A Celebration of Systematics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Checklist of the Non -Acarine Arachnids
Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity. -
Microevolution and the Genetics of Populations Microevolution Refers to Varieties Within a Given Type
Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift. -
Adaptive Radiation Driven by the Interplay of Eco-Evolutionary and Landscape Dynamics R
Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics R. Aguilée, D. Claessen, A. Lambert To cite this version: R. Aguilée, D. Claessen, A. Lambert. Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics. Evolution - International Journal of Organic Evolution, Wiley, 2013, 67 (5), pp.1291-1306. 10.1111/evo.12008. hal-00838275 HAL Id: hal-00838275 https://hal.archives-ouvertes.fr/hal-00838275 Submitted on 13 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics Robin Aguil´eea;b;∗, David Claessenb and Amaury Lambertc;d Published in Evolution, 2013, 67(5): 1291{1306 with doi: 10.1111/evo.12008 a Institut des Sciences de l'Evolution´ de Montpellier (UMR 5554), Univ Montpellier II, CNRS, Montpellier, France b Laboratoire Ecologie´ et Evolution´ (UMR 7625), UPMC Univ Paris 06, Ecole´ Normale Sup´erieure,CNRS, Paris, France c Laboratoire Probabilit´eset Mod`elesAl´eatoires(LPMA) CNRS UMR 7599, UPMC Univ Paris 06, Paris, France. d Center for Interdisciplinary Research in Biology (CIRB) CNRS UMR 7241, Coll`egede France, Paris, France ∗ Corresponding author. -
Phylogenetic Supertree Construction Using Constraint Programming a Thesis Submitted to the Graduate School of Natural and Appli
PHYLOGENETIC SUPERTREE CONSTRUCTION USING CONSTRAINT PROGRAMMING A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF ÇANKAYA UNIVERSITY BY ALKIM ÖZAYGEN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER ENGINEERING APRIL 2006 ABSTRACT PHYLOGENETIC SUPERTREE CONSTRUCTION USING CONSTRAINT PROGRAMMING Özaygen, Alkım M.S.c., Department of Computer Engineering Supervisor : Prof. Dr. Mehmet Reşit Tolun April 2006, 50 pages In biology, a phylogenetic tree, or phylogeny, is used to show the genealogic relationships of living things. It is a codification of data about evolutionary history. The tree of life shows the path evolution took to get to the current diversity of life and can help us also to search for the genealogy of disparate living organisms. In this thesis our aim is to provide a different approach for the construction of The Tree of Life. That is, we will propose a constraint programming solution to the decision problem of constructing a supertree that is compatible with a collection of given phylogenetic trees that share some species, which we will encode as constraint satisfaction problems. Keywords: Phylogeny, Supertree, Constraint Programming iv ÖZ KISIT PROGRAMLAMA KULLANARAK SÜPERAĞAÇ OLUŞTURULMASI Özaygen, Alkım Yükseklisans, Bilgisayar Mühendisliği Anabilim Dalı Tez Yöneticisi : Prof. Dr. Mehmet Reşit Tolun Nisan 2006, 50 sayfa Biyolojide filogenetik ağaç, canlılar arası bağlantıları göstermek için kullanılır. Evrim tarihi hakkında veri kodlamasıdır. Hayat Ağacı günümüzdeki çeşitliliğe ulaşmadaki evrimin izlediği süreci gösterir ve birbirinden tamamen farklı yaşayan organizma soylarının araştırılmasında yardımcı olur. Bu tezde amaç Hayat Ağacının oluşturulmasında farklı bir yaklaşım sunmak. Karar verme problemleri ve optimizasyon problemlerine kısıt koşul programlama çözümü öneriyoruz, ki bunu da kısıt koşul sağlama problemleri şeklinde kodlayacağız. -
Adaptive Radiation Adaptive Radiation by Prof
Workshop on Population and Speciation Genomics 2020 W. Salzburger | Adaptive Radiation Adaptive Radiation by Prof. Walter Salzburger Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland The diversity of life on Earth is governed, at the MACROEVOLUTIONARY scale, by two antagonistic ———————— MACROEVOLUTION processes: Evolutionary radiations increase and extinction events decrease the organismal diversity on our Evolution on the grand scale, that is, planet through time. Evolutionary radiations are termed adaptive radiations if new lifeforms emerge evolution at the level rapidly through the extensive ecological diversification of an organismal lineage. of species and above. Examples of adaptive radiations ECOLOGICAL NICHE The relational position of a species Adaptive radiation refers to the evolution of ecological and morphological disparity within a rapidly or population in an diversifying lineage. It is the diversification of an