Federal Register/Vol. 85, No. 74/Thursday, April 16, 2020/Rules

Total Page:16

File Type:pdf, Size:1020Kb

Federal Register/Vol. 85, No. 74/Thursday, April 16, 2020/Rules 21282 Federal Register / Vol. 85, No. 74 / Thursday, April 16, 2020 / Rules and Regulations DEPARTMENT OF THE INTERIOR United States and the Government of United States or U.S. territories as a Canada Amending the 1916 Convention result of recent taxonomic changes; Fish and Wildlife Service between the United Kingdom and the (8) Change the common (English) United States of America for the names of 43 species to conform to 50 CFR Part 10 Protection of Migratory Birds, Sen. accepted use; and (9) Change the scientific names of 135 [Docket No. FWS–HQ–MB–2018–0047; Treaty Doc. 104–28 (December 14, FXMB 12320900000//201//FF09M29000] 1995); species to conform to accepted use. (2) Mexico: Convention between the The List of Migratory Birds (50 CFR RIN 1018–BC67 United States and Mexico for the 10.13) was last revised on November 1, Protection of Migratory Birds and Game 2013 (78 FR 65844). The amendments in General Provisions; Revised List of this rule were necessitated by nine Migratory Birds Mammals, February 7, 1936, 50 Stat. 1311 (T.S. No. 912), as amended by published supplements to the 7th (1998) AGENCY: Fish and Wildlife Service, Protocol with Mexico amending edition of the American Ornithologists’ Interior. Convention for Protection of Migratory Union (AOU, now recognized as the American Ornithological Society (AOS)) ACTION: Final rule. Birds and Game Mammals, Sen. Treaty Doc. 105–26 (May 5, 1997); Check-list of North American Birds (AOU 2011, AOU 2012, AOU 2013, SUMMARY: We, the U.S. Fish and (3) Japan: Convention between the AOU 2014, AOU 2015, AOU 2016, AOS Wildlife Service (Service), revise the Government of the United States of 2017, AOS 2018, and AOS 2019) and List of Migratory Birds protected by the America and the Government of Japan the 2017 publication of the Clements Migratory Bird Treaty Act (MBTA) by for the Protection of Migratory Birds and Checklist of Birds of the World both adding and removing species. Birds in Danger of Extinction, and Their (Clements et al. 2017). Reasons for the changes to the list Environment, March 4, 1972, 25 U.S.T. include adding species based on new 3329 (T.I.A.S. No. 7990); and What scientific authorities are used to taxonomy and new evidence of natural (4) Russia: Convention between the amend the List of Migratory Birds? occurrence in the United States or U.S. United States of America and the Union Although bird names (common and territories, removing species no longer of Soviet Socialist Republics Concerning known to occur within the United States scientific) are relatively stable, staying the Conservation of Migratory Birds and current with standardized use is or U.S. territories, and changing names Their Environment (Russia), November necessary to avoid confusion in to conform to accepted use. The net 19, 1976, 29 U.S.T. 4647 (T.I.A.S. No. communications. In making our increase of 67 species (75 added and 8 9073). determinations, we primarily relied on removed) will bring the total number of the AOS’s Checklist of North American species protected by the MBTA to 1,093. What is the purpose of this rulemaking? birds (AOU 1998), as amended annually We regulate the taking, possession, Our purpose is to inform the public of (AOU 1999 through 2016, AOS 2017 transportation, sale, purchase, barter, the species protected by the MBTA and through 2019), on matters of taxonomy, exportation, and importation of its implementing regulations. These nomenclature, and the sequence of migratory birds. An accurate and up-to- regulations are found in Title 50, Code species and other higher taxonomic date list of species protected by the of Federal Regulations (CFR), parts 10, categories (Orders, Families, MBTA is essential for public 20, and 21. We regulate the taking, Subfamilies) for species that occur in notification and regulatory purposes. possession, transportation, sale, North America. The AOU (now AOS) DATES: This rule is effective May 18, purchase, barter, exportation, and Checklist of North American Birds 2020. importation of migratory birds. An (Checklist), developed by the AOU FOR FURTHER INFORMATION CONTACT: Eric accurate and up-to-date list of species Committee on Classification and L. Kershner, Chief of the Branch of protected by the MBTA is essential for Nomenclature, has been the recognized Conservation, Permits, and Regulations; notifying the public of regulatory taxonomic authority for North American Division of Migratory Bird Management; protections. birds since publication of the first U.S. Fish and Wildlife Service; MS: MB; Why is the amendment of the List of edition of the Checklist in 1886. The 5275 Leesburg Pike, Falls Church, VA Migratory Birds necessary? committee compiles the taxonomic 22041–3803; (703) 358–2376. foundation for ornithology in North The amendments we are adopting in SUPPLEMENTARY INFORMATION: America; evaluating and codifying the this final rule are needed to: latest scientific developments in the What statutory authority