Chapter 6 the Inspection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Panel Trap Info Sheet P1.Cdr
INSECT MONITORING SYSTEMS !!!! ! ! ! !! ! ! !! ! ! ! !!!! ! !!.$2/0)#!, ! 6 %"6+*6 6-6%6 .16.()"6(+6$)%.)+%6 )"4.-6 +$4-6 0+-.-6 &6(.+6)+-.6 )")*.+6'6 4$%)*.+6 6+61+46+(/-.6 /%+6+!)+(/-6#6)%.)%-6 46+6" .3.6-46.(6,+56 2.+ %62.+*+()6%6-46 .(6%-.""6 6---$"6 +*"56-.)+66%6/-6"--6 -.(+6-*6.%6 /%%#6.+*-6 $$ $ #$$ $ $$ "$$$"!$ # $ $$ $ /-> 65>+>;3+95> /">7#5> )>)$>1->)> )/)> :))%>0.> /5>< 8!)>7>5(>5- 5>,#%+<>=>8>5(>#&'4>0> *+7>5 )!!)7%= 0)8 >) >. > )%>2.> 2 2 02. ,.2$$!( 2 2 2 2 0 /0 12 2 '/"+)2 ()/2 +-*%2 +-)&2 %2+''-2 -!2 -"2 +!#2)2 (%2-"2 -"2 -"2 Alpha Scents, Inc., 1089 Willamette Falls Drive, West Linn, OR 97068 Tel. 503-342-8611 • Fax. 314-271-7297 • [email protected] www.alphascents.com beetles, longhorn beetles, wood wasps, and other timber infesting pests. 25 20 Panel Trap is commercially available for ts Comparative Trapping of Forest Coleoptera, ns ec f i 15 # o PT and Multi-Funnel Trap, Cranberry Lake, NY, 10 5 0 Three types of traps were tested: PT treated with Rain-X , PT untreated (PT), and Multi-Funnel Trap (Phero-Tech, Inc.). The traps were baited with three lure prototypes: (1) standard lure (alpha-pinene (ap), ipdienol (id), PT #1-R 12 Funnel #1 ipsenol (ie), (2) turpentine lure (turpentine, id, ie), and (3) ethanol lure (ethanol, ap, id, ie). 14 ec t s 12 ns 10 of i PT and Multi-Funnel # Summer 2002 8 Comparative Trapping of Forest Coleoptera, 6 4 2 0 effective toolThe for Panel monitoring Trap is Cerambycids,an as well as Scolytids, Buprestids, and other forest Coleoptera. -
Do It Yourself SAFE and EFFECTIVE PEST MANAGEMENT for YOUR HOME, BUSINESS OR SCHOOL Richard
Do It Yourself SAFE AND EFFECTIVE PEST MANAGEMENT FOR YOUR HOME, BUSINESS OR SCHOOL Richard “Bugman” Fagerlund All rights reserved including the right of reproduction in whole or in part in any form. FORWARD Every year, approximately 5.1 billion pounds of pesticides are used in the United States alone. Pesticides are intentionally toxic substances associated with birth defects, mutations, reproductive effects and cancer. Exposing our families to these pesticides makes them especially vulnerable to loss of brain function, damage to their reproductive systems, childhood leukemia, soft tissue sarcoma, neuroblastoma, Wilms' tumor, Ewing's sarcoma, nonHodgkins lymphoma, brain cancer, colorectal cancer and testes cancer. Many "inert" ingredients found in pesticides are suspected carcinogens and have been linked to central nervous system disorders, liver and kidney damage, birth defects and many other serious threats to our health. The warning label on Roundup is 10 pages alone! So why do we continue to use them? Is it possible the loss of brain function associated with pesticide use is what is driving our decision to continue using them? 5.1 billion pounds are being dumped on our gardens, lawns, trees, shrubs, and making their way into our rivers, our water supply, our food supply and our bodies. We are slowly poisoning ourselves and our environment. 96% of all fish analyzed in major rivers and streams contain residues of one or several pesticides. 100% of all surface water contains one or more pesticides. Pesticides, and especially herbicides, are contaminating our water supply. Removal is costly and difficult, and not always 100% effective. Pesticides are suspected to be the cause of amphibian declines and mutations as well as the rapid decline of our most important pollinator, the honey bee. -
Entomological Society
