Quantitative Assessment of Carbon Nanotube Dispersions by Raman Spectroscopy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kathleen Lonsdale
Edited by KATHLEEN LONSDALE PRICE 3/6 Quakers Visit Russia Ediled by KATHLEEN LONSDALE Published by the Eash West Reialions Group of the Frle/idt' Peace Cotn/tti.dee, Friends House, Euston Road, London, N. IK t. First Edition July 1952 Reprinted October 1952 QUAKERS VISIT RUSSIA Edited by KATHLEEN LONSDALE Declaration to Charles II, 1660 "JKe utterly deny all outward wars and strife, and fightings with outward weapons, for any end, or under any pretence whatever; this is our testimony to the whole world. The Spirit of Christ by which we are guided is not changeable, so as once to command us from a thing as evil and again to move unto it; and we certainly know and testify to the world, that the Spirit of Christ, which leads us into all Truth, will never move us to fight and war against any man with outward weapons, neither for the Kingdom of Christ nor for the Kingdoms of this world.” Message of Goodwill to AM Men, 1956 (frwd In Engltih, French, German and Jtustton') "In face of deepening fear and mutual distrust throughout the world, the Society of Friends (Quakers) is moved to declare goodwill to all men everywhere. Friends appeal for the avoidance of words and deeds that increase suspicion and ill- feeling, for renewed efforts at understanding and for positive attempts to build a true peace. They are convinced that reconciliation is possible. They hope that this simple word, translated into many tongues, may itself help to create the new spirit in which the resources of the world will be diverted from war dike purposes and applied to the welfare of mankind.” Hl CONTENTS Chapter 1. -
Lunar and Planetary Science XXX 1753.Pdf
Lunar and Planetary Science XXX 1753.pdf INTERSTELLAR DIAMOND. II. GROWTH AND IDENTIFICATION. Andrew W. Phelps, University of Dayton Research Institute, Materials Engineering Division (300 College Park, Dayton OH, 45469-0130, [email protected]). likely form clumps of carbon that look much like the Introduction: The first abstract in this series starting material – hydrogen rich sp3 bound clusters. suggested that many types of diamond are found in many types of meteoritic material and that the The compounds that fit the requirements above variation in polytype abundance appears to reflect the include the cycloalkanes such as adamantane [21-30] nature of the host. How the diamonds got there and (C10H16) and bicyclooctane (C6H8) (BCO) . what they mean will now be examined. Opinions These compounds ‘look’ like small cubic diamonds regarding the formation mechanism(s) of meteoritic and lonsdaleite respectively. If these particular and interstellar diamond grains have changed over compounds are suggested as models for diamond the years as new methods of making synthetic nuclei then a number of structural and diamond were developed[1,2]. Meteoritic diamonds thermodynamic predictions can be made about the were once believed to be the result of high pressure - types of diamond that can form and its relative temperature processes in the interior of planetary abundance with regard to the physics and chemistry bodies[3,4]. Impact formation of diamond became of its growth environment. A few examples of this popular after the development of shock wave are: Adamantane is a lower energy form and would diamond synthesis[5] because shock synthesis was tend to form in an environment of sufficient thermal able to form lonsdaleite and meteorites were full of energy to allow the molecule to organize into this lonsdaleite. -
Impact−Cosmic−Metasomatic Origin of Microdiamonds from Kumdy−Kol Deposit, Kokchetav Massiv, N