does the (1) Add 16 species that qualify for systematics, classification, service have for this rulemaking? protection under the MBTA; nomenclature, and distribution of North We have statutory authority and (2) Correct the spelling of 3 species American birds. Thus, the AOS’s responsibility for enforcing the MBTA names on the alphabetized list; Checklist represents the best (16 U.S.C. 703–712), the Fish and (3) Correct the spelling of 3 species information available for developing the Wildlife Improvement Act of 1978 (16 names on the taxonomic list; North American component of this List U.S.C. 742l), and the Fish and Wildlife (4) Add 30 species based on new of Migratory Birds. In keeping with the Act of 1956 (16 U.S.C. 742a–j). The distributional records documenting increasing numbers of study areas on MBTA implements Conventions their natural occurrence in the United which taxonomy relies, the committee between the United States and four States or U.S. territories since 2010; incorporates expertise in phylogenetics, neighboring countries for the protection (5) Add one species moved from a genomics, vocalizations, morphology, of migratory birds, as follows: family that was not protected to a family behavior, and geographical distribution, (1) Canada: Convention between the protected under the MBTA as a result of as well as general ornithological United States and Great Britain [on taxonomic changes; knowledge. The AOS Checklist contains behalf of Canada] for the Protection of (6) Add 28 species newly recognized all bird species that have occurred in Migratory Birds, August 16, 1916, 39 as a result of recent taxonomic changes; North America from the Arctic through Stat. 1702 (T.S. No. 628), as amended by (7) Remove 8 species not known to Panama, including the West Indies and Protocol between the Government of the occur within the boundaries of the the Hawaiian Islands, and includes VerDate Sep<11>2014 19:00 Apr 15, 2020 Jkt 250001 PO 00000 Frm 00002 Fmt 4701 Sfmt 4700 E:\FR\FM\16APR2.SGM 16APR2 jbell on DSKJLSW7X2PROD with RULES2 Federal Register / Vol. 85, No. 74 / Thursday, April 16, 2020 / Rules and Regulations 21283 distributional information for each (2) Revised taxonomy results in it (southern storm-petrels) was split from species, which specifies whether the being newly split from a species that the Hydrobatidae (northern storm- species is known to occur in the United was previously on the list, and the new petrels), the Tityridae (becards and States. The committee also keeps and species occurs in the United States or tityras) was split from the Tyrannidae updates a list of species known to occur U.S. territories as the result of natural (tyrant flycatchers), the Passerellidae in the United States. biological or ecological processes. If a (towhees, sparrows, and juncos) was For the species that occur outside the newly recognized native species is split from the Emberizidae (buntings), geographic area covered by the AOS considered extinct (following the and the Megaluridae (Locustella Checklist, we relied primarily on the classification of the AOS) or, for species warblers) was renamed to Locustellidae. Clements Checklist of Birds of the not covered by the AOS, the Clements The Ptilogonatidae (silky-flycatchers) World (Clements Checklist) (Clements et Checklist or peer-reviewed literature), was renamed to the Ptiliogonatidae. The al. 2007), the Clements Checklist 2017 that species will still be included if Nesospingidae (Puerto Rican Tanager) installment of updates and corrections either of the following criteria apply: and the Spindalidae (Spindalis genus) • (Clements et al. 2017), and other peer- The species resembles extant were split from the Thraupidae reviewed literature where appropriate. species included in the list that may be (tanagers). The yellow-breasted chat was The Clements Checklist is a list of all affected by trade if the species is not split from the Parulidae (wood-warblers) included; or and placed into Icteriidae (chats). known bird species in the world and is • maintained and updated annually by Not including the species may Within the Scolopacidae (sandpipers, the Cornell Laboratory of Ornithology create difficulties implementing the phalaropes, and allies), new Subfamilies (CLO). The CLO relies on different MBTA and its underlying Conventions. were created: The curlews were moved (3) New evidence exists for its natural regional ornithological authorities to to Numeniinae; the godwits to occurrence in the United States or U.S. compile the list, using the AOS for the Limosinae; and small sandpipers to territories resulting from natural western hemisphere. Taxonomy and Arenariinae and larger sandpipers to distributional changes and the species nomenclature are the primary focus of Tringinae, including phalaropes whose occurs in a protected family. Records the Clements Checklist, but range previous Subfamily Phalaropodinae was must be documented, accepted, and descriptions are maintained and removed. Within the Accipitridae published by the AOS committee. For updated based on the best available (hawks, eagles, and kites), new the U.S.