ISSN 0073-134X PROCEEDINGS of the HAWAIIAN ENTOMOLOGICAL SOCIETY This Issue Dedicated to Edwin H. Bryan, Jr. Vol. 26 March 1,1986 PROCEEDINGS of the Hawaiian Entomological Society VOLUME 26 FOR THE YEAR 1984 MARCH 1, 1986 The following minutes, notes and exhibitions were recorded by the Secretary on the months indicated during the calandar year 1984. The minutes as they appear here contain only the highlights in abbreviated form with attendance totals only. Complete minutes can be obtained from the Secretary's files. The Editor. JANUARY The 937 th meeting of the Hawaiian Entomological Society was called to order by Pres. Barry Brennan at 2:05 p.m., January 9, 1984 in the Conference room of the Bishop Museum. Fourteen members were present. Old Business: Brennan read a letter from Elwood Zimmerman as a reply to a congratulatory letter from the HES, on the occasion of Zimmerman's receiving of the Jordan Medal. In the letter he noted that the Insects of Hawaii Volumes that he had been working on could not be completed. A lively discussion followed. New Business: JoAnn Tenorio brought some old photos of Entomological Society members as a supplement to her presidential address in December. No notes or exhibitions were submitted. Announcements: Pres. Brennan announced that rather than voting on amend ments suggested by the previous constitution committee, a new committee will be appointed and the recommendations of both committees will be considered simul taneously in the future. Wallace Mitchell announced a public meeting to be held Jan. 17th and 18th to discuss the tri-fly eradication program. -
Pest Risk Analysis for Thousand Cankers Disease (Geosmithia Morbida and Pityophthorus Juglandis)
EUROPEAN AND MEDITERRANEAN PLANT PROTECTION ORGANIZATION ORGANISATION EUROPEENNE ET MEDITERRANEENNE POUR LA PROTECTION DES PLANTES 15-21058 Pest Risk Analysis for Thousand cankers disease (Geosmithia morbida and Pityophthorus juglandis) September 2015 EPPO 21 Boulevard Richard Lenoir 75011 Paris www.eppo.int [email protected] This risk assessment follows the EPPO Standard PM PM 5/5(1) Decision-Support Scheme for an Express Pest Risk Analysis (available at http://archives.eppo.int/EPPOStandards/pra.htm) and uses the terminology defined in ISPM 5 Glossary of Phytosanitary Terms (available at https://www.ippc.int/index.php). This document was first elaborated by an Expert Working Group and then reviewed by the Panel on Phytosanitary Measures and if relevant other EPPO bodies. Cite this document as: EPPO (2015) Pest risk analysis for Thousand cankers disease (Geosmithia morbida and Pityophthorus juglandis). EPPO, Paris. Available at http://www.eppo.int/QUARANTINE/Pest_Risk_Analysis/PRA_intro.htm Photo Superficial cankers caused by Geosmithia morbida on Juglans nigra and insect holes (Pityophthorus juglandis). Courtesy: Prof. Lucio Montecchio, Universita di Padova, IT. 15-21058 (15-20694, 15-20353 14-20219 14-20142 14-19823, 14-19733) Pest Risk Analysis for Thousand cankers disease (Geosmithia morbida and Pityophthorus juglandis) This PRA follows EPPO Standard PM 5/5 Decision-Support Scheme for an Express Pest Risk Analysis. PRA area: EPPO region Prepared by: Expert Working Group on Thousand cankers disease Date: 2014-08-26/29. Composition of the Expert Working Group (EWG) CRANSHAW Whitney (Mr) Colorado State University, Department of Bioagricultural Sciences and Pest Management, 80523 Fort Collins, Colorado, United States Tel: +1-9704916781 - [email protected] GRÉGOIRE Jean-Claude (Mr) Université Libre de Bruxelles, 50 av. -
Management of Wood-Destroying Pests a Guide for Commercial Applicators Category 7B
Management of Wood-destroying Pests A Guide for Commercial Applicators Category 7B Extension Bulletin E-2047 • December 2000, Major revision-destroy old stock • Michigan State University Extension Management of Wood-destroying Pests A Guide for Commercial Applicators Category 7B Editor: Carolyn J. Randall Academic Specialist Pesticide Education Program Michigan State University General Pest Management i Preface Acknowledgements We would like to express our thanks for the advice and Oklahoma Cooperative Extension Service. 1998. technical assistance of the following reviewers: Mark Structural Pest Control. Oklahoma State University. Sheperdigian, Rose Exterminator Co.; Val Smitter, Smitter Sanders, D. 1987. Termite Pest Control, Including Other Pest Control; Jeffrey Zimmer, Michigan Department of Wood-damaging Pests. Manual 96. University Extension, Agriculture; Mel Poplar, Michigan Department of University of Missouri, Columbia. Agriculture; and John Haslem, former pest management supervisor at Michigan State University. We also thank Smith, J.A. and N.R. Ehmann. Pest Control Library, Vol. Rick Spencer of Master Pest Control and Bob Stoddard of IX: Wood-destroying Organisms (Other than Termites). Van EnviroSafe for sending in their comments. Waters & Rogers, Inc., San Jose, California. We acknowledge the main sources of text and illustra- Verrall, A.F., and T.L. Amburgey. 