Benthic Crustacea and Mollusca Distribution in Arctic Fjord
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Larvae of Marine Bivalves and Echinoderms
V.L. KflSVflNOV>G.fl. KRVUCHKOVfl VAKUUKOVfl-LAIVICDVCDevn Scientific Cditor Dovid L pQiuson LARVAE OF MARINE BIVALVES AND ECHINODERMS V.L. KASYANOV, G.A. KRYUCHKOVA, V.A. KULIKOVA AND L. A. MEDVEDEVA Scientific Editor David L. Pawson SMITHSONIAN INSTITUTION LIBRARIES Washington, D.C. 1998 Smin B87-101 Lichinki morskikh dvustvorchatykh moUyuskov i iglokozhikh Akademiya Nauk SSSR Dal'nevostochnyi Nauchnyi Tsentr Institut Biologii Morya Nauka Publishers, Moscow, 1983 (Revised 1990) Translated from the Russian © 1998, Oxonian Press Pvt. Ltd., New Delhi Library of Congress Cataloging-in-Publication Data Lichinki morskikh dvustvorchatykh moUiuskov i iglokozhikh. English Larvae of marine bivalves and echinodermsA^.L. Kasyanov . [et al.]; scientific editor David L. Pawson. p. cm. Includes bibliographical references. 1. Bivalvia — Larvae — Classification. 2. Echinodermata — Larvae — Classification. 3. Mollusks — Larvae — Classification. 4. Bivalvia — Lar- vae. 5. Echinodermata — Larvae. 6. Mollusks — Larvae. I. Kas'ianov, V.L. II. Pawson, David L. (David Leo), 1938-III. Title. QL430.6.L5313 1997 96-49571 594'.4139'0916454 — dc21 CIP Translated and published under an agreement, for the Smithsonian Institution Libraries, Washington, D.C., by Amerind Publishing Co. Pvt. Ltd., 66 Janpath, New Delhi 110001 Printed at Baba Barkha Nath Printers, 26/7, Najafgarh Road Industrial Area, NewDellii-110 015. UDC 591.3 This book describes larvae of bivalves and echinoderms, living in the Sea of Japan, which are or may be economically important, and where adult forms are dominant in benthic communities. Descriptions of 18 species of bivalves and 10 species of echinoderms are given, and keys are provided for the iden- tification of planktotrophic larvae of bivalves and echinoderms to the family level. -
Palaeoenvironmental Interpretation of Late Quaternary Marine Molluscan Assemblages, Canadian Arctic Archipelago
Document generated on 09/25/2021 1:46 a.m. Géographie physique et Quaternaire Palaeoenvironmental Interpretation of Late Quaternary Marine Molluscan Assemblages, Canadian Arctic Archipelago Interprétation paléoenvironnementale des faunes de mollusques marins de l'Archipel arctique canadien, au Quaternaire supérieur. Interpretación paleoambiental de asociaciones marinas de muluscos del Cuaternario Tardío, Archipiélago Ártico Canadiense Sandra Gordillo and Alec E. Aitken Volume 54, Number 3, 2000 Article abstract This study examines neonto- logical and palaeontological data pertaining to URI: https://id.erudit.org/iderudit/005650ar arctic marine molluscs with the goal of reconstructing the palaeoecology of DOI: https://doi.org/10.7202/005650ar Late Quaternary ca. 12-1 ka BP glaciomarine environments in the Canadian Arctic Archipelago. A total of 26 taxa that represent 15 bivalves and 11 See table of contents gastropods were recorded in shell collections recovered from Prince of Wales, Somerset, Devon, Axel Heiberg and Ellesmere islands. In spite of taphonomic bias, the observed fossil faunas bear strong similarities to modern benthic Publisher(s) molluscan faunas inhabiting high latitude continental shelf environments, reflecting the high preservation potential of molluscan taxa in Quaternary Les Presses de l'Université de Montréal marine sediments. The dominance of an arctic-boreal fauna represented by Hiatella arctica, Mya truncata and Astarte borealis is the product of natural ISSN ecological conditions in high arctic glaciomarine environments. Environmental factors controlling the distribution and species composition of the Late 0705-7199 (print) Quaternary molluscan assemblages from this region are discussed. 1492-143X (digital) Explore this journal Cite this article Gordillo, S. & Aitken, A. E. (2000). Palaeoenvironmental Interpretation of Late Quaternary Marine Molluscan Assemblages, Canadian Arctic Archipelago. -
Cloaked Bivalve Oocytes