Recommended publications
  • Western Scrub-Jay Funerals: Cacophonous Aggregations in Response to Dead Conspecifics
    Animal Behaviour 84 (2012) 1103e1111 Contents lists available at SciVerse ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Western scrub-jay funerals: cacophonous aggregations in response to dead conspecifics T. L. Iglesias a,b,*, R. McElreath a,c, G. L. Patricelli a,b a Animal Behavior Graduate Group, University of California Davis, Davis, CA, U.S.A. b Department of Evolution and Ecology, University of California Davis, Davis, CA, U.S.A. c Department of Anthropology, University of California Davis, Davis, CA, U.S.A. article info All organisms must contend with the risk of injury or death; many animals reduce this danger by Article history: assessing environmental cues to avoid areas of elevated risk. However, little is known about how Received 23 October 2011 organisms respond to one of the most salient visual cues of risk: a dead conspecific. Here we show that Initial acceptance 16 January 2012 the sight of a dead conspecific is sufficient to induce alarm calling and subsequent risk-reducing Final acceptance 25 July 2012 behavioural modification in western scrub-jays, Aphelocoma californica, and is similar to the response Available online 27 August 2012 to a predator (a great horned owl, Bubo virginianus, model). Discovery of a dead conspecific elicits MS. number: A12-00867R vocalizations that are effective at attracting conspecifics, which then also vocalize, thereby resulting in a cacophonous aggregation. Presentations of prostrate dead conspecifics and predator mounts elicited Keywords: aggregations and hundreds of long-range communication vocalizations, while novel objects did not. In Aphelocoma californica contrast to presentations of prostrate dead conspecifics, presentations of a jay skin mounted in an bird upright, life-like pose elicited aggressive responses, suggesting the mounted scrub-jay was perceived to cacophonous aggregation cues of risk be alive and the prostrate jay was not.
    [Show full text]
  • Complete Species Table in Species Number Order
    Page 1 of 19 Complete Species Table in Species Number order Go to species 100 .0, 200 .0, 300 .0, 400 .0, 500 .0, 600 .0, 700 .0, 800 .0, 900 .0 SPECIES COMMON NAME ALPHA CODE BAND SIZE 001 .0 Western Grebe WEGR 7A 7B 001 .1 Clark's Grebe CLGR 7A 7B 002 .0 Red-necked Grebe RNGR 7A 003 .0 Horned Grebe HOGR 6 5 004 .0 Eared Grebe EAGR 5 005 .0 Least Grebe LEGR 4 006 .0 Pied-billed Grebe PBGR 5 6 007 .0 Common Loon COLO 8 008 .0 Yellow-billed Loon YBLO 9 009 .0 Arctic Loon ARLO 7B 010 .0 Pacific Loon PALO 7B 011 .0 Red-throated Loon RTLO 7B 012 .0 Tufted Puffin TUPU 6 5 013 .0 Atlantic Puffin ATPU 5 014 .0 Horned Puffin HOPU 5 015 .0 Rhinoceros Auklet RHAU 5 6 016 .0 Cassin's Auklet CAAU 3B-3A 017 .0 Parakeet Auklet PAAU 4 018 .0 Crested Auklet CRAU 4 019 .0 Whiskered Auklet WHAU 3 020 .0 Least Auklet LEAU 2 3 021 .0 Ancient Murrelet ANMU 3B 3 023 .0 Marbled Murrelet MAMU 3B 3 023 .1 Long-billed Murrelet LBMU 3B 3 024 .0 Kittlitz's Murrelet KIMU 3B 025 .0 Xantus's Murrelet XAMU 2 026 .0 Craveri's Murrelet CRMU 2 027 .0 Black Guillemot BLGU 4 029 .0 Pigeon Guillemot PIGU 4A 030 .0 Common Murre COMU 6M 031 .0 Thick-billed Murre TBMU 6M 5R 032 .0 Razorbill RAZO 5R 034 .0 Dovekie DOVE 3 035 .0 Great.