1979. Prevention and tions for this manual: the Texas Agricultural Extension Control of Decay in Homes. U.S. Department of Agriculture Service manual, Control of Termites and Other Wood Pests, Forest Service anNd the Department of Housing and B-5075, Texas A&M University, 1999, and Truman’s Urban Development: IAA-25-75. Scientific Guide to Pest Control Operations (fifth edition), We also acknowledge illustrations from slides obtained G.W. -
Logs and Chips of Eighteen Eucalypt Species from Australia
United States Department of Agriculture Pest Risk Assessment Forest Service of the Importation Into Forest Products Laboratory the United States of General Technical Report Unprocessed Logs and FPL−GTR−137 Chips of Eighteen Eucalypt Species From Australia P. (=Tryphocaria) solida, P. tricuspis; Scolecobrotus westwoodi; Abstract Tessaromma undatum; Zygocera canosa], ghost moths and carpen- The unmitigated pest risk potential for the importation of unproc- terworms [Abantiades latipennis; Aenetus eximius, A. ligniveren, essed logs and chips of 18 species of eucalypts (Eucalyptus amyg- A. paradiseus; Zelotypia stacyi; Endoxyla cinereus (=Xyleutes dalina, E. cloeziana, E. delegatensis, E. diversicolor, E. dunnii, boisduvali), Endoxyla spp. (=Xyleutes spp.)], true powderpost E. globulus, E. grandis, E. nitens, E. obliqua, E. ovata, E. pilularis, beetles (Lyctus brunneus, L. costatus, L. discedens, L. parallelocol- E. regnans, E. saligna, E. sieberi, E. viminalis, Corymbia calo- lis; Minthea rugicollis), false powderpost or auger beetles (Bo- phylla, C. citriodora, and C. maculata) from Australia into the strychopsis jesuita; Mesoxylion collaris; Sinoxylon anale; Xylion United States was assessed by estimating the likelihood and conse- cylindricus; Xylobosca bispinosa; Xylodeleis obsipa, Xylopsocus quences of introduction of representative insects and pathogens of gibbicollis; Xylothrips religiosus; Xylotillus lindi), dampwood concern. Twenty-two individual pest risk assessments were pre- termite (Porotermes adamsoni), giant termite (Mastotermes dar- pared, fifteen dealing with insects and seven with pathogens. The winiensis), drywood termites (Neotermes insularis; Kalotermes selected organisms were representative examples of insects and rufinotum, K. banksiae; Ceratokalotermes spoliator; Glyptotermes pathogens found on foliage, on the bark, in the bark, and in the tuberculatus; Bifiditermes condonensis; Cryptotermes primus, wood of eucalypts. C. -
Structural and Health Pests
Management Structural and Health Store beans and peas in insect-proof containers. Heating beans or peas to 130°F for 30 minutes prior to storage will kill all stages of beetles. When disposing of any product containing stored product Pests pests, make sure to remove any infected items from the home entirely. Nuisance and household pests—Bed Bug Nuisance and Household Pests See: Public health pests—Bed Bug Craig Hollingsworth and Rene Kesecker Latest revision—March 2020 Nuisance and household pests—Booklouse Order Psocodea (formerly Psocoptera) Pest description and damage Booklice (Psocids) are brownish In all cases, follow the instructions on the pesticide label. The PNW yellow insects about the size of a pinhead. They prefer moist, Insect Management Handbook has no legal status, whereas the undisturbed conditions. pesticide label is a legal document. Read the product label before making any pesticide applications. Management Eliminate entry points with caulk. Reduce moisture and increase light and air circulation. Fans and dehumidifiers are recommended. The National Pesticide Information Center provides guidance in pest Apply labelled pesticides to cracks and crevices where appropriate. identification, control options, pesticides and contracting professional pest management services at http://npic.orst.edu/. For further information: Booklice. Insect Advice from Extension. Pennsylvania State Nuisance and household pests—Ant University. https://ento.psu.edu/extension/factsheets/booklice Many species, including Carpenter ant (Camponotus spp.) Nuisance and household pests—Boxelder bug Cornfield ant (Lasius alienus) Boisea rubrolineata Odorous house ant (Tapinoma sessile) Pest description and damage About 0.5 inch long and dark Velvety tree ant (Liometopum spp.) color with red longitudinal lines on the back. -