The Scientific Naturalist Ecology, 100(12), 2019, e02818 © 2019 by the Ecological Society of America entirely benthic development (Ockelman 1958, Collin and Giribet 2010). The next question is, obviously: What makes it? Because the bivalve germinal epithelium has no secre- tory cells, and no auxiliary cells have been observed con- Cloaked bivalve oocytes: lessons in structing such a feature around developing oocytes, the evolution, ecology, and scientific most likely origin is the oocyte itself—and this has also been reported in unpublished work (cited in Gros et al. awareness 1997). Histological sections show a thin cloak around young oocytes (not shown), and a very thick one around 1 PETER G. BENINGER AND DAPHNE CHEREL mature oocytes (Fig. 1B). Manuscript received 20 March 2019; revised 15 May 2019; With respect to evolutionary lessons, coated oocytes accepted 17 June 2019. Corresponding Editor: John Pastor. have been observed in species from four of the six Faculte des Sciences, Universite de Nantes, 2 rue de la subclasses of the Bivalvia. There appears to be no Houssiniere, 44322 Nantes Cedex, France. taxonomic or evolutionary pattern in their occurrence; 1 E-mail: [email protected] they are found both in the primitive Cryptodonta and in the much later Heterodonta and Anomalodesmata Citation: Beninger, P. G., and D. Cherel. 2019. Cloaked (Table 1). In each of these subclasses, there are also bivalve oocytes: lessons in evolution, ecology, and scien- many species without coated oocytes, even within the tific awareness. Ecology 100(12):e02818. 10.1002/ecy.2818 same family (e.g., Pectinidae and Veneridae). The possi- bility that this is the result of multiple convergent evolu- Key words: bivalves; coat; mucopolysaccharides; oocytes; scien- tions of an identical character seems so remote as to be tific awareness. -
Extreme Mitochondrial DNA Divergence Within Populations of the Deep-Sea Gastropod Frigidoalvania Brychia
Marine Biology .2001) 139: 1107±1113 DOI 10.1007/s002270100662 J.M. Quattro á M.R. Chase á M.A. Rex á T.W. Greig R.J. Etter Extreme mitochondrial DNA divergence within populations of the deep-sea gastropod Frigidoalvania brychia Received: 16 January 2001 / Accepted: 3 July 2001 / Published online: 1 September 2001 Ó Springer-Verlag 2001 Abstract The deep sea supports a diverse and highly this site. Steep vertical selective gradients, major endemic invertebrate fauna, the origin of which remains oceanographic changes during the late Cenozoic, and obscure. Little is known about geographic variation in habitat fragmentation by submarine canyons might have deep-sea organisms or the evolutionary processes that contributed to an upper bathyal region that is highly promote population-level dierentiation and eventual conducive to evolutionary change. speciation. Sequence variation at the 16 S rDNA locus was examined in formalin-preserved specimens of the Introduction common upper bathyal rissoid Frigidoalvania brychia .Verrill, 1884) to examine its population genetic struc- During the last several decades, much has been learned ture. The specimens came from trawl samples taken over about the interactions of mutation, selection, migration 30 years ago at depths of 457±1,102 m at stations in the and random genetic drift, and their impacts on popu- Northwest Atlantic south of Woods Hole, Massachu- lation-level dierentiation .e.g. Hartl and Clark 1997; Li setts, USA. Near the upper boundary of its bathymetric 1997). Genetic structure is the most basic information range .500 m), extremely divergent haplotypes com- for documenting the degree of population-level diver- prising three phylogenetically distinct clades .average gence and inferring its cause.s). -
Proceedings of the United States National Museum
PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM VoL 109 WMhington : 1959 No. 3412 MARINE MOLLUSCA OF POINT BARROW, ALASKA Bv Nettie MacGinitie Introduction The material upon which this study is based was collected by G. E. MacGinitie in the vicinity of Point Barrow, Alaska. His work on the invertebrates of the region (see G. E. MacGinitie, 1955j was spon- sored by contracts (N6-0NR 243-16) between the OfRce of Naval Research and the California Institute of Technology (1948) and The Johns Hopkins L^niversity (1949-1950). The writer, who served as research associate under this project, spent the. periods from July 10 to Oct. 10, 1948, and from June 1949 to August 1950 at the Arctic Research Laboratory, which is located at Point Barrow base at ap- proximately long. 156°41' W. and lat. 71°20' N. As the northernmost point in Alaska, and representing as it does a point about midway between the waters of northwest Greenland and the Kara Sea, where collections of polar fauna have been made. Point Barrow should be of particular interest to students of Arctic forms. Although the dredge hauls made during the collection of these speci- mens number in the hundreds and, compared with most "expedition standards," would be called fairly intensive, the area of the ocean ' Kerckhofl Marine Laboratory, California Institute of Technology. 473771—59 1 59 — 60 PROCEEDINGS OF THE NATIONAL MUSEUM vol. los bottom touched by the dredge is actually small in comparison with the total area involved in the investigation. Such dredge hauls can yield nothing comparable to what can be obtained from a mudflat at low tide, for instance. -
Thyasirid Bivalves from Cretaceous and Paleogene Cold Seeps