    [Show full text]
  • Spring in South Texas
    SPRING IN SOUTH TEXAS MARCH 31–APRIL 9, 2019 Green Jay, Quinta Mazatlan, McAllen, Texas, April 5, 2019, Barry Zimmer LEADERS: BARRY ZIMMER & JACOB DRUCKER LIST COMPILED BY: BARRY ZIMMER VICTOR EMANUEL NATURE TOURS, INC. 2525 WALLINGWOOD DRIVE, SUITE 1003 AUSTIN, TEXAS 78746 WWW.VENTBIRD.COM SPRING IN SOUTH TEXAS MARCH 31–APRIL 9, 2019 By Barry Zimmer Once again, our Spring in South Texas tour had it all—virtually every South Texas specialty, wintering Whooping Cranes, plentiful migrants (both passerine and non- passerine), and rarities on several fronts. Our tour began with a brief outing to Tule Lake in north Corpus Christi prior to our first dinner. Almost immediately, we were met with a dozen or so Scissor-tailed Flycatchers lining a fence en route—what a welcoming party! Roseate Spoonbill, Crested Caracara, a very cooperative Long-billed Thrasher, and a group of close Cave Swallows rounded out the highlights. Strong north winds and unsettled weather throughout that day led us to believe that we might be in for big things ahead. The following day was indeed eventful. Although we had no big fallout in terms of numbers of individuals, the variety was excellent. Scouring migrant traps, bays, estuaries, coastal dunes, and other habitats, we tallied an astounding 133 species for the day. A dozen species of warblers included a stunningly yellow male Prothonotary, a very rare Prairie that foraged literally at our feet, two Yellow-throateds at arm’s-length, four Hooded Warblers, and 15 Northern Parulas among others. Tired of fighting headwinds, these birds barely acknowledged our presence, allowing unsurpassed studies.
    [Show full text]
  • Possible Relationship Between Vocal Communication System and Fat Reserve in Wintering Birds: a Test of the Optimal Body Mass Theory
    POSSIBLE RELATIONSHIP BETWEEN VOCAL COMMUNICATION SYSTEM AND FAT RESERVE IN WINTERING BIRDS: A TEST OF THE OPTIMAL BODY MASS THEORY A Thesis by Gamage Dilini Nuwanthika Perera Bachelor of Science, University of Peradeniya, 2014 Submitted to the Department of Biological Sciences and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Master of Science December 2017 ©Copyright 2017 by Gamage Dilini Nuwanthika Perera All Rights Reserved POSSIBLE RELATIONSHIP BETWEEN VOCAL COMMUNICATION SYSTEM AND FAT RESERVE IN WINTERING BIRDS: A TEST OF THE OPTIMAL BODY MASS THEORY The following faculty members have examined the final copy of this thesis for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science with a major in Biological Sciences. F. Leland Russell, Committee Chair Mark A. Schneegurt, Committee Member Kandatege Wimalasena, Committee Member iii DEDICATION To my parents, family and friends who always encouraged and supported me, and made me the person I am today. iv ACKNOWLEDGEMENTS I would like to thank my advisers, Christopher M. Rogers and F. Leland Russell for their many months of thoughtful, patient guidance and support along the journey of my graduate career. I would also like to thank Wichita State University, for the use of their facilities and resources. WSU has provided a great opportunity for me to proceed along the journey that is graduate school. I thank especially F. Leland Russell for taking responsibility for me after Christopher Rogers was on medical leave. Finally thanks to my family, friends and colleagues for their support and encouragement throughout my career.
