitions, and may be linked to the observed particle production in integrable models. We also comment on the transformation of massless S-matrices under σ-model T-duality, comparing the standard and the “doubled” formulations (with T-duality covariance built into the latter). arXiv:1812.02549v4 [hep-th] 15 May 2019 [email protected] [email protected] 3Also at Lebedev Institute and ITMP, Moscow State University.
    [Show full text]
  • Chiral Soliton Models and Nucleon Structure Functions
    S S symmetry Review Chiral Soliton Models and Nucleon Structure Functions Herbert Weigel 1,* and Ishmael Takyi 2 1 Institute of Theoretical Physics, Physics Department, Stellenbosch University, Matieland 7602, South Africa 2 Department of Mathematics, Kwame Nkrumah University of Science and Technology, Private Mail Bag, Kumasi, Ghana; [email protected] * Correspondence: [email protected] Abstract: We outline and review the computations of polarized and unpolarized nucleon structure functions within the bosonized Nambu-Jona-Lasinio chiral soliton model. We focus on a consistent regularization prescription for the Dirac sea contribution and present numerical results from that formulation. We also reflect on previous calculations on quark distributions in chiral quark soliton models and attempt to put them into perspective. Keywords: chiral quark model; regularization; chiral soliton; hadron tensor; structure functions 1. Introduction In this mini-review we reflect on nucleon structure function calculations in chiral soliton models. This is an interesting topic not only because structure functions are of high empirical relevance but maybe even more so conceptually as of how much information about the nucleon structure can be retrieved from soliton models. In this spirit, this paper to quite an extent is a proof of concept review. Solitons emerge in most nonlinear field theories as classical solutions to the field equations. These solutions have localized energy densities and can be attributed particle like properties. In the context of strong interactions, that govern the structure of hadrons, solitons of meson field configurations are considered as baryons [1]. Nucleon structure functions play an important role in deep inelastic scattering (DIS) Citation: Weigel, H.; Takyi, I.
    [Show full text]
  • Cosmic Strings and Primordial Black Holes
    Journal of Cosmology and Astroparticle Physics Cosmic strings and primordial black holes Recent citations - Extended thermodynamics of self- gravitating skyrmions To cite this article: Alexander Vilenkin et al JCAP11(2018)008 Daniel Flores-Alfonso and Hernando Quevedo View the article online for updates and enhancements. This content was downloaded from IP address 130.64.25.60 on 13/07/2019 at 23:53 ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Cosmic strings and primordial black holes JCAP11(2018)008 Alexander Vilenkin,a Yuri Levinb and Andrei Gruzinovc aDepartment of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, MA 02155, U.S.A. bDepartment of Physics, Columbia University, 538 West 120th street, New York, NY 10027, U.S.A. cDepartment of Physics, New York University, 726 Broadway, New York, NY 10003, U.S.A. E-mail: [email protected], [email protected], [email protected] Received September 10, 2018 Accepted October 10, 2018 Published November 7, 2018 Abstract. Cosmic strings and primordial black holes (PBHs) commonly and naturally form in many scenarios describing the early universe. Here we show that if both cosmic strings and PBHs are present, their interaction leads to a range of interesting consequences. At the time of their formation, the PBHs get attached to the strings and influence their evolution, leading to the formation of black-hole-string networks and commonly to the suppression of loop production in a range of redshifts. Subsequently, reconnections within the network give rise to small nets made of several black holes and connecting strings.
    [Show full text]
  • The Φ - Meson Physics in the Chiral Model
    The φ - Meson Physics in the Chiral Model K.R. Nasriddinov, N.Z. Rajabov and N.E. Iskandarov Tashkent State Pedagogical University named after Nizami, Yusuf Khos Khojib str.-103, 700100, Tashkent, Uzbekistan + − 0 0 0 0 The φ → K K , K L K S , K K decays are studied using the method of phenomenological chiral Lagrangians. Calculated values for partial widths for these decay channels are compared with available experimental data. At present investigations of the φ(1020) - meson decays in experiments [1] and in the framework of theoretical models [2] are intensively carried out. It should be noted, that such decay channels of the φ - meson are not considered in chiral models and there are a few attempts [3] to calculate only some radiative decay channels of this meson. Studies of decay channels of this meson in chiral models are of interest because of the following reasons: First, the φ - meson mass is comparable to the chiral symmetry breaking scale of 1 GeV, the proposed decays into a rather heavy meson (the ρ or ω of about 800 MeV) and a light meson (the π or K ) might be manageable along the lines of heavy- mass chiral perturbation theory (similarly to the heavy-baryon chiral perturbation theory of the pion-nucleon sector); Second, this meson (also another particles) are produced in colliders, for example, at the cooler synchrotron ring (COSY) at the Institut fuer Kernphysic at the Forschungzentrum Juelich in proton-proton collisions. And in this case the environment has a temperature not equal zero. Therefore, we need to take into account the influence of temperature factors of the environment to the decay probabilities.