ancestral species into an array of new species that ecosystem. It includes the interactions of all occupy various ECOLOGICAL NICHES and that differ in traits used to exploit those niches. Adaptive biotic and abiotic radiation includes the origination of both new species (speciation) and phenotypic disparity. factors that determine how a species meets Archetypal examples of adaptive radiations include Darwin’s finches on the Galápagos archipelago; its needs for food and shelter, how it silversword plants on Hawaii; anole lizards on the islands of the Caribbean; threespine stickleback fish survives, and how it in north temperate waters; and cichlid fishes in the East Africa Great Lakes and in various tropical reproduces. crater lakes (see FIGURE 1). Adaptive radiations are also visible in the FOSSIL record. For example, the FOSSIL CAMBRIAN EXPLOSION is considered an adaptive radiation. -
Adaptive Radiation Causes
NEET (/neet/) > NEET Study Material (/neet/neet-study-material/) > NEET Biology (/neet/neet-biology/) > Adaptive Radiation (/neet/important-notes-of-biology-for-neet- adaptive-radiation/) What is adaptive radiation? Adaptive radiation is the evolutionary diversification of many related species from a common ancestral species in a relatively short period. Osborne (1902) coined the term “Adaptive Radiation”. He stated that each large and isolated region, with sufficiently varied topogr aphy, soil, vegetation, climate, will lead to organisms with diverse characteristics. Darwin had called it “Divergence”, i.e. the tendency in an organism descended from the same ancestor to diverge in character as they undergo changes. Adaptive radiation plays a significant role in macroevolution. Adaptive radiation gives rise to species diversity in a geographical area. Adaptiv e Radiation Causes: Adaptive radiation is more common during major environmental changes and physical disturbances. It also helps an organism to successfully spread into other environments. Furthermore, it leads to speciation. Moreover, it also leads to phenotypically dissimilar, but related species. Major causes of adaptive radiation are: Ecological opportunities: When an organism enters a new area with lots of ecological opportunities, species diversify to exploit these resources. When a group of organism enter a new adaptive zone then organisms tend to adapt themselves differently. It results in adaptive divergence An adaptive zone is an unexploited area with numerous ecological opportunities, e.g. nocturnal flying to catch small insects, grazing on the grass while migrating across Savana, and swimming at the ocean’s surface to filter out Plankton Vacant adaptive zones are more common on islands, as fewer species inhabit islands compared to mainland When adaptive zones are empty, they get filled by species, which diversify quickly, e.g. -
Adaptive Radiation Versus ‘
Review Research review Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution Author for correspondence: Thomas J. Givnish Thomas J. Givnish Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA Tel: +1 608 262 5718 Email: [email protected] Received: 7 August 2014 Accepted: 1 May 2015 Summary New Phytologist (2015) 207: 297–303 Adaptive radiation is the rise of a diversity of ecological roles and role-specific adaptations within doi: 10.1111/nph.13482 a lineage. Recently, some researchers have begun to use ‘adaptive radiation’ or ‘radiation’ as synonymous with ‘explosive species diversification’. This essay aims to clarify distinctions Key words: adaptive radiation, ecological between these concepts, and the related ideas of geographic speciation, sexual selection, key keys, explosive diversification, geographic innovations, key landscapes and ecological keys. Several examples are given to demonstrate that speciation, key innovations, key landscapes, adaptive radiation and explosive diversification are not the same phenomenon, and that parallel adaptive radiations. focusing on explosive diversification and the analysis of phylogenetic topology ignores much of the rich biology associated with adaptive radiation, and risks generating confusion about the nature of the evolutionary forces driving species diversification. Some ‘radiations’ involve bursts of geographic speciation or sexual selection, rather than adaptive diversification; some adaptive radiations have little or no effect on speciation, or even a negative effect. Many classic examples of ‘adaptive radiation’ appear to involve effects driven partly by geographic speciation, species’ dispersal abilities, and the nature of extrinsic dispersal barriers; partly by sexual selection; and partly by adaptive radiation in the classical sense, including the origin of traits and invasion of adaptive zones that result in decreased diversification rates but add to overall diversity. -