    [Show full text]
  • Molt and the Annual Cycle of the Chuck-Will's-Widow, Caprimulgus Carolinensis
    THE AUK A QUARTERLY JOURNAL OF ORNITHOLOGY VoL. 88 JuLY 1971 No. 3 MOLT AND THE ANNUAL CYCLE OF THE CHUCK-WILL'S-WIDOW, CAPRIMULGUS CAROLINENSIS S•EVERT A. RO•WER TUE family Caprimulgidae consistsof about 73 speciesof nocturnal and crepuscularbirds commonly called nightjars from their persistent penetratingnocturnal calls. They are divided into. two subfamilies,the Chordeilinae,a group of 8 New World species,and the Caprimulginae,a group of approximately65 speciesoccurring in most of the warmer land areasof the world. The chordeilinesare largelycrepuscular in their habits, somespecies being active on overcastor, occasionally,sunny days; most of the caprimulginesare much more nocturnal than the chordeilines.The Chuck-will's-widow(Caprimulgus carolinensis) is the largestmember of its genus,which contains some 40. African, Eurasian,and New World species (Peters, 1940). It is a commonbreeding bird of the deciduousforests of the southern third of eastern North America, and winters largely in the Antilles, Central America,and the southernmostareas of eastern North America. The sequenceof molt has been describedfor several African and Eurasian caprimulgines(Verheyen, 1956; Stresemannand Stresemann, 1966) and partially describedfor the chordeilineCommon Nighthawk (Chordeilesminor) by Selander(1954). Someintriguing variations exist in the sequenceand timing of molts amongthe caprimulgiforms(Strese- mann and Stresemann,1966; Rohwer, MS on Phalaenoptilusnuttallii), and knowledgeof the sequenceand time of feather replacement for more caprimulgiforms,coupled
    [Show full text]
  • Checklist of Maine Birds
    Black-throated Blue Warbler Snow Bunting Yellow-rumped Warbler CARDINALS and ALLIES (CARDINALIDAE) Black-throated Green Warbler Northern Cardinal Blackburnian Warbler Rose-breasted Grosbeak Pine Warbler Blue Grosbeak Prairie Warbler Indigo Bunting Palm Warbler Dickcissel Bay-breasted Warbler BLACKBIRDS (ICTERIDAE) Field Checklist of Maine Birds Blackpoll Warbler Bobolink Black-and-white Warbler Red-winged Blackbird American Redstart Eastern Meadowlark Date & Location Birders Ovenbird Yellow-headed Blackbird ___________________________ Northern Waterthrush Rusty Blackbird Louisiana Waterthrush Common Grackle ___________________________ Mourning Warbler Brown-headed Cowbird ___________________________ Common Yellowthroat Orchard Oriole Wilson’s Warbler Baltimore Oriole ___________________________ Canada Warbler Pine Grosbeak Yellow-breasted Chat Purple Finch TANAGERS (THRAUPIDAE) House Finch GEESE and DUCKS (TINAMIDAE) Ruffed Grouse Summer Tanager Red Crossbill Snow Goose Spruce Grouse Scarlet Tanager White-winged Crossbill Canada Goose Wild Turkey NEW WORLD SPARROWS (EMBERIZIDAE) Common Redpoll Brant LOONS (GAVIIDAE) Eastern Towhee Pine Siskin Tundra Swan Red-throated Loon American Tree Sparrow American Goldfinch Wood Duck Pacific Loon Chipping Sparrow Evening Grosbeak Gadwall Common Loon Clay-colored Sparrow OLD WORLD SPARROWS (PASSERIDAE) American Wigeon GREBES (PODICIPEDIDAE) Field Sparrow House Sparrow American Black Duck Pied-billed Grebe Lark Sparrow ADDITIONAL SPECIES Mallard Horned Grebe Vesper Sparrow Blue-winged Teal Red-necked
    [Show full text]
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • Synonymies for Indigenous Hawaiian Bird Taxa
    Part 2 - Drepaninines Click here for Part 1 - Non-Drepaninines The Birds of the Hawaiian Islands: Occurrence, History, Distribution, and Status Version 2 - 1 January 2017 Robert L. Pyle and Peter Pyle Synonymies for Indigenous Hawaiian Bird Taxa Intensive ornithological surveying by active collectors during the latter 1890s led to several classic publications at the turn of the century, each covering nearly all species and island forms of native Hawaiian birds (Wilson and Evans 1899, Rothschild (1900),schild 1900, Bryan 1901a, Henshaw (1902a), 1902a, Perkins (1903),1903). The related but diverse scientific names appearing in these publications comprised the basis for scientific nomenclature for the next half century, but in many cases were modified by later authors using modern techniques to reach a current nomenclature provided in the American Ornithologists’ Union (AOU) Check-List, and followed (for the most part) at this site. A few current AOU names are still controversial, and more changes will come in the future. Synonymies reflecting the history of taxonomic nomenclature are listed below for all endemic birds in the Hawaiian Islands. The heading for each taxon represents that used in this book, reflecting the name used by the AOU (1998), as changed in subsequent AOU Supplements, or, in a few cases, as modified here based on more recent work or on differing opinions on taxonomic ranking. Previously recognized names are listed and citations included for classic publications on taxonomy of Hawaiian birds, as well as significant papers that influenced the species nomenclature. We thank Storrs Olson for sharing with us his summarization on the taxonomy and naming of indigenous Hawaiian birds.
    [Show full text]
  • Non-Native Trees Provide Habitat for Native Hawaiian Forest Birds
    NON-NATIVE TREES PROVIDE HABITAT FOR NATIVE HAWAIIAN FOREST BIRDS By Peter J. Motyka A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of Master of Science In Biology Northern Arizona University December 2016 Approved: Jeffrey T. Foster, Ph.D., Co-chair Tad C. Theimer, Ph. D., Co-chair Carol L. Chambers, Ph. D. ABSTRACT NON-NATIVE TREES PROVIDE HABITAT FOR NATIVE HAWAIIAN FOREST BIRDS PETER J. MOTYKA On the Hawaiian island of Maui, native forest birds occupy an area dominated by non- native plants that offers refuge from climate-limited diseases that threaten the birds’ persistence. This study documented the status of the bird populations and their ecology in this novel habitat. Using point-transect distance sampling, I surveyed for birds over five periods in 2013-2014 at 123 stations across the 20 km² Kula Forest Reserve (KFR). I documented abundance and densities for four native bird species: Maui ‘alauahio (Paroreomyza montana), ʻiʻiwi (Drepanis coccinea), ʻapapane (Himatione sanguinea), and Hawaiʻi ʻamakihi, (Chlorodrepanis virens), and three introduced bird species: Japanese white-eye (Zosterops japonicas), red-billed leiothrix (Leiothrix lutea), and house finch (Haemorhous mexicanus). I found that 1) native forest birds were as abundant as non-natives, 2) densities of native forest birds in the KFR were similar to those found in native forests, 3) native forest birds showed varying dependence on the structure of the habitats, with ʻiʻiwi and ‘alauahio densities 20 and 30 times greater in forest than in scrub, 4) Maui ‘alauahio foraged most often in non-native cape wattle, eucalyptus, and tropical ash, and nested most often in non-native Monterey cypress, Monterey pine, and eucalyptus.
    [Show full text]
  • Corvids of Cañada
    !!! ! CORVIDS OF CAÑADA COMMON RAVEN (Corvus corax) AMERICAN CROW (Corvus brachyrhyncos) YELLOW-BILLED MAGPIE (Pica nuttalli) STELLER’S JAY (Cyanocitta stelleri) WESTERN SCRUB-JAY Aphelocoma californica) Five of the ten California birds in the Family Corvidae are represented here at the Cañada de los Osos Ecological Reserve. Page 1 The Common Raven is the largest and can be found in the cold of the Arctic and the extreme heat of Death Valley. It has shown itself to be one of the most intelligent of all birds. It is a supreme predator and scavenger, quite sociable at certain times of the year and a devoted partner and parent with its mate. The American Crow is black, like the Raven, but noticeably smaller. Particularly in the fall, it may occur in huge foraging or roosting flocks. Crows can be a problem for farmers at times of the year and a best friend at other times, when crops are under attack from insects or when those insects are hiding in dried up leftovers such as mummified almonds. Crows know where those destructive navel orange worms are. Smaller birds do their best to harass crows because they recognize the threat they are to their eggs and young. Crows, ravens and magpies are important members of the highway clean-up crew when it comes to roadkills. The very attractive Yellow-billed Magpie tends to nest in loose colonies and forms larger flocks in late summer or fall. In the central valley of California, they can be a problem in almond and fruit orchards, but they also are adept at catching harmful insect pests.
    [Show full text]
  • Diet of Breeding White-Throated and Black Swifts in Southern California
    DIET OF BREEDING WHITE-THROATED AND BLACK SWIFTS IN SOUTHERN CALIFORNIA ALLISON D. RUDALEVIGE, DESSlE L. A. UNDERWOOD, and CHARLES T. COLLINS, Department of BiologicalSciences, California State University,Long Beach, California 90840 (current addressof Rudalevige:Biology Department, Universityof California,Riverside, California 92521) ABSTRACT: We analyzed the diet of nestling White-throated(Aeronautes saxatalis) and Black Swifts (Cypseloidesniger) in southern California. White- throatedSwifts fed their nestlingson bolusesof insectsmore taxonomicallydiverse, on average(over 50 arthropodfamilies represented), than did BlackSwifts (seven arthropodfamilies, primarfiy ants). In some casesWhite-throated Swift boluses containedprimarily one species,while other bolusesshowed more variation.In contrast,all BlackSwift samplescontained high numbersof wingedants with few individualsof other taxa. Our resultsprovide new informationon the White-throated Swift'sdiet and supportprevious studies of the BlackSwift. Swiftsare amongthe mostaerial of birds,spending most of the day on the wing in searchof their arthropodprey. Food itemsinclude a wide array of insectsand some ballooningspiders, all gatheredaloft in the air column (Lack and Owen 1955). The food habitsof a numberof speciesof swifts have been recorded(Collins 1968, Hespenheide1975, Lack and Owen 1955, Marfn 1999, Tarburton 1986, 1993), but there is stilllittle informa- tion availablefor others, even for some speciesthat are widespreadand common.Here we providedata on the prey sizeand compositionof food broughtto nestlingsof the White-throated(Aerona u tes saxa talis) and Black (Cypseloidesniger) Swifts in southernCalifornia. The White-throatedSwift is a commonresident that nestswidely in southernCalifornia, while the Black Swift is a local summerresident, migrating south in late August (Garrettand Dunn 1981, Foersterand Collins 1990). METHODS When feedingyoung, swifts of the subfamiliesApodinae and Chaeturinae return to the nest with a bolusof food in their mouths(Collins 1998).
    [Show full text]
  • Adaptive Radiation
    ADAPTIVE RADIATION Rosemary G. Gillespie,* Francis G. Howarth,† and George K. Roderick* *University of California, Berkeley and †Bishop Museum I. History of the Concept ecological release Expansion of habitat, or ecological II. Nonadaptive Radiations environment, often resulting from release of species III. Factors Underlying Adaptive Radiation from competition. IV. Are Certain Taxa More Likely to Undergo Adap- founder effect Random genetic sampling in which tive Radiation Than Others? only a few ‘‘founders’’ derived from a large popula- V. How Does Adaptive Radiation Get Started? tion initiate a new population. Since these founders VI. The Processes of Adaptive Radiation: Case carry only a small fraction of the parental popula- Studies tion’s genetic variability, radically different gene VII. The Future frequencies can become established in the new colony. key innovation A trait that increases the efficiency with GLOSSARY which a resource is used and can thus allow entry into a new ecological zone. adaptive shift A change in the nature of a trait (mor- natural selection The differential survival and/or re- phology, ecology, or behavior) that enhances sur- production of classes of entities that differ in one or vival and/or reproduction in an ecological environ- more hereditary characteristics. ment different from that originally occupied. sexual selection Selection that acts directly on mating allopatric speciation The process of genetic divergence success through direct competition between mem- between geographically separated populations lead- bers of one sex for mates or through choices made ing to distinct species. between the two sexes or through a combination of character displacement Divergence in a morphological both modes.
    [Show full text]