Thyasirid bivalves from Cretaceous and Paleogene cold seeps KRZYSZTOF HRYNIEWICZ, KAZUTAKA AMANO, ROBERT G. JENKINS, and STEFFEN KIEL Hryniewicz, K., Amano, K., Jenkins, R.G., and Kiel, S. 2017. Thyasirid bivalves from Cretaceous and Paleogene cold seeps. Acta Palaeontologica Polonica 62 (4): 705–728. We present a systematic study of thyasirid bivalves from Cretaceous to Oligocene seep carbonates worldwide. Eleven species of thyasirid bivalves are identified belonging to three genera: Conchocele, Maorithyas, and Thyasira. Two spe- cies are new: Maorithyas humptulipsensis sp. nov. from middle Eocene seep carbonates in the Humptulips Formation, Washington State, USA, and Conchocele kiritachiensis sp. nov. from the late Eocene seep deposit at Kiritachi, Hokkaido, Japan. Two new combinations are provided: Conchocele townsendi (White, 1890) from Maastrichtian strata of the James Ross Basin, Antarctica, and Maorithyas folgeri (Wagner and Schilling, 1923) from Oligocene rocks from California, USA. Three species are left in open nomenclature. We show that thyasirids have Mesozoic origins and appear at seeps be- fore appearing in “normal” marine environments. These data are interpreted as a record of seep origination of thyasirids, and their subsequent dispersal to non-seep environments. We discuss the age of origination of thyasirids in the context of the origin of the modern deep sea fauna and conclude that thyasirids could have deep sea origins. This hypothesis is supported by the observed lack of influence of the Cretaceous and Paleogene Oceanic Anoxic Events on the main evolutionary lineages of the thyasirids, as seen in several other members of the deep sea fauna. Key words: Bivalvia, Thyasiridae, cold seeps, deep sea, ecology, evolution, Cretaceous, Paleogene. -
Gastropoda; Conoidea; Terebridae) M
Macroevolution of venom apparatus innovations in auger snails (Gastropoda; Conoidea; Terebridae) M. Castelin, N. Puillandre, Yu.I. Kantor, M.V. Modica, Y. Terryn, C. Cruaud, P. Bouchet, M. Holford To cite this version: M. Castelin, N. Puillandre, Yu.I. Kantor, M.V. Modica, Y. Terryn, et al.. Macroevolution of venom apparatus innovations in auger snails (Gastropoda; Conoidea; Terebridae). Molecular Phylogenetics and Evolution, Elsevier, 2012, 64 (1), pp.21-44. 10.1016/j.ympev.2012.03.001. hal-02458096 HAL Id: hal-02458096 https://hal.archives-ouvertes.fr/hal-02458096 Submitted on 28 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Macroevolution of venom apparatus innovations in auger snails (Gastropoda; Conoidea; Terebridae) M. Castelina,1b, N. Puillandre1b,c, Yu. I. Kantord, Y. Terryne, C. Cruaudf, P. Bouchetg, M. Holforda*. a The City University of New York-Hunter College and The Graduate Center, The American Museum of Natural History NYC, USA. 1b UMR 7138, Muséum National d’Histoire Naturelle, Departement Systematique et Evolution, 43, Rue Cuvier, 75231 Paris, France c Atheris Laboratories, Case postale 314, CH-1233 Bernex-Geneva, Switzerland d A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninski Prosp. -
Methodology of the Pacific Marine Ecological Classification System and Its Application to the Northern and Southern Shelf Bioregions
Canadian Science Advisory Secretariat (CSAS) Research Document 2016/035 Pacific Region Methodology of the Pacific Marine Ecological Classification System and its Application to the Northern and Southern Shelf Bioregions Emily Rubidge1, Katie S. P. Gale1, Janelle M. R. Curtis2, Erin McClelland3, Laura Feyrer4, Karin Bodtker5, Carrie Robb5 1Institute of Ocean Sciences Fisheries & Oceans Canada P.O. Box 6000 Sidney, BC V8L 4B2 2Pacific Biological Station Fisheries & Oceans Canada 3190 Hammond Bay Rd Nanaimo, BC V9T 1K6 3EKM Scientific Consulting 4BC Ministry of Environment P.O. Box 9335 STN PROV GOVT Victoria, BC V8W 9M1 5Living Oceans Society 204-343 Railway St. Vancouver, BC V6A 1A4 May 2016 Foreword This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Research documents are produced in the official language in which they are provided to the Secretariat. Published by: Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6 http://www.dfo-mpo.gc.ca/csas-sccs/ [email protected] © Her Majesty the Queen in Right of Canada, 2016 ISSN 1919-5044 Correct citation for this publication: Rubidge, E., Gale, K.S.P., Curtis, J.M.R., McClelland, E., Feyrer, L., Bodtker, K., and Robb, C. 2016. Methodology of the Pacific Marine Ecological Classification System and its Application to the Northern and Southern Shelf Bioregions. -
New Records of Non-Indigenous Molluscs from the Eastern Mediterranean Sea