Psw 2020 Seybold003 Lona.Pdf
DOI: 10.1111/eea.12883 Host selection behavior mediated by differential landing rates of the walnut twig beetle, Pityophthorus juglandis, and associated subcortical insect species, on two western North American walnut species, Juglans californica and J. major Irene D. Lona1* , Donald G. Miller III1, Colleen A. Hatfield1, Richard C. Rosecrance2, Lori J. Nelson3,JacksonP.Audley4, Megan A. Siefker4,YigenChen5 & Steven J. Seybold3,4† 1Biological Sciences Department, California State University Chico, 400 West First Street, Chico, CA 95929, USA, 2College of Agriculture, California State University Chico, 400 West First Street, Chico, CA 95929, USA, 3USDA Forest Service, Pacific Southwest Research Station, 1731 Research Park, Davis, CA 95616, USA, 4Department of Entomology and Nematology, University of California, One Shields Avenue, Davis, CA 95616, USA, and 5E. & J. Gallo Winery, 600 Yosemite Boulevard, Modesto, CA 95354, USA Accepted: 19 August 2019 Key words: ambrosia beetle, Arizona black walnut, bark beetle, Cerambycidae, Geosmithia morbida, longhorned beetle, southern California black walnut, woodborer, Coleoptera, Scolytidae, Juglans major Abstract The walnut twig beetle, Pityophthorus juglandis Blackman (Coleoptera: Scolytidae), vectors a phy- topathogenic fungus, Geosmithia morbida Kolarık et al. (Hypocreales), which causes thousand can- kers disease (TCD) in walnut (Juglans sp.) and wingnut (Pterocarya sp., both Juglandaceae) trees. We investigated an early point in disease inception in two walnut species – Juglans californica S. Wats. and Juglans major (Torr. ex Sitsgr.) Heller – native to riparian forests of the western USA by compar- ing P. juglandis flight and landing responses to small-diameter branch sections. Twenty unbaited branch sections (10 each of J. californica and J. major) were presented in a completely randomized design to populations of P. -
University of Florida Thesis Or Dissertation Formatting
ECOLOGY AND METABOLIC ADAPTATIONS OF BARK BEETLE-ASSOCIATED FUNGI By YIN-TSE HUANG A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2019 © 2019 Yin-Tse Huang To family and friends ACKNOWLEDGMENTS I would like to thank my advisor and committee chair Jiri Hulcr for guidance and support. I would also like to thank my committee members Jason Smith, Jeffrey Rollins, Matthew Smith, and Miroslav Kolařík for their time and feedback. My research work cannot be done without the help from my lab members: A. Simon Ernstsons, Allan Gonzalez, Andrew Johnson, Caroline Storer, Craig Bateman, Demian Gómez, Jackson Landers, James Skelton, Michelle Jusino, and You Li. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .....................................................................................................4 LIST OF TABLES ................................................................................................................8 LIST OF FIGURES .............................................................................................................9 ABSTRACT ...................................................................................................................... 11 CHAPTER 1 INTRODUCTION ....................................................................................................... 13 2 TWO NEW GEOSMITHIA SPECIES IN G. PALLIDA SPECIES COMPLEX FROM BARK BEETLES IN EASTERN USA ........................................................... -
Host Selection by the Walnut Twig Beetle, Pityophthorus