11th International Kimberlite Conference Extended Abstract No. 11IKC-4506, 2017 Impact−Cosmic−Metasomatic Origin of Microdiamonds from Kumdy−Kol Deposit, Kokchetav Massiv, N. Kazakhstan L. I. Tretiakova1 and A. M. Lyukhin2 1St. Petersburg Branch Russian Mineralogical Society. RUSSIA, [email protected] 2Institute of remote ore prognosis, Moscow, RUSSIA, [email protected] Introduction Any collision extraterrestrial body and the Earth had left behind the “signature” on the Earth’s surface. We are examining a lot of signatures of an event caused Kumdy-Kol diamond-bearing deposit formation, best- known as “metamorphic” diamond locality among numerous UHP terrains around the world. We are offering new impact-cosmic-metasomatic genesis of this deposit and diamond origin provoked by impact event followed prograde and retrograde metamorphism with metasomatic alterations of collision area rocks that have been caused of diamond nucleation, growth and preserve. Brief geology of Kumdy-Kol diamond-bearing deposit Kumdy-Kol diamond-bearing deposit located within ring structure ~ 4 km diameter, in the form and size compares with small impact crater (Fig. 1). It is important impact event signature. Figure1: Cosmic image of Kumdy-Kol deposit area [http://map.google.ru/]. Diamond-bearing domain had been formed on the peak of UHP metamorphism provoked by comet impact under oblique angle on the Earth surface. As a result, steep falling system of tectonic dislocations, which breakage and fracture zones filling out of impact and host rock breccia with blastomylonitic and blastocataclastic textures have been created. Diamond-bearing domain has complicated lenticular-bloc structure (1300 x 40-200 m size) and lens out with deep about 300 m. -
Handbook of Iron Meteorites, Volume 2 (Canyon Diablo, Part 2)
Canyon Diablo 395 The primary structure is as before. However, the kamacite has been briefly reheated above 600° C and has recrystallized throughout the sample. The new grains are unequilibrated, serrated and have hardnesses of 145-210. The previous Neumann bands are still plainly visible , and so are the old subboundaries because the original precipitates delineate their locations. The schreibersite and cohenite crystals are still monocrystalline, and there are no reaction rims around them. The troilite is micromelted , usually to a somewhat larger extent than is present in I-III. Severe shear zones, 100-200 J1 wide , cross the entire specimens. They are wavy, fan out, coalesce again , and may displace taenite, plessite and minerals several millimeters. The present exterior surfaces of the slugs and wedge-shaped masses have no doubt been produced in a similar fashion by shear-rupture and have later become corroded. Figure 469. Canyon Diablo (Copenhagen no. 18463). Shock The taenite rims and lamellae are dirty-brownish, with annealed stage VI . Typical matte structure, with some co henite crystals to the right. Etched. Scale bar 2 mm. low hardnesses, 160-200, due to annealing. In crossed Nicols the taenite displays an unusual sheen from many small crystals, each 5-10 J1 across. This kind of material is believed to represent shock annealed fragments of the impacting main body. Since the fragments have not had a very long flight through the atmosphere, well developed fusion crusts and heat-affected rim zones are not expected to be present. The energy responsible for bulk reheating of the small masses to about 600° C is believed to have come from the conversion of kinetic to heat energy during the impact and fragmentation. -
Evidence from Polymict Ureilite Meteorites for a Disrupted and Re-Accreted Single Ureilite Parent Asteroid Gardened by Several Distinct Impactors
Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 72 (2008) 4825–4844 www.elsevier.com/locate/gca Evidence from polymict ureilite meteorites for a disrupted and re-accreted single ureilite parent asteroid gardened by several distinct impactors Hilary Downes a,b,*, David W. Mittlefehldt c, Noriko T. Kita d, John W. Valley d a School of Earth Sciences, Birkbeck University of London, Malet Street, London WC1E 7HX, UK b Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058, USA c Mail Code KR, NASA/Johnson Space Center, Houston, TX 77058, USA d Department of Geology and Geophysics, University of Wisconsin-Madison, 1215 W. Dayton St., Madison, WI 53706, USA Received 25 July 2007; accepted in revised form 24 June 2008; available online 17 July 2008 Abstract Ureilites are ultramafic achondrites that exhibit heterogeneity in mg# and oxygen isotope ratios between different meteor- ites. Polymict ureilites represent near-surface material of the ureilite parent asteroid(s). Electron microprobe analyses of >500 olivine and pyroxene clasts in several polymict ureilites reveal a statistically identical range of compositions to that shown by unbrecciated ureilites, suggesting derivation from a single parent