BioInvasions Records (2018) Volume 7, Issue 3: 245–257 Open Access DOI: https://doi.org/10.3391/bir.2018.7.3.05 © 2018 The Author(s). Journal compilation © 2018 REABIC Research Article New records of non-indigenous molluscs from the eastern Mediterranean Sea Jan Steger1,*, Martina Stockinger1, Angelina Ivkić1,2, Bella S. Galil3 and Paolo G. Albano1 1Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria 2Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands 3The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 69978, Israel Author e-mails: [email protected] (JS), [email protected] (MS), [email protected] (AI), [email protected] (BSG), [email protected] (PGA) *Corresponding author Received: 15 June 2018 / Accepted: 11 July 2018 / Published online: 2 August 2018 Handling editor: Fred Wells Abstract We report new findings of non-indigenous Indo-Pacific molluscs from shallow water habitats off Israel, Greece and Egypt, eastern Mediterranean Sea. The bivalves Pillucina vietnamica Zorina, 1978 and Alveinus miliaceus (Issel, 1869) were collected from sandy bottoms off Israel, whereas Gregariella cf. ehrenbergi (Issel, 1869) was recovered from a buoy originating from Port Said, Egypt, and stranded on the Israeli coast. The three species are first records for the Mediterranean Sea. Additionally, we report range extensions for several gastropods: Varicopeza pauxilla (A. Adams, 1855) is recorded from Israel, Phidiana militaris (Alder and Hancock, 1864) from southern Israel (Ashqelon), and Viriola cf. bayani Jousseaume, 1884 from Israel and Crete. Shells and valves of an unidentified lucinid bivalve morphologically distinct from any known Mediterranean species were found along the Israeli Mediterranean shore. -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
Contemporary Diets of Walruses in Bristol Bay, Alaska Suggest Temporal Variability in Benthic Community Structure
Contemporary diets of walruses in Bristol Bay, Alaska suggest temporal variability in benthic community structure John M. Maniscalco1, Alan M. Springer2, Katrina L. Counihan1, Tuula Hollmen1,2, Helen M. Aderman3 and Moses Toyukak, Sr.3 1 Science, Alaska SeaLife Center, Seward, AK, United States of America 2 College of Fisheries and Ocean Sciences, University of Alaska—Fairbanks, Fairbanks, AK, United States of America 3 Qayassiq Walrus Commission, Dillingham, AK, United States of America ABSTRACT Background. Pacific walruses (Odobenus rosmarus divergens) are a conspicuous and important component of the Bristol Bay ecosystem and human social systems, but very little is known about walrus ecology in this region, principally their feeding ecology. The present work provides contemporary data on the diets of walruses at four haulout locations throughout Bristol Bay between 2014 and 2018. Methods. We analyzed scat and gastrointestinal tract samples from these animals using quantitative polymerase chain reaction to amplify prey DNA, which allowed for diet estimates based on frequencies of prey item occurrence and on the relative importance of dietary items as determined from DNA threshold cycle scores. Results. Diets were highly diverse at all locations, but with some variation in com- position that may be related to the time of year that samples were collected (summer vs. autumn), or to spatial variability in the distribution of prey. Overall, polychaetes and tunicates had the highest frequencies of occurrence and relative abundances in 2014–15, but a major change in diet appears to have occurred by 2017–18. While some sample sizes were small, diets in these later years contrasted sharply, with a greater prevalence of sea cucumbers and mollusks, and reduced importance of decapods and Submitted 18 November 2019 fishes compared to the earlier years. -
Diversity of Shell-Bearing Gastropods Along the Western Coast of the Arctic Archipelago Novaya Zemlya: an Evaluation of Modern and Historical Data
Diversity of shell-bearing gastropods along the western coast of the Arctic archipelago Novaya Zemlya: an evaluation of modern and historical data Ivan O. Nekhaev & Ekaterina N. Krol Polar Biology ISSN 0722-4060 Polar Biol DOI 10.1007/s00300-017-2140-1 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag GmbH Germany. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Polar Biol DOI 10.1007/s00300-017-2140-1 ORIGINAL PAPER Diversity of shell-bearing gastropods along the western coast of the Arctic archipelago Novaya Zemlya: an evaluation of modern and historical data 1 2 Ivan O. Nekhaev • Ekaterina N. Krol Received: 27 June 2016 / Revised: 15 May 2017 / Accepted: 6 June 2017 Ó Springer-Verlag GmbH Germany 2017 Abstract Accurate estimation of biodiversity is necessary between local coastal gastropod faunas from various parts to provide a baseline for further ecosystem investigations of the Barents Sea (including Novaya Zemlya).