    [Show full text]
  • Arxiv:Hep-Th/0207119V4 8 Oct 2002
    Rolling Tachyon in Brane World Cosmology from Superstring Field Theory Gary Shiu1, S.-H. Henry Tye2, and Ira Wasserman3 1 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 2 Laboratory for Elementary Particle Physics, Cornell University, Ithaca, NY 14853 3 Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (November 12, 2018) The pressureless tachyonic matter recently found in superstring field theory has an over-abundance problem in cosmology. We argue that this problem is naturally solved in the brane inflationary scenario if almost all of the tachyon energy is drained (via coupling to the inflaton and matter fields) to heating the Universe, while the rest of the tachyon energy goes to a network of cosmic strings (lower-dimensional BPS D-branes) produced during the tachyon rolling at the end of inflation. PACS numbers: 11.25.-q, 11.27.+d, 98.80.Cq In superstring theory, starting with a non-BPS brane still give detectable signatures in the cosmic microwave or a brane-anti-brane pair, a tachyon is always present. background and the gravitational wave spectral density This tachyon rolls down its potential and tachyon matter [9,10]. To summarize, the over-abundance of the tachyon appears as energy density without pressure, as pointed matter density problem can be solved rather naturally out by Sen [1]. In the cosmological context [2], it is by draining the tachyon potential energy to (re-)heating easy to estimate that the pressureless tachyonic matter and to the cosmic string production. Below, we discuss density is generically many orders of magnitude too big these two mechanisms.
    [Show full text]
  • Perturbations of Black Holes Pierced by Cosmic Strings
    UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA DE SÃO CARLOS Matheus do Carmo Teodoro Perturbations of black holes pierced by cosmic strings. São Carlos 2018 Matheus do Carmo Teodoro Perturbations of black holes pierced by cosmic strings. Dissertation presented to the Graduate Pro- gram in Physics at the Instituto de Física de São Carlos, Universidade de São Paulo, to obtain the degree of Master in Science. Concentration area: Basic Physics Advisor: Profa. Dra. Betti Hartmann Original version São Carlos 2018 I AUTHORIZE THE REPRODUCTION AND DISSEMINATION OF TOTAL OR PARTIAL COPIES OF THIS DOCUMENT, BY CONVENCIONAL OR ELECTRONIC MEDIA FOR STUDY OR RESEARCH PURPOSE, SINCE IT IS REFERENCED. Cataloguing data revised by the Library and Information Service of the IFSC, with information provided by the author Teodoro, Matheus do Carmo Perturbations of black holes pierced by cosmic strings. / Matheus do Carmo Teodoro; advisor Betti Hartmann -- São Carlos 2018. 58 p. Dissertation (Master's degree - Graduate Program in Física Básica) -- Instituto de Física de São Carlos, Universidade de São Paulo - Brasil , 2018. 1. Black holes. 2. Cosmic stings. 3. General relativity . 4. Quasi-normal modes. 5. Gravitational waves. I. Hartmann, Betti, advisor. II. Title. FOLHA DE APROVAÇÃO Matheus do Carmo Teodoro Dissertação apresentada ao Instituto de Física de São Carlos da Universidade de São Paulo para obtenção do título de Mestre em Ciências. Área de Concentração: Física Básica. Aprovado(a) em: 22/03/2018 Comissão Julgadora Dr(a). Betti Hartmann Instituição: (IFSC/USP) Dr(a). Alex Eduardo de Bernardini Instituição: (UFSCar/São Carlos) Dr(a). Samuel Rocha de Oliveira Instituição: (UNICAMP/Campinas) This thesis is dedicated to my nephew, Felipe Guimarães Teodoro, for his little evergreen heart can always keep mine full of hope.
    [Show full text]