asteroid. Many ureilitic clasts have identical compositions to the anomalously high Mn/Mg olivines and pyroxenes from the Hughes 009 unbrecciated ureilite (here termed the ‘‘Hughes cluster”). Some polymict samples also contain lithic clasts derived from oxidized impactors. The presence of several common distinctive lithologies within polymict ureilites is additional evidence that ureilites were derived from a single parent asteroid. In situ oxygen three isotope analyses were made on individual ureilite minerals and lithic clasts, using a secondary ion mass spectrometer (SIMS) with precision typically better than 0.2–0.4& (2SD) for d18O and d17O. -
POSTER SESSION 5:30 P.M
Monday, July 27, 1998 POSTER SESSION 5:30 p.m. Edmund Burke Theatre Concourse MARTIAN AND SNC METEORITES Head J. W. III Smith D. Zuber M. MOLA Science Team Mars: Assessing Evidence for an Ancient Northern Ocean with MOLA Data Varela M. E. Clocchiatti R. Kurat G. Massare D. Glass-bearing Inclusions in Chassigny Olivine: Heating Experiments Suggest Nonigneous Origin Boctor N. Z. Fei Y. Bertka C. M. Alexander C. M. O’D. Hauri E. Shock Metamorphic Features in Lithologies A, B, and C of Martian Meteorite Elephant Moraine 79001 Flynn G. J. Keller L. P. Jacobsen C. Wirick S. Carbon in Allan Hills 84001 Carbonate and Rims Terho M. Magnetic Properties and Paleointensity Studies of Two SNC Meteorites Britt D. T. Geological Results of the Mars Pathfinder Mission Wright I. P. Grady M. M. Pillinger C. T. Further Carbon-Isotopic Measurements of Carbonates in Allan Hills 84001 Burckle L. H. Delaney J. S. Microfossils in Chondritic Meteorites from Antarctica? Stay Tuned CHONDRULES Srinivasan G. Bischoff A. Magnesium-Aluminum Study of Hibonites Within a Chondrulelike Object from Sharps (H3) Mikouchi T. Fujita K. Miyamoto M. Preferred-oriented Olivines in a Porphyritic Olivine Chondrule from the Semarkona (LL3.0) Chondrite Tachibana S. Tsuchiyama A. Measurements of Evaporation Rates of Sulfur from Iron-Iron Sulfide Melt Maruyama S. Yurimoto H. Sueno S. Spinel-bearing Chondrules in the Allende Meteorite Semenenko V. P. Perron C. Girich A. L. Carbon-rich Fine-grained Clasts in the Krymka (LL3) Chondrite Bukovanská M. Nemec I. Šolc M. Study of Some Achondrites and Chondrites by Fourier Transform Infrared Microspectroscopy and Diffuse Reflectance Spectroscopy Semenenko V. -
Impact Shock Origin of Diamonds in Ureilite Meteorites
Impact shock origin of diamonds in ureilite meteorites Fabrizio Nestolaa,b,1, Cyrena A. Goodrichc,1, Marta Moranad, Anna Barbarod, Ryan S. Jakubeke, Oliver Christa, Frank E. Brenkerb, M. Chiara Domeneghettid, M. Chiara Dalconia, Matteo Alvarod, Anna M. Fiorettif, Konstantin D. Litasovg, Marc D. Friesh, Matteo Leonii,j, Nicola P. M. Casatik, Peter Jenniskensl, and Muawia H. Shaddadm aDepartment of Geosciences, University of Padova, I-35131 Padova, Italy; bGeoscience Institute, Goethe University Frankfurt, 60323 Frankfurt, Germany; cLunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058; dDepartment of Earth and Environmental Sciences, University of Pavia, I-27100 Pavia, Italy; eAstromaterials Research and Exploration Science Division, Jacobs Johnson Space Center Engineering, Technology and Science, NASA, Houston, TX 77058; fInstitute of Geosciences and Earth Resources, National Research Council, I-35131 Padova, Italy; gVereshchagin Institute for High Pressure Physics RAS, Troitsk, 108840 Moscow, Russia; hNASA Astromaterials Acquisition and Curation Office, Johnson Space Center, NASA, Houston, TX 77058; iDepartment of Civil, Environmental and Mechanical Engineering, University of Trento, I-38123 Trento, Italy; jSaudi Aramco R&D Center, 31311 Dhahran, Saudi Arabia; kSwiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland; lCarl Sagan Center, SETI Institute, Mountain View, CA 94043; and mDepartment of Physics and Astronomy, University of Khartoum, 11111 Khartoum, Sudan Edited by Mark Thiemens, University of California San Diego, La Jolla, CA, and approved August 12, 2020 (received for review October 31, 2019) The origin of diamonds in ureilite meteorites is a timely topic in to various degrees and in these samples the graphite areas, though planetary geology as recent studies have proposed their formation still having external blade-shaped morphologies, are internally at static pressures >20 GPa in a large planetary body, like diamonds polycrystalline (18). -