Spiders As Potential Indicators of Elephantinduced Habitat Changes In
Spiders as potential indicators of elephant-induced habitat changes in endemic sand forest, Maputaland, South Africa Charles R. Haddad1*, Allet S. Honiball2, Anna S. Dippenaar-Schoeman3,2, Rob Slotow4 and Berndt J. van Rensburg5 1Department of Zoology & Entomology, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, 2Department of Zoology & Entomology, University of Pretoria, Pretoria 0002, South Africa, 3Biosystematics: Arachnology, ARC – Plant Protection Research Institute, Private Bag X134, Queenswood 0121, South Africa, 4Amarula Elephant Research Programme, School of Biological and Conservation Sciences, University of KwaZulu-Natal, Durban 4041, South Africa and 5Centre for Invasion Biology and Department of Zoology & Entomology, University of Pretoria, Pretoria 0002, South Africa Abstract Re´sume´ Elephant impacts on spider assemblages, and the potential L’impact des e´le´phants sur les assemblages d’araigne´es, use of spiders as indicators of habitat changes was assessed et l’utilisation e´ventuelle des araigne´es comme indica- in central Maputaland, South Africa. Three habitats, teurs de changements des habitats, ont e´te´ e´value´s dans namely undisturbed sand forest, elephant disturbed sand le centre du Maputaland, en Afrique du Sud. Trois forest and mixed woodland, were sampled. To ensure a habitats ont e´te´ e´chantillonne´s, a` savoir la foreˆt sableuse thorough representation of all spider guilds, spiders were intacte, la foreˆt sableuse perturbe´e par des e´le´phants et collected by tree beating, sweep netting, active searching, la foreˆt mixte. Pour garantir une repre´sentation comple`te leaf litter sifting and pitfall traps. In total, 2808 individual de toutes les guildes d’araigne´es, on a re´colte´ des ara- spiders, representing 36 families, 144 determined genera igne´es en frappant sur les arbres, en agitant des filets, en and 251 species were collected. -
Onetouch 4.0 Sanned Documents
Anna. Rev. Ecol. Swf. 1991. 22:565-92 SYSTEMATICS AND EVOLUTION OF SPIDERS (ARANEAE)* • Jonathan A. Coddington Department of Entomology, National Museum of Natural History. Smithsonian Institution, Washington, DC 20560 Herbert W. Levi Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138 KEY WORDS: taxonomy, phytogeny, cladistics, biology, diversity INTRODUCTION In the last 15 years understanding of the higher systematics of Araneae has changed greatly. Large classical superfamilies and families have turned out to be poly- or paraphyletic; posited relationships were often based on sym- plesiomorphies. In this brief review we summarize current taxonomic and phylogenetic knowledge and suggest where future efforts might profitably be concentrated. We lack space to discuss fully all the clades mentioned, and the cited numbers of described taxa are only approximate. Other aspects of spider biology have been summarized by Barth (7), Eberhard (47), Jackson & Parks (72), Nentwig (105), Nyffeler & Benz (106), Riechert & Lockley (134), Shear (149) and Turnbull (160). Diversity, Paleontology, Descriptive Work, Importance The order Araneae ranks seventh in global diversity after the five largest insect orders (Coleoptera, Hymenoptera, Lepidoptera, Diptera, Hemiptera) and Acari among the arachnids (111) in terms of species described or an- *The US government has the right to retain a nonexclusive, royalty free license in and to any copyright covering this paper. 565 566 CODDINGTON & LEVI ticipated. Spiders are among the most diverse groups on earth. Among these taxa, spiders are exceptional for their complete dependence on predation as a trophic strategy. In contrast, the diversity of insects and mites may result from their diversity in dietary strategies•notably phytophagy and parasitism (104). -
The Spider Anatomy Ontology (SPD)—A Versatile Tool to Link Anatomy with Cross-Disciplinary Data