HOST SELECTION BY THE WALNUT TWIG BEETLE, PITYOPHTHORUS JUGLANDIS, IN CALIFORNIA ____________ A Thesis Presented to the Faculty of California State University, Chico ____________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Biological Sciences ____________ by Irene Lona Spring 2019 HOST SELECTION BY THE WALNUT TWIG BEETLE, PITYOPHTHORUS JUGLANDIS, IN CALIFORNIA A Thesis by Irene Lona Spring 2019 APPROVED BY THE INTERIM DEAN OF GRADUATE STUDIES: ________________________________ Sharon Barrios, Ph.D. APPROVED BY THE GRADUATE ADVISORY COMMITTEE: ________________________________ Donald G. Miller, Ph.D., Chair ________________________________ Colleen Hatfield, Ph.D. ________________________________ Richard Rosecrance, Ph.D. ________________________________ Steven J. Seybold, Ph.D. TABLE OF CONTENTS PAGE List of Tables ............................................................................................................. iv List of Figures ............................................................................................................ v Abstract ..................................................................................................................... vi CHAPTER I. Host selection behavior mediated by differential landing rates of the walnut twig beetle, Pityophthorus juglandis Blackman (Coleoptera: Scolytidae), on two western North American walnut species, Juglans californica and Juglans major .................. 1 Abstract .......................................................................................... -
Invasive Bark and Ambrosia Beetles in California Mediterranean Forest Ecosystems
Timothy D. Paine · François Lieutier Editors Insects and Diseases of Mediterranean Forest Systems Insects and Diseases of Mediterranean Forest Systems Timothy D. Paine • François Lieutier Editors Insects and Diseases of Mediterranean Forest Systems Editors Timothy D. Paine François Lieutier Department of Entomology Faculté des Sciences University of California Université d'Orléans Riverside , CA , USA Orléans Cedex 2 , France ISBN 978-3-319-24742-7 ISBN 978-3-319-24744-1 (eBook) DOI 10.1007/978-3-319-24744-1 Library of Congress Control Number: 2015960968 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2016 Chapters 18, 20, 21, 22 was created within the capacity of an US governmental employment. US copyright protection does not apply. This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. -
Wood-Boring Beetles in Homes
Wood-boring beetles in Homes Integrated Pest Management in the Home Three groups of wood-boring bee- IDENTIFICATION AND LIFE tles—powderpost, deathwatch, and CYCLES false powderpost (Table 1)—invade Powderpost Beetles and damage wood furniture as well as structural and decorative wood A subfamily of beetles in the family inside of buildings. The beetle larvae Bostrichidae (formerly referred to as the family Lyctidae) are known as pow- feed in and do most of the damage derpost beetles (Fig. 1), because larvae to wood, and when they reach the create a fine, dustlike powdered frass (a adult stage, they emerge through mixture of feces and wood fragments) round exit holes, which they create by that has the consistency of baking flour chewing through the wood surface. or talcum powder. This boring dust is Figure 1. Adult powderpost beetle, Lyc- Adults of some species also bore exit packed into the larval galleries (feeding tus planicollis. holes through plaster, plastic, and channels) in the wood but occasionally even soft metals that might cover the falls out of exit holes into small piles on underlying wood. floors or other surfaces. You might see other wood-boring bee- This fine, powdery frass distinguishes tles such as flatheaded or roundheaded powderpost beetles from other wood- borers and bark or ambrosia beetles boring beetles in homes (Fig. 2). It also in your home if you store infested differs from the larger, granular, and firewood inside. However, these typi- almost pepperlike pellets drywood ter- cally are forest insects that won’t attack mites leave behind; if you look closely wood structures or furniture.