Guides to the Royal Institution of Great Britain: 1 HISTORY
Guides to the Royal Institution of Great Britain: 1 HISTORY Theo James presenting a bouquet to HM The Queen on the occasion of her bicentenary visit, 7 December 1999. by Frank A.J.L. James The Director, Susan Greenfield, looks on Front page: Façade of the Royal Institution added in 1837. Watercolour by T.H. Shepherd or more than two hundred years the Royal Institution of Great The Royal Institution was founded at a meeting on 7 March 1799 at FBritain has been at the centre of scientific research and the the Soho Square house of the President of the Royal Society, Joseph popularisation of science in this country. Within its walls some of the Banks (1743-1820). A list of fifty-eight names was read of gentlemen major scientific discoveries of the last two centuries have been made. who had agreed to contribute fifty guineas each to be a Proprietor of Chemists and physicists - such as Humphry Davy, Michael Faraday, a new John Tyndall, James Dewar, Lord Rayleigh, William Henry Bragg, INSTITUTION FOR DIFFUSING THE KNOWLEDGE, AND FACILITATING Henry Dale, Eric Rideal, William Lawrence Bragg and George Porter THE GENERAL INTRODUCTION, OF USEFUL MECHANICAL - carried out much of their major research here. The technological INVENTIONS AND IMPROVEMENTS; AND FOR TEACHING, BY COURSES applications of some of this research has transformed the way we OF PHILOSOPHICAL LECTURES AND EXPERIMENTS, THE APPLICATION live. Furthermore, most of these scientists were first rate OF SCIENCE TO THE COMMON PURPOSES OF LIFE. communicators who were able to inspire their audiences with an appreciation of science. -
Asteroid Impacts on Earth Make Structurally Bizarre Diamonds 21 November 2014, by Robert Burnham
Asteroid impacts on Earth make structurally bizarre diamonds 21 November 2014, by Robert Burnham "So-called lonsdaleite is actually the long-familiar cubic form of diamond, but it's full of defects," says Péter Németh. These can occur, he explains, due to shock metamorphism, plastic deformation or unequilibrated crystal growth. The lonsdaleite story began almost 50 years ago. Scientists reported that a large meteorite, called Canyon Diablo after the crater it formed on impact in northern Arizona, contained a new form of diamond with a hexagonal structure. They described it as an impact-related mineral and called it lonsdaleite, after Dame Kathleen Lonsdale, a famous crystallographer. Since then, "lonsdaleite" has been widely used by scientists as an indicator of ancient asteroidal Diamond grains from the Canyon Diablo meteorite. The impacts on Earth, including those linked to mass tick marks are spaced one-fifth of a millimeter (200 extinctions. In addition, it has been thought to have microns) apart. Credit: Arizona State mechanical properties superior to ordinary University/Laurence Garvie diamond, giving it high potential industrial significance. All this focused much interest on the mineral, although pure crystals of it, even tiny ones, have never been found or synthesized. That posed (Phys.org) —Scientists have argued for half a a long-standing puzzle. century about the existence of a form of diamond called lonsdaleite, which is associated with impacts by meteorites and asteroids. A group of scientists based mostly at Arizona State University now show that what has been called lonsdaleite is in fact a structurally disordered form of ordinary diamond. -
Abstract Govindaraju, Nirmal
ABSTRACT GOVINDARAJU, NIRMAL. Thermal Conductivity Analysis of Diamond Films. (Under the direction of Prof. Zlatko Sitar (Chair) and Prof. John Prater (Co-chair).) Thermal conductivity is a fundamental material property which governs heat transport in solids. A basic material property like thermal conductivity is influenced by the structure of the material, and hence the method of synthesis and the defects present in the material. With the advent of high speed microelectronics with extremely large device densities, there is an ever increasing need to find solutions for effective heat dissipation, especially in the context of Silicon On Insulator (SOI) technology. One solution to this problem would be to use diamond as the buried dielectric. Therefore, for