diversity Article The Spider Anatomy Ontology (SPD)—A Versatile Tool to Link Anatomy with Cross-Disciplinary Data Martín J. Ramírez 1,* and Peter Michalik 2,* 1 Division of Arachnology, Museo Argentino de Ciencias Naturales—CONICET, Buenos Aires C1405DJR, Argentina 2 Zoologisches Institut und Museum, Universität Greifswald, 17489 Greifswald, Germany * Correspondence: [email protected] (M.J.R.); [email protected] (P.M.) Received: 27 September 2019; Accepted: 18 October 2019; Published: 22 October 2019 Abstract: Spiders are a diverse group with a high eco-morphological diversity, which complicates anatomical descriptions especially with regard to its terminology. New terms are constantly proposed, and definitions and limits of anatomical concepts are regularly updated. Therefore, it is often challenging to find the correct terms, even for trained scientists, especially when the terminology has obstacles such as synonyms, disputed definitions, ambiguities, or homonyms. Here, we present the Spider Anatomy Ontology (SPD), which we developed combining the functionality of a glossary (a controlled defined vocabulary) with a network of formalized relations between terms that can be used to compute inferences. The SPD follows the guidelines of the Open Biomedical Ontologies and is available through the NCBO BioPortal (ver. 1.1). It constitutes of 757 valid terms and definitions, is rooted with the Common Anatomy Reference Ontology (CARO), and has cross references to other ontologies, especially of arthropods. The SPD offers a wealth of anatomical knowledge that can be used as a resource for any scientific study as, for example, to link images to phylogenetic datasets, compute structural complexity over phylogenies, and produce ancestral ontologies. -
The Phylogenetic Placement of Psechridae Within Entelegynae and the Convergent Origin of Orb-Like Spider Webs
Accepted on 22 September 2012 © 2012 Blackwell Verlag GmbH J Zoolog Syst Evol Res doi: 10.1111/jzs.12007 1Department of Biology, University of Vermont, Burlington VT, ; 2National Museum of Natural History, Smithsonian Institution, Washington DC, USA; 3Institute of Biology, Scientific Research Centre, Slovenian Academy of Sciences and Arts, Ljubljana Slovenia; 4Department of Biology and Integrated Bioscience Program, University of Akron, Akron OH, USA; 5College of Life Sciences, Hubei University, Wuhan Hubei, China The phylogenetic placement of Psechridae within Entelegynae and the convergent origin of orb-like spider webs 1,2 3 4 2,3,5 INGI AGNARSSON *, MATJAŽ GREGORIČ ,TODD A. BLACKLEDGE and MATJAŽ KUNTNER Abstract Evolutionary convergence of phenotypic traits provides evidence for their functional success. The origin of the orb web was a critical event in the diversification of spiders that facilitated a spectacular radiation of approximately 12 000 species and promoted the evolution of novel web types. How the orb web evolved from ancestral web types, and how many times orb-like architectures evolved in spiders, has been debated for a long time. The little known spider genus Fecenia (Psechridae) constructs a web that resembles the archetypical orb web, but morphological data suggest that Psechri- dae (Psechrus + Fecenia) does not belong in Orbiculariae, the ‘true orb weavers’, but to the ‘retrolateral tibial apophysis (RTA) clade’ consisting mostly of wandering spiders, but also including spiders building less regular webs. Yet, the data are sparse and no molecular phylogenetic study has estimated Fecenia’s exact position in the tree of life. Adding new data to sequences pulled from GenBank, we reconstruct a phylogeny of Entelegynae and phylogenetically test the monophyly and placement of Psechridae, and in doing so, the alternative hypotheses of monophyletic origin of the orb web and the pseudo-orb versus their independent origins, a potentially spectacular case of behavioural convergence. -
The Spiders and Scorpions of the Santa Catalina Mountain Area, Arizona
The spiders and scorpions of the Santa Catalina Mountain Area, Arizona Item Type text; Thesis-Reproduction (electronic) Authors Beatty, Joseph Albert, 1931- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 16:48:28 Link to Item http://hdl.handle.net/10150/551513 THE SPIDERS AND SCORPIONS OF THE SANTA CATALINA MOUNTAIN AREA, ARIZONA by Joseph A. Beatty < • • : r . ' ; : ■ v • 1 ■ - ' A Thesis Submitted to the Faculty of the DEPARTMENT OF ZOOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College UNIVERSITY OF ARIZONA 1961 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfill ment of requirements for an advanced degree at the Uni versity of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for per mission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in their judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.