the effective use of diamond films, it is essential that the thermal properties, especially the thermal conductivity, of the material be characterized. A brief background of the structure, properties and synthesis of diamond is presented. This is followed by a review of some of the experimental methods used for measuring the thermal conductivity of diamond. In order to measure the thermal conductivity of CVD diamond, two different measurement approaches are used. The first is the 3ω technique, which uses thermal waves generated by a heater/thermometer to probe the underlying material and extract the thermal conductivity from the measured temperature rise. Measurements on bulk substrates of different materials, including diamond, yield results consistent with values found in literature. However, in the case of diamond thin films, the method proves to be unreliable since there is significant deviation from the assumption of one dimensional heat transport through the solid. -
Divergent Beam X-Ray Photography of Crystals’ [10]
Downloaded from http://rsta.royalsocietypublishing.org/ on June 28, 2017 There ain’t nothing like a Dame: a commentary on rsta.royalsocietypublishing.org Lonsdale (1947) ‘Divergent beam X-ray photography of Review crystals’ Cite this article: GlazerAM.2015Thereain’t A. M. Glazer nothinglikeaDame:acommentaryon Lonsdale (1947) ‘Divergent beam X-ray Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK photography of crystals’. Phil.Trans.R.Soc.A 373: 20140232. Prof. Dame Kathleen Lonsdale was one of the two first http://dx.doi.org/10.1098/rsta.2014.0232 female Fellows of the Royal Society, having originally been a student of that great British scientist and Nobel Laureate William Henry Bragg. She came to One contribution of 17 to a theme issue fame initially for her solution of the crystal structure ‘Celebrating 350 years of Philosophical of hexamethyl benzene, thus demonstrating that the Transactions: physical sciences papers’. benzene ring was flat, of considerable importance to organic chemistry, where it had been proposed before but without proof. This was at a time when the solution of crystal structures was in its infancy, Subject Areas: and in its day this work was considered a triumph. crystallography As a rare example then of a female physicist, Lonsdale became interested in various aspects of the Keywords: diffraction of X-rays, and in particular published an X-ray diffraction, divergent beam, important paper on a form of diffraction in which a Kossel patterns, diamond strongly divergent source was used rather than the usual highly collimated beam. The photographs thus obtained showed a series of arcs and circles, whose Author for correspondence: positions were so sensitive that they could be used to A. -
Alphabetical List
LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name acanthite sulfides asbolite oxides accessory minerals astrophyllite chain silicates actinolite clinoamphibole atacamite chlorides adamite arsenates augite clinopyroxene adularia alkali feldspar austinite arsenates aegirine clinopyroxene autunite phosphates aegirine-augite clinopyroxene awaruite alloys aenigmatite aenigmatite group axinite group sorosilicates aeschynite niobates azurite carbonates agate silica minerals babingtonite rhodonite group aikinite sulfides baddeleyite oxides akaganeite oxides barbosalite phosphates akermanite melilite group barite sulfates alabandite sulfides barium feldspar feldspar group alabaster barium silicates silicates albite plagioclase barylite sorosilicates alexandrite oxides bassanite sulfates allanite epidote group bastnaesite carbonates and fluorides alloclasite sulfides bavenite chain silicates allophane clay minerals bayerite oxides almandine garnet group beidellite clay minerals alpha quartz silica minerals beraunite phosphates alstonite carbonates berndtite sulfides altaite tellurides berryite sulfosalts alum sulfates berthierine serpentine group aluminum hydroxides oxides bertrandite sorosilicates aluminum oxides oxides beryl ring silicates alumohydrocalcite carbonates betafite niobates and tantalates alunite sulfates betekhtinite sulfides amazonite alkali feldspar beudantite arsenates and sulfates amber organic minerals bideauxite chlorides and fluorides amblygonite phosphates biotite